# File: WebShop-master/baseline_models/agent.py import os import random import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoTokenizer from collections import defaultdict, namedtuple from models.bert import BertConfigForWebshop, BertModelForWebshop from models.rnn import RCDQN device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') State = namedtuple('State', ('obs', 'goal', 'click', 'estimate', 'obs_str', 'goal_str', 'image_feat')) TransitionPG = namedtuple('TransitionPG', ('state', 'act', 'reward', 'value', 'valid_acts', 'done')) def discount_reward(transitions, last_values, gamma): (returns, advantages) = ([], []) R = last_values.detach() for t in reversed(range(len(transitions))): (_, _, rewards, values, _, dones) = transitions[t] R = torch.FloatTensor(rewards).to(device) + gamma * R * (1 - torch.FloatTensor(dones).to(device)) baseline = values adv = R - baseline returns.append(R) advantages.append(adv) return (returns[::-1], advantages[::-1]) class Agent: def __init__(self, args): self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left', max_length=512) self.tokenizer.add_tokens(['[button], [button_], [clicked button], [clicked button_]'], special_tokens=True) vocab_size = len(self.tokenizer) embedding_dim = args.embedding_dim if args.network == 'rnn': self.network = RCDQN(vocab_size, embedding_dim, args.hidden_dim, args.arch_encoder, args.grad_encoder, None, args.gru_embed, args.get_image, args.bert_path) self.network.rl_forward = self.network.forward elif args.network == 'bert': config = BertConfigForWebshop(image=args.get_image, pretrained_bert=args.bert_path != 'scratch') self.network = BertModelForWebshop(config) if args.bert_path != '' and args.bert_path != 'scratch': self.network.load_state_dict(torch.load(args.bert_path, map_location=torch.device('cpu')), strict=False) else: raise ValueError('Unknown network: {}'.format(args.network)) self.network = self.network.to(device) self.save_path = args.output_dir self.clip = args.clip self.w = {'loss_pg': args.w_pg, 'loss_td': args.w_td, 'loss_il': args.w_il, 'loss_en': args.w_en} self.optimizer = torch.optim.Adam(self.network.parameters(), lr=args.learning_rate) self.gamma = args.gamma def build_state(self, ob, info): obs_ids = self.encode(ob) goal_ids = self.encode(info['goal']) click = info['valid'][0].startswith('click[') estimate = info['estimate_score'] obs_str = ob.replace('\n', '[SEP]') goal_str = info['goal'] image_feat = info.get('image_feat') return State(obs_ids, goal_ids, click, estimate, obs_str, goal_str, image_feat) def encode(self, observation, max_length=512): observation = observation.lower().replace('"', '').replace("'", '').strip() observation = observation.replace('[sep]', '[SEP]') token_ids = self.tokenizer.encode(observation, truncation=True, max_length=max_length) return token_ids def decode(self, act): act = self.tokenizer.decode(act, skip_special_tokens=True) act = act.replace(' [ ', '[').replace(' ]', ']') return act def encode_valids(self, valids, max_length=64): return [[self.encode(act, max_length=max_length) for act in valid] for valid in valids] def act(self, states, valid_acts, method, state_strs=None, eps=0.1): act_ids = self.encode_valids(valid_acts) (act_values, act_sizes, values) = self.network.rl_forward(states, act_ids, value=True, act=True) act_values = act_values.split(act_sizes) if method == 'softmax': act_probs = [F.softmax(vals, dim=0) for vals in act_values] act_idxs = [torch.multinomial(probs, num_samples=1).item() for probs in act_probs] elif method == 'greedy': act_idxs = [vals.argmax(dim=0).item() for vals in act_values] elif method == 'eps': act_idxs = [vals.argmax(dim=0).item() if random.random() > eps else random.randint(0, len(vals) - 1) for vals in act_values] acts = [acts[idx] for (acts, idx) in zip(act_ids, act_idxs)] (act_strs, act_ids) = ([], []) for (act, idx, valids) in zip(acts, act_idxs, valid_acts): if torch.is_tensor(act): act = act.tolist() if 102 in act: act = act[:act.index(102) + 1] act_ids.append(act) if idx is None: act_str = self.decode(act) else: act_str = valids[idx] act_strs.append(act_str) return (act_strs, act_ids, values) def update(self, transitions, last_values, step=None, rewards_invdy=None): (returns, advs) = discount_reward(transitions, last_values, self.gamma) stats_global = defaultdict(float) for (transition, adv) in zip(transitions, advs): stats = {} (log_valid, valid_sizes) = self.network.rl_forward(transition.state, transition.valid_acts) act_values = log_valid.split(valid_sizes) log_a = torch.stack([values[acts.index(act)] for (values, acts, act) in zip(act_values, transition.valid_acts, transition.act)]) stats['loss_pg'] = -(log_a * adv.detach()).mean() stats['loss_td'] = adv.pow(2).mean() stats['loss_il'] = -log_valid.mean() stats['loss_en'] = (log_valid * log_valid.exp()).mean() for k in stats: stats[k] = self.w[k] * stats[k] / len(transitions) stats['loss'] = sum((stats[k] for k in stats)) stats['returns'] = torch.stack(returns).mean() / len(transitions) stats['advs'] = torch.stack(advs).mean() / len(transitions) stats['loss'].backward() stats['gradnorm_unclipped'] = sum((p.grad.norm(2).item() for p in self.network.parameters() if p.grad is not None)) nn.utils.clip_grad_norm_(self.network.parameters(), self.clip) stats['gradnorm_clipped'] = sum((p.grad.norm(2).item() for p in self.network.parameters() if p.grad is not None)) for (k, v) in stats.items(): stats_global[k] += v.item() if torch.is_tensor(v) else v del stats self.optimizer.step() self.optimizer.zero_grad() return stats_global def load(self): try: self.network = torch.load(os.path.join(self.save_path, 'model.pt')) except Exception as e: print('Error saving model.', e) def save(self): try: torch.save(self.network, os.path.join(self.save_path, 'model.pt')) except Exception as e: print('Error saving model.', e) # File: WebShop-master/baseline_models/env.py import sys import json import random from os.path import join, dirname, abspath from collections import defaultdict MODEL_PATH = dirname(abspath(__file__)) SITE_PATH = join(MODEL_PATH, '../') sys.path.insert(0, SITE_PATH) from web_agent_site.envs import WebAgentTextEnv from web_agent_site.utils import * from web_agent_site.engine.goal import get_reward class WebEnv: def __init__(self, args, split, server=None, id=None): self.env = WebAgentTextEnv(observation_mode=args.state_format, server=server, filter_goals=None, limit_goals=-1, num_products=args.num, human_goals=args.human_goals, get_image=args.get_image, num_prev_obs=args.num_prev_obs, num_prev_actions=args.num_prev_actions, session_prefix=id) if args.num is None: if split == 'test': self.goal_idxs = range(500) elif split == 'eval': self.goal_idxs = range(500, 1500) elif split == 'train': self.goal_idxs = range(1500, len(self.env.server.goals)) else: self.goal_idxs = range(len(self.env.server.goals)) print(self.goal_idxs) self.steps = 0 self.step_limit = args.step_limit self.stats = defaultdict(int) self.session = None self.click_item_name = args.click_item_name self.asin2name = {k.lower(): v['Title'].lower() for (k, v) in self.env.server.product_item_dict.items()} self.name2asin = {v: k for (k, v) in self.asin2name.items()} self.attributes_fail = defaultdict(int) self.attributes_success = defaultdict(int) self.items_clicked = defaultdict(int) self.harsh_reward = args.harsh_reward self.go_to_item = args.go_to_item self.go_to_search = args.go_to_search self.ban_buy = args.ban_buy self.prev_ob = self.cur_ob = None self.get_image = args.get_image self.item_rank = -1 self.reduce_click = 1 if args.extra_search_path != '': self.extra_search = json.load(open(args.extra_search_path)) self.extra_search = {k.strip('.'): v for (k, v) in self.extra_search.items()} else: self.extra_search = None def get_search_texts(self, atts, query, inst): if self.extra_search is not None: if ', and price lower than' in inst: idx = inst.find(', and price lower than') inst_ = inst[:idx] else: inst_ = inst texts = self.extra_search.get(inst_, []) + [inst.lower()] else: texts = [query] + [f'{att} {query}' for att in atts] + [inst.lower()] return texts def get_valid_actions(self): valid_info = self.env.get_available_actions() if valid_info['has_search_bar']: atts = self.session['goal']['attributes'] query = self.session['goal']['query'] inst = self.session['goal']['instruction_text'] texts = self.get_search_texts(atts, query, inst) valids = [f'search[{text}]' for text in texts] else: valids = [] for text in valid_info['clickables']: if text == 'buy now' and self.ban_buy: cur_options = len(self.session['options']) all_options = len(self.env.server.product_item_dict[self.session['asin']]['customization_options']) if cur_options != all_options: continue if text != 'search': if self.click_item_name and text in self.asin2name: text = 'item - ' + self.asin2name[text] valids.append(f'click[{text}]') if self.reduce_click and len(valids) > 20: valids = valids[:6] + random.sample(valids[6:], 10) if len(valids) == 0: valids = ['finish'] return valids def score(self): valid_acts = self.get_valid_actions() if 'click[description]' not in valid_acts: return 0.0 product = self.env.server.product_item_dict[self.session['asin']] goal = self.session['goal'] price = self.env.server.product_prices.get(self.session['asin']) options = self.session['options'] return get_reward(product, goal, price, options) def estimate_score(self, atts, opts, verify=False): valid_acts = self.get_valid_actions() assert 'click[description]' in valid_acts desc = self.step('click[description]')[0].lower() self.step('click[< prev]') feat = self.step('click[features]')[0].lower() ob = self.step('click[< prev]')[0].lower() n_att = 0 for att in atts: if att in desc or att in feat or att in ob: n_att += 1 r_att = n_att / len(atts) n_opt = 0 for opt in opts: for act in valid_acts: if opt in act: n_opt += 1 break r_opt = n_opt / len(opts) r = (n_att + n_opt + 1) / (len(atts) + len(opts) + 1) return (r, r_att, r_opt) def step(self, action): if self.click_item_name and action.startswith('click[item - ') and (action[13:-1] in self.name2asin): valid_items = [_ for _ in self.get_valid_actions() if _.startswith('click[item - ')] if action in valid_items: self.item_rank = valid_items.index(action) + 1 else: self.item_rank = -1 action = f'click[{self.name2asin[action[13:-1]]}]' (ob, reward, done, info) = self.env.step(action) if action.startswith('click[') and action[6:-1] in self.asin2name: self.items_clicked[action[6:-1]] += 1 desc = self.env.step('click[description]')[0].lower() self.env.step('click[< prev]') feat = self.env.step('click[features]')[0].lower() self.env.step('click[< prev]') else: desc = feat = '' r_visit = 0.0 (self.cur_ob, self.prev_ob) = (ob, self.cur_ob) if info is None: info = {} self.steps += 1 if self.step_limit and self.steps >= self.step_limit: done = True if done: info['verbose'] = self.session.get('verbose_info', {'r_att': 0.0, 'r_option': 0.0, 'r_price': 0.0, 'r_type': 0.0, 'w_att': 0.0, 'w_option': 0.0, 'w_price': 0.0}) verbose = info['verbose'] verbose['r_harsh'] = reward == 1 verbose['r_exact'] = reward == 1 and self.session['goal']['asin'] == self.session['asin'] verbose['r_norm'] = reward / self.steps verbose['r_visit'] = r_visit verbose['rank_item'] = self.item_rank if self.harsh_reward: reward = verbose['r_harsh'] for (k, v) in self.session['actions'].items(): self.stats[f'action_{k}'] += v cat = self.session['goal']['category'] self.stats[f'cat_{cat}'] += 1 for att in self.session['goal']['attributes']: if att in info['verbose'].get('purchased_attrs', []): self.attributes_success[att] += 1 else: self.attributes_fail[att] += 1 info.update({'valid': self.get_valid_actions(), 'goal': self.env.instruction_text, 'score': reward * 10, 'estimate_score': self.score(), 'prev_ob': self.prev_ob, 'desc': desc, 'feat': feat}) if self.get_image: image_feat = self.env.get_image() info['image_feat'] = image_feat return (ob, (reward + r_visit) * 10, done, info) def reset(self, idx=None): if idx is None: idx = random.sample(self.goal_idxs, k=1)[0] (ob, info) = self.env.reset(idx) self.session = self.env.server.user_sessions[self.env.session] if info is None: info = {} (self.cur_ob, self.prev_ob) = (ob, None) info.update({'valid': self.get_valid_actions(), 'goal': self.env.instruction_text, 'score': 0, 'estimate_score': self.score(), 'prev_ob': self.prev_ob, 'desc': '', 'feat': ''}) self.steps = 0 if self.go_to_search or self.go_to_item: name = self.session['goal']['name'].lower() (ob, _, _, info) = self.step(f'search[{name}]') self.stats['action_go_to_search'] += 1 if self.go_to_item: asin = self.session['goal']['asin'].lower() if asin in self.env.get_available_actions()['clickables']: (ob, _, _, info) = self.step(f'click[{asin}]') self.stats['action_go_to_item'] += 1 self.item_rank = -1 return (ob, info) def close(self): self.env.close() # File: WebShop-master/baseline_models/generate_search.py import json import time import torch from tqdm import tqdm from transformers import BartForConditionalGeneration from train_search import get_data, get_dataset, tokenizer if __name__ == '__main__': model = BartForConditionalGeneration.from_pretrained('./ckpts/web_search/checkpoint-800') model.eval() model = model.to('cuda') dataset = get_dataset('web_search') dataloader = torch.utils.data.DataLoader(dataset['all'], batch_size=32) (_, all_goals) = get_data('all') all_dec = [] for batch in tqdm(dataloader): output = model.generate(input_ids=batch['input_ids'].to('cuda'), attention_mask=batch['attention_mask'].to('cuda'), num_beams=10, num_return_sequences=10, max_length=512, early_stopping=True) dec = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False) assert len(dec) % 10 == 0 for i in range(len(dec) // 10): all_dec.append(dec[i * 10:(i + 1) * 10]) assert len(all_goals) == len(all_dec) d = {goal: dec for (goal, dec) in zip(all_goals, all_dec)} with open('./data/goal_query_predict.json', 'w') as f: json.dump(d, f) # File: WebShop-master/baseline_models/logger.py import os import sys import shutil import os.path as osp import json import time import datetime import tempfile from collections import defaultdict import wandb DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, 'wt') self.own_file = True else: assert hasattr(filename_or_file, 'read'), 'expected file or str, got %s' % filename_or_file self.file = filename_or_file self.own_file = False def writekvs(self, kvs): key2str = {} for (key, val) in sorted(kvs.items()): if isinstance(val, float): valstr = '%-8.3g' % (val,) else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) if len(key2str) == 0: print('WARNING: tried to write empty key-value dict') return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) dashes = '-' * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items()): lines.append('| %s%s | %s%s |' % (key, ' ' * (keywidth - len(key)), val, ' ' * (valwidth - len(val)))) lines.append(dashes) self.file.write('\n'.join(lines) + '\n') self.file.flush() def _truncate(self, s): return s[:20] + '...' if len(s) > 23 else s def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: self.file.write(' ') self.file.write('\n') self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'wt') def writekvs(self, kvs): for (k, v) in sorted(kvs.items()): if hasattr(v, 'dtype'): v = v.tolist() kvs[k] = float(v) self.file.write(json.dumps(kvs) + '\n') self.file.flush() def close(self): self.file.close() class WandBOutputFormat(KVWriter): def __init__(self, filename): group = None if filename.endswith('trial'): group = filename[:-6] wandb.init(project='web_drrn', name=filename, group=group) def writekvs(self, kvs): wandb.log(kvs) def close(self): pass class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, 'w+t') self.keys = [] self.sep = ',' def writekvs(self, kvs): extra_keys = kvs.keys() - self.keys if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') self.file.write(k) self.file.write('\n') for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write('\n') for (i, k) in enumerate(self.keys): if i > 0: self.file.write(',') v = kvs.get(k) if v is not None: self.file.write(str(v)) self.file.write('\n') self.file.flush() def close(self): self.file.close() class TensorBoardOutputFormat(KVWriter): def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = 'events' path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.core.util import event_pb2 from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {'tag': k, 'simple_value': float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for (k, v) in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = self.step self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir, log_suffix='', args=None): os.makedirs(ev_dir, exist_ok=True) if format == 'stdout': return HumanOutputFormat(sys.stdout) elif format == 'log': return HumanOutputFormat(osp.join(ev_dir, 'log%s.txt' % log_suffix)) elif format == 'json': return JSONOutputFormat(osp.join(ev_dir, 'progress%s.json' % log_suffix)) elif format == 'csv': return CSVOutputFormat(osp.join(ev_dir, 'progress%s.csv' % log_suffix)) elif format == 'tensorboard': return TensorBoardOutputFormat(osp.join(ev_dir, 'tb%s' % log_suffix)) elif format == 'wandb': return WandBOutputFormat(ev_dir) else: raise ValueError('Unknown format specified: %s' % (format,)) def logkv(key, val): Logger.CURRENT.logkv(key, val) def logkv_mean(key, val): Logger.CURRENT.logkv_mean(key, val) def logkvs(d): for (k, v) in d.items(): logkv(k, v) def dumpkvs(): Logger.CURRENT.dumpkvs() def getkvs(): return Logger.CURRENT.name2val def log(*args, level=INFO): Logger.CURRENT.log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): Logger.CURRENT.set_level(level) def get_dir(): return Logger.CURRENT.get_dir() record_tabular = logkv dump_tabular = dumpkvs class ProfileKV: def __init__(self, n): self.n = 'wait_' + n def __enter__(self): self.t1 = time.time() def __exit__(self, type, value, traceback): Logger.CURRENT.name2val[self.n] += time.time() - self.t1 def profile(n): def decorator_with_name(func): def func_wrapper(*args, **kwargs): with ProfileKV(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name class Logger(object): DEFAULT = None CURRENT = None def __init__(self, dir, output_formats): self.name2val = defaultdict(float) self.name2cnt = defaultdict(int) self.level = INFO self.dir = dir self.output_formats = output_formats def logkv(self, key, val): self.name2val[key] = val def logkv_mean(self, key, val): if val is None: self.name2val[key] = None return (oldval, cnt) = (self.name2val[key], self.name2cnt[key]) self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): if self.level == DISABLED: return for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(self.name2val) self.name2val.clear() self.name2cnt.clear() def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) def set_level(self, level): self.level = level def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) def configure(dir=None, format_strs=None): if dir is None: dir = os.getenv('OPENAI_LOGDIR') if dir is None: dir = osp.join(tempfile.gettempdir(), datetime.datetime.now().strftime('openai-%Y-%m-%d-%H-%M-%S-%f')) assert isinstance(dir, str) os.makedirs(dir, exist_ok=True) log_suffix = '' rank = 0 for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']: if varname in os.environ: rank = int(os.environ[varname]) if rank > 0: log_suffix = '-rank%03i' % rank if format_strs is None: if rank == 0: format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',') else: format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',') format_strs = filter(None, format_strs) output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats) log('Logging to %s' % dir) def _configure_default_logger(): format_strs = None if 'OPENAI_LOG_FORMAT' not in os.environ: format_strs = ['stdout'] configure(format_strs=format_strs) Logger.DEFAULT = Logger.CURRENT def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log('Reset logger') class scoped_configure(object): def __init__(self, dir=None, format_strs=None): self.dir = dir self.format_strs = format_strs self.prevlogger = None def __enter__(self): self.prevlogger = Logger.CURRENT configure(dir=self.dir, format_strs=self.format_strs) def __exit__(self, *args): Logger.CURRENT.close() Logger.CURRENT = self.prevlogger def _demo(): info('hi') debug("shouldn't appear") set_level(DEBUG) debug('should appear') dir = '/tmp/testlogging' if os.path.exists(dir): shutil.rmtree(dir) configure(dir=dir) logkv('a', 3) logkv('b', 2.5) dumpkvs() logkv('b', -2.5) logkv('a', 5.5) dumpkvs() info('^^^ should see a = 5.5') logkv_mean('b', -22.5) logkv_mean('b', -44.4) logkv('a', 5.5) dumpkvs() info('^^^ should see b = 33.3') logkv('b', -2.5) dumpkvs() logkv('a', 'longasslongasslongasslongasslongasslongassvalue') dumpkvs() def read_json(fname): import pandas ds = [] with open(fname, 'rt') as fh: for line in fh: ds.append(json.loads(line)) return pandas.DataFrame(ds) def read_csv(fname): import pandas return pandas.read_csv(fname, index_col=None, comment='#') def read_tb(path): import pandas import numpy as np from glob import glob from collections import defaultdict import tensorflow as tf if osp.isdir(path): fnames = glob(osp.join(path, 'events.*')) elif osp.basename(path).startswith('events.'): fnames = [path] else: raise NotImplementedError('Expected tensorboard file or directory containing them. Got %s' % path) tag2pairs = defaultdict(list) maxstep = 0 for fname in fnames: for summary in tf.train.summary_iterator(fname): if summary.step > 0: for v in summary.summary.value: pair = (summary.step, v.simple_value) tag2pairs[v.tag].append(pair) maxstep = max(summary.step, maxstep) data = np.empty((maxstep, len(tag2pairs))) data[:] = np.nan tags = sorted(tag2pairs.keys()) for (colidx, tag) in enumerate(tags): pairs = tag2pairs[tag] for (step, value) in pairs: data[step - 1, colidx] = value return pandas.DataFrame(data, columns=tags) if __name__ == '__main__': _demo() # File: WebShop-master/baseline_models/models/bert.py import torch import torch.nn as nn import torch.nn.functional as F from transformers import BertModel, BertConfig, PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import SequenceClassifierOutput from .modules import EncoderRNN, BiAttention, get_aggregated class BertConfigForWebshop(PretrainedConfig): model_type = 'bert' def __init__(self, pretrained_bert=True, image=False, **kwargs): self.pretrained_bert = pretrained_bert self.image = image super().__init__(**kwargs) class BertModelForWebshop(PreTrainedModel): config_class = BertConfigForWebshop def __init__(self, config): super().__init__(config) bert_config = BertConfig.from_pretrained('bert-base-uncased') if config.pretrained_bert: self.bert = BertModel.from_pretrained('bert-base-uncased') else: self.bert = BertModel(config) self.bert.resize_token_embeddings(30526) self.attn = BiAttention(768, 0.0) self.linear_1 = nn.Linear(768 * 4, 768) self.relu = nn.ReLU() self.linear_2 = nn.Linear(768, 1) if config.image: self.image_linear = nn.Linear(512, 768) else: self.image_linear = None self.linear_3 = nn.Sequential(nn.Linear(768, 128), nn.LeakyReLU(), nn.Linear(128, 1)) def forward(self, state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, images=None, labels=None): sizes = sizes.tolist() state_rep = self.bert(state_input_ids, attention_mask=state_attention_mask)[0] if images is not None and self.image_linear is not None: images = self.image_linear(images) state_rep = torch.cat([images.unsqueeze(1), state_rep], dim=1) state_attention_mask = torch.cat([state_attention_mask[:, :1], state_attention_mask], dim=1) action_rep = self.bert(action_input_ids, attention_mask=action_attention_mask)[0] state_rep = torch.cat([state_rep[i:i + 1].repeat(j, 1, 1) for (i, j) in enumerate(sizes)], dim=0) state_attention_mask = torch.cat([state_attention_mask[i:i + 1].repeat(j, 1) for (i, j) in enumerate(sizes)], dim=0) act_lens = action_attention_mask.sum(1).tolist() state_action_rep = self.attn(action_rep, state_rep, state_attention_mask) state_action_rep = self.relu(self.linear_1(state_action_rep)) act_values = get_aggregated(state_action_rep, act_lens, 'mean') act_values = self.linear_2(act_values).squeeze(1) logits = [F.log_softmax(_, dim=0) for _ in act_values.split(sizes)] loss = None if labels is not None: loss = -sum([logit[label] for (logit, label) in zip(logits, labels)]) / len(logits) return SequenceClassifierOutput(loss=loss, logits=logits) def rl_forward(self, state_batch, act_batch, value=False, q=False, act=False): act_values = [] act_sizes = [] values = [] for (state, valid_acts) in zip(state_batch, act_batch): with torch.set_grad_enabled(not act): state_ids = torch.tensor([state.obs]).cuda() state_mask = (state_ids > 0).int() act_lens = [len(_) for _ in valid_acts] act_ids = [torch.tensor(_) for _ in valid_acts] act_ids = nn.utils.rnn.pad_sequence(act_ids, batch_first=True).cuda() act_mask = (act_ids > 0).int() act_size = torch.tensor([len(valid_acts)]).cuda() if self.image_linear is not None: images = [state.image_feat] images = [torch.zeros(512) if _ is None else _ for _ in images] images = torch.stack(images).cuda() else: images = None logits = self.forward(state_ids, state_mask, act_ids, act_mask, act_size, images=images).logits[0] act_values.append(logits) act_sizes.append(len(valid_acts)) if value: v = self.bert(state_ids, state_mask)[0] values.append(self.linear_3(v[0][0])) act_values = torch.cat(act_values, dim=0) act_values = torch.cat([F.log_softmax(_, dim=0) for _ in act_values.split(act_sizes)], dim=0) if value: values = torch.cat(values, dim=0) return (act_values, act_sizes, values) else: return (act_values, act_sizes) # File: WebShop-master/baseline_models/models/modules.py import itertools import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import rnn def duplicate(output, mask, lens, act_sizes): output = torch.cat([output[i:i + 1].repeat(j, 1, 1) for (i, j) in enumerate(act_sizes)], dim=0) mask = torch.cat([mask[i:i + 1].repeat(j, 1) for (i, j) in enumerate(act_sizes)], dim=0) lens = list(itertools.chain.from_iterable([lens[i:i + 1] * j for (i, j) in enumerate(act_sizes)])) return (output, mask, lens) def get_aggregated(output, lens, method): if method == 'mean': return torch.stack([output[i, :j, :].mean(0) for (i, j) in enumerate(lens)], dim=0) elif method == 'last': return torch.stack([output[i, j - 1, :] for (i, j) in enumerate(lens)], dim=0) elif method == 'first': return output[:, 0, :] class EncoderRNN(nn.Module): def __init__(self, input_size, num_units, nlayers, concat, bidir, layernorm, return_last): super().__init__() self.layernorm = layernorm == 'layer' if layernorm: self.norm = nn.LayerNorm(input_size) self.rnns = [] for i in range(nlayers): if i == 0: input_size_ = input_size output_size_ = num_units else: input_size_ = num_units if not bidir else num_units * 2 output_size_ = num_units self.rnns.append(nn.GRU(input_size_, output_size_, 1, bidirectional=bidir, batch_first=True)) self.rnns = nn.ModuleList(self.rnns) self.init_hidden = nn.ParameterList([nn.Parameter(torch.zeros(size=(2 if bidir else 1, 1, num_units)), requires_grad=True) for _ in range(nlayers)]) self.concat = concat self.nlayers = nlayers self.return_last = return_last self.reset_parameters() def reset_parameters(self): with torch.no_grad(): for rnn_layer in self.rnns: for (name, p) in rnn_layer.named_parameters(): if 'weight_ih' in name: torch.nn.init.xavier_uniform_(p.data) elif 'weight_hh' in name: torch.nn.init.orthogonal_(p.data) elif 'bias' in name: p.data.fill_(0.0) else: p.data.normal_(std=0.1) def get_init(self, bsz, i): return self.init_hidden[i].expand(-1, bsz, -1).contiguous() def forward(self, inputs, input_lengths=None): (bsz, slen) = (inputs.size(0), inputs.size(1)) if self.layernorm: inputs = self.norm(inputs) output = inputs outputs = [] lens = 0 if input_lengths is not None: lens = input_lengths for i in range(self.nlayers): hidden = self.get_init(bsz, i) if input_lengths is not None: output = rnn.pack_padded_sequence(output, lens, batch_first=True, enforce_sorted=False) (output, hidden) = self.rnns[i](output, hidden) if input_lengths is not None: (output, _) = rnn.pad_packed_sequence(output, batch_first=True) if output.size(1) < slen: padding = torch.zeros(size=(1, 1, 1), dtype=output.type(), device=output.device()) output = torch.cat([output, padding.expand(output.size(0), slen - output.size(1), output.size(2))], dim=1) if self.return_last: outputs.append(hidden.permute(1, 0, 2).contiguous().view(bsz, -1)) else: outputs.append(output) if self.concat: return torch.cat(outputs, dim=2) return outputs[-1] class BiAttention(nn.Module): def __init__(self, input_size, dropout): super().__init__() self.dropout = nn.Dropout(dropout) self.input_linear = nn.Linear(input_size, 1, bias=False) self.memory_linear = nn.Linear(input_size, 1, bias=False) self.dot_scale = nn.Parameter(torch.zeros(size=(input_size,)).uniform_(1.0 / input_size ** 0.5), requires_grad=True) self.init_parameters() def init_parameters(self): return def forward(self, context, memory, mask): (bsz, input_len) = (context.size(0), context.size(1)) memory_len = memory.size(1) context = self.dropout(context) memory = self.dropout(memory) input_dot = self.input_linear(context) memory_dot = self.memory_linear(memory).view(bsz, 1, memory_len) cross_dot = torch.bmm(context * self.dot_scale, memory.permute(0, 2, 1).contiguous()) att = input_dot + memory_dot + cross_dot att = att - 1e+30 * (1 - mask[:, None]) weight_one = F.softmax(att, dim=-1) output_one = torch.bmm(weight_one, memory) weight_two = F.softmax(att.max(dim=-1)[0], dim=-1).view(bsz, 1, input_len) output_two = torch.bmm(weight_two, context) return torch.cat([context, output_one, context * output_one, output_two * output_one], dim=-1) # File: WebShop-master/baseline_models/models/rnn.py import torch import torch.nn as nn import torch.nn.functional as F from .modules import EncoderRNN, BiAttention, get_aggregated, duplicate class RCDQN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, arch, grad, embs=None, gru_embed='embedding', get_image=0, bert_path=''): super().__init__() self.word_dim = embedding_dim self.word_emb = nn.Embedding(vocab_size, embedding_dim) if embs is not None: print('Loading embeddings of shape {}'.format(embs.shape)) self.word_emb.weight.data.copy_(torch.from_numpy(embs)) self.hidden_dim = hidden_dim self.keep_prob = 1.0 self.rnn = EncoderRNN(self.word_dim, self.hidden_dim, 1, concat=True, bidir=True, layernorm='None', return_last=False) self.att_1 = BiAttention(self.hidden_dim * 2, 1 - self.keep_prob) self.att_2 = BiAttention(self.hidden_dim * 2, 1 - self.keep_prob) self.att_3 = BiAttention(embedding_dim, 1 - self.keep_prob) self.linear_1 = nn.Sequential(nn.Linear(self.hidden_dim * 8, self.hidden_dim), nn.LeakyReLU()) self.rnn_2 = EncoderRNN(self.hidden_dim, self.hidden_dim, 1, concat=True, bidir=True, layernorm='layer', return_last=False) self.linear_2 = nn.Sequential(nn.Linear(self.hidden_dim * 12, self.hidden_dim * 2), nn.LeakyReLU()) self.linear_3 = nn.Sequential(nn.Linear(self.hidden_dim * 2, self.hidden_dim), nn.LeakyReLU(), nn.Linear(self.hidden_dim, 1)) self.get_image = get_image if self.get_image: self.linear_image = nn.Linear(512, self.hidden_dim) def prepare(self, ids): lens = [len(_) for _ in ids] ids = [torch.tensor(_) for _ in ids] ids = nn.utils.rnn.pad_sequence(ids, batch_first=True).cuda() mask = (ids > 0).float() embed = self.word_emb(ids) output = self.rnn(embed, lens) return (ids, lens, mask, embed, output) def forward(self, state_batch, act_batch, value=False, q=False, act=False): if self.arch == 'bert': return self.bert_forward(state_batch, act_batch, value, q, act) (obs_ids, obs_lens, obs_mask, obs_embed, obs_output) = self.prepare([state.obs for state in state_batch]) (goal_ids, goal_lens, goal_mask, goal_embed, goal_output) = self.prepare([state.goal for state in state_batch]) state_output = self.att_1(obs_output, goal_output, goal_mask) state_output = self.linear_1(state_output) if self.get_image: images = [state.image_feat for state in state_batch] images = [torch.zeros(512) if _ is None else _ for _ in images] images = torch.stack([_ for _ in images]).cuda() images = self.linear_image(images) state_output = torch.cat([images.unsqueeze(1), state_output], dim=1) obs_lens = [_ + 1 for _ in obs_lens] obs_mask = torch.cat([obs_mask[:, :1], obs_mask], dim=1) state_output = self.rnn_2(state_output, obs_lens) if value: values = get_aggregated(state_output, obs_lens, 'mean') values = self.linear_3(values).squeeze(1) act_sizes = [len(_) for _ in act_batch] act_batch = list(itertools.chain.from_iterable(act_batch)) (act_ids, act_lens, act_mask, act_embed, act_output) = self.prepare(act_batch) (state_output, state_mask, state_lens) = duplicate(state_output, obs_mask, obs_lens, act_sizes) (goal_embed, goal_mask, goal_lens) = duplicate(goal_embed, goal_mask, goal_lens, act_sizes) state_act_output = self.att_2(act_output, state_output, state_mask) goal_act_output = self.att_3(act_embed, goal_embed, goal_mask) output = torch.cat([state_act_output, goal_act_output], dim=-1) output = get_aggregated(output, act_lens, 'mean') output = self.linear_2(output) act_values = self.linear_3(output).squeeze(1) if not q: act_values = torch.cat([F.log_softmax(_, dim=0) for _ in act_values.split(act_sizes)], dim=0) if value: return (act_values, act_sizes, values) else: return (act_values, act_sizes) # File: WebShop-master/baseline_models/train_choice_il.py """""" import argparse import json import logging import math import os import random from pathlib import Path import datasets import torch from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from huggingface_hub import Repository from transformers import AdamW, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, BertModel, BertConfig, DataCollatorWithPadding, PretrainedConfig, PreTrainedModel, SchedulerType, default_data_collator, get_scheduler from transformers.utils.versions import require_version from datasets import Dataset from transformers.modeling_outputs import SequenceClassifierOutput import torch.nn as nn import torch.nn.functional as F import wandb from models.bert import BertModelForWebshop, BertConfigForWebshop logger = get_logger(__name__) require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') task_to_keys = {'cola': ('sentence', None), 'mnli': ('premise', 'hypothesis'), 'mrpc': ('sentence1', 'sentence2'), 'qnli': ('question', 'sentence'), 'qqp': ('question1', 'question2'), 'rte': ('sentence1', 'sentence2'), 'sst2': ('sentence', None), 'stsb': ('sentence1', 'sentence2'), 'wnli': ('sentence1', 'sentence2')} tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left') print(len(tokenizer)) tokenizer.add_tokens(['[button]', '[button_]', '[clicked button]', '[clicked button_]'], special_tokens=True) print(len(tokenizer)) PATH = './data/il_trajs_finalized_images.jsonl' MEM_PATH = './data/il_trajs_mem_finalized_images.jsonl' HUMAN_GOAL_PATH = './data/human_goals.json' def process(s): s = s.lower().replace('"', '').replace("'", '').strip() s = s.replace('[sep]', '[SEP]') return s def process_goal(state): state = state.lower().replace('"', '').replace("'", '') state = state.replace('amazon shopping game\ninstruction:', '').replace('webshop\ninstruction:', '') state = state.replace('\n[button] search [button_]', '').strip() if ', and price lower than' in state: state = state.split(', and price lower than')[0] return state def get_data(split, mem=False, filter_search=True): path = MEM_PATH if mem else PATH print('Loading data from {}'.format(path)) with open(path, 'r') as json_file: json_list = list(json_file) human_goals = json.load(open(HUMAN_GOAL_PATH, 'r')) random.seed(233) random.shuffle(json_list) goal_range = range(len(human_goals)) if split == 'train': goal_range = range(1500, len(human_goals)) elif split == 'eval': goal_range = range(500, 1500) elif split == 'test': goal_range = range(0, 500) bad = cnt = 0 (state_list, action_list, idx_list, size_list) = ([], [], [], []) image_list = [] num_trajs = 0 for json_str in json_list: result = json.loads(json_str) s = process_goal(result['states'][0]) assert s in human_goals, s goal_idx = human_goals.index(s) if goal_idx not in goal_range: continue num_trajs += 1 if 'images' not in result: result['images'] = [0] * len(result['states']) for (state, valid_acts, idx, image) in zip(result['states'], result['available_actions'], result['action_idxs'], result['images']): cnt += 1 if filter_search and idx == -1: continue state_list.append(state) image_list.append([0.0] * 512 if image == 0 else image) if len(valid_acts) > 20: bad += 1 new_idxs = list(range(6)) + random.sample(range(6, len(valid_acts)), 10) if idx not in new_idxs: new_idxs += [idx] new_idxs = sorted(new_idxs) valid_acts = [valid_acts[i] for i in new_idxs] idx = new_idxs.index(idx) action_list.extend(valid_acts) idx_list.append(idx) size_list.append(len(valid_acts)) print('num of {} trajs: {}'.format(split, num_trajs)) print('total transitions and bad transitions: {} {}'.format(cnt, bad)) (state_list, action_list) = (list(map(process, state_list)), list(map(process, action_list))) return (state_list, action_list, idx_list, size_list, image_list) def get_dataset(split, mem=False): (states, actions, idxs, sizes, images) = get_data(split, mem) state_encodings = tokenizer(states, padding='max_length', max_length=512, truncation=True, return_tensors='pt') action_encodings = tokenizer(actions, padding='max_length', max_length=128, truncation=True, return_tensors='pt') dataset = {'state_input_ids': state_encodings['input_ids'], 'state_attention_mask': state_encodings['attention_mask'], 'action_input_ids': action_encodings['input_ids'].split(sizes), 'action_attention_mask': action_encodings['attention_mask'].split(sizes), 'sizes': sizes, 'images': torch.tensor(images), 'labels': idxs} return Dataset.from_dict(dataset) def data_collator(batch): (state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, labels, images) = ([], [], [], [], [], [], []) for sample in batch: state_input_ids.append(sample['state_input_ids']) state_attention_mask.append(sample['state_attention_mask']) action_input_ids.extend(sample['action_input_ids']) action_attention_mask.extend(sample['action_attention_mask']) sizes.append(sample['sizes']) labels.append(sample['labels']) images.append(sample['images']) max_state_len = max((sum(x) for x in state_attention_mask)) max_action_len = max((sum(x) for x in action_attention_mask)) return {'state_input_ids': torch.tensor(state_input_ids)[:, :max_state_len], 'state_attention_mask': torch.tensor(state_attention_mask)[:, :max_state_len], 'action_input_ids': torch.tensor(action_input_ids)[:, :max_action_len], 'action_attention_mask': torch.tensor(action_attention_mask)[:, :max_action_len], 'sizes': torch.tensor(sizes), 'images': torch.tensor(images), 'labels': torch.tensor(labels)} def parse_args(): parser = argparse.ArgumentParser(description='Finetune a transformers model on a text classification task') parser.add_argument('--task_name', type=str, default='mprc', help='The name of the glue task to train on.', choices=list(task_to_keys.keys())) parser.add_argument('--train_file', type=str, default=None, help='A csv or a json file containing the training data.') parser.add_argument('--validation_file', type=str, default=None, help='A csv or a json file containing the validation data.') parser.add_argument('--max_length', type=int, default=128, help='The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded if `--pad_to_max_lengh` is passed.') parser.add_argument('--pad_to_max_length', action='store_true', help='If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.') parser.add_argument('--model_name_or_path', default='bert-base-uncased', type=str, help='Path to pretrained model or model identifier from huggingface.co/models.') parser.add_argument('--use_slow_tokenizer', action='store_true', help='If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).') parser.add_argument('--per_device_train_batch_size', type=int, default=1, help='Batch size (per device) for the training dataloader.') parser.add_argument('--per_device_eval_batch_size', type=int, default=8, help='Batch size (per device) for the evaluation dataloader.') parser.add_argument('--learning_rate', type=float, default=2e-05, help='Initial learning rate (after the potential warmup period) to use.') parser.add_argument('--weight_decay', type=float, default=0.0, help='Weight decay to use.') parser.add_argument('--num_train_epochs', type=int, default=10, help='Total number of training epochs to perform.') parser.add_argument('--max_train_steps', type=int, default=None, help='Total number of training steps to perform. If provided, overrides num_train_epochs.') parser.add_argument('--gradient_accumulation_steps', type=int, default=32, help='Number of updates steps to accumulate before performing a backward/update pass.') parser.add_argument('--lr_scheduler_type', type=SchedulerType, default='linear', help='The scheduler type to use.', choices=['linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup']) parser.add_argument('--num_warmup_steps', type=int, default=0, help='Number of steps for the warmup in the lr scheduler.') parser.add_argument('--output_dir', type=str, default='./ckpts/web_click', help='Where to store the final model.') parser.add_argument('--seed', type=int, default=None, help='A seed for reproducible training.') parser.add_argument('--push_to_hub', action='store_true', help='Whether or not to push the model to the Hub.') parser.add_argument('--hub_model_id', type=str, help='The name of the repository to keep in sync with the local `output_dir`.') parser.add_argument('--hub_token', type=str, help='The token to use to push to the Model Hub.') parser.add_argument('--checkpointing_steps', type=str, default='epoch', help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.") parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='If the training should continue from a checkpoint folder.') parser.add_argument('--with_tracking', type=int, default=1, help='Whether to load in all available experiment trackers from the environment and use them for logging.') parser.add_argument('--mem', type=int, default=0, help='State with memory') parser.add_argument('--image', type=int, default=1, help='State with image') parser.add_argument('--pretrain', type=int, default=1, help='Pretrained BERT or not') parser.add_argument('--logging_steps', type=int, default=10, help='Logging in training') args = parser.parse_args() if args.task_name is None and args.train_file is None and (args.validation_file is None): raise ValueError('Need either a task name or a training/validation file.') else: if args.train_file is not None: extension = args.train_file.split('.')[-1] assert extension in ['csv', 'json'], '`train_file` should be a csv or a json file.' if args.validation_file is not None: extension = args.validation_file.split('.')[-1] assert extension in ['csv', 'json'], '`validation_file` should be a csv or a json file.' if args.push_to_hub: assert args.output_dir is not None, 'Need an `output_dir` to create a repo when `--push_to_hub` is passed.' return args def main(): args = parse_args() accelerator = Accelerator() wandb.init(project='bert_il', config=args, name=args.output_dir) logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() if args.seed is not None: set_seed(args.seed) config = BertConfigForWebshop(image=args.image, pretrain_bert=args.pretrain) model = BertModelForWebshop(config) train_dataset = get_dataset('train', mem=args.mem) eval_dataset = get_dataset('eval', mem=args.mem) for index in random.sample(range(len(train_dataset)), 3): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.') train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{'params': [p for (n, p) in model.named_parameters() if not any((nd in n for nd in no_decay))], 'weight_decay': args.weight_decay}, {'params': [p for (n, p) in model.named_parameters() if any((nd in n for nd in no_decay))], 'weight_decay': 0.0}] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps) (model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader, lr_scheduler) num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch if hasattr(args.checkpointing_steps, 'isdigit'): checkpointing_steps = args.checkpointing_steps if args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: checkpointing_steps = None if args.with_tracking: experiment_config = vars(args) experiment_config['lr_scheduler_type'] = experiment_config['lr_scheduler_type'].value accelerator.init_trackers('glue_no_trainer', experiment_config) metric = load_metric('accuracy') total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info('***** Running training *****') logger.info(f' Num examples = {len(train_dataset)}') logger.info(f' Num Epochs = {args.num_train_epochs}') logger.info(f' Instantaneous batch size per device = {args.per_device_train_batch_size}') logger.info(f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}') logger.info(f' Gradient Accumulation steps = {args.gradient_accumulation_steps}') logger.info(f' Total optimization steps = {args.max_train_steps}') progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != '': accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}') accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] training_difference = os.path.splitext(path)[0] if 'epoch' in training_difference: starting_epoch = int(training_difference.replace('epoch_', '')) + 1 resume_step = None else: resume_step = int(training_difference.replace('step_', '')) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = total_step = 0 for (step, batch) in enumerate(train_dataloader): if args.resume_from_checkpoint and epoch == starting_epoch: if resume_step is not None and step < resume_step: completed_steps += 1 continue outputs = model(**batch) loss = outputs.loss if args.with_tracking: total_loss += loss.detach().float() total_step += 1 loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) metric.add_batch(predictions=torch.stack([logit.argmax(dim=0) for logit in outputs.logits]), references=batch['labels']) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if args.with_tracking and args.logging_steps > 0 and (completed_steps % args.logging_steps == 0): train_metric = metric.compute() wandb.log({'train_accuracy': train_metric, 'train_loss': total_loss / total_step, 'train_step': completed_steps}) total_loss = total_step = 0 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f'step_{completed_steps}' if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() samples_seen = 0 total_loss = total_step = 0 if len(metric) > 0: metric.compute() for (step, batch) in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = torch.stack([logit.argmax(dim=0) for logit in outputs.logits]) (predictions, references) = accelerator.gather((predictions, batch['labels'])) if accelerator.num_processes > 1: if step == len(eval_dataloader): predictions = predictions[:len(eval_dataloader.dataset) - samples_seen] references = references[:len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch(predictions=predictions, references=references) total_loss += outputs.loss.detach().float() total_step += 1 eval_metric = metric.compute() logger.info(f'epoch {epoch}: {eval_metric}') if args.with_tracking: wandb.log({'eval_accuracy': eval_metric, 'eval_loss': total_loss / total_step, 'epoch': epoch, 'epoch_step': completed_steps}) if args.checkpointing_steps == 'epoch': output_dir = f'epoch_{epoch}' if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) os.makedirs(output_dir, exist_ok=True) unwrapped_model = accelerator.unwrap_model(model) torch.save(unwrapped_model.state_dict(), os.path.join(output_dir, 'model.pth')) if args.output_dir is not None: with open(os.path.join(args.output_dir, 'all_results.json'), 'w') as f: json.dump({'eval_accuracy': eval_metric['accuracy']}, f) if __name__ == '__main__': main() # File: WebShop-master/baseline_models/train_rl.py import argparse import logging import time import torch from collections import defaultdict import logger from agent import Agent, TransitionPG from env import WebEnv logging.getLogger().setLevel(logging.CRITICAL) def configure_logger(log_dir, wandb): logger.configure(log_dir, format_strs=['log']) global tb type_strs = ['json', 'stdout'] if wandb: type_strs += ['wandb'] tb = logger.Logger(log_dir, [logger.make_output_format(type_str, log_dir) for type_str in type_strs]) global log log = logger.log def evaluate(agent, env, split, nb_episodes=10): with torch.no_grad(): total_score = 0 for method in ['greedy']: for ep in range(nb_episodes): log('Starting {} episode {}'.format(split, ep)) if split == 'eval': score = evaluate_episode(agent, env, split, method) elif split == 'test': score = evaluate_episode(agent, env, split, method, idx=ep) log('{} episode {} ended with score {}\n\n'.format(split, ep, score)) total_score += score avg_score = total_score / nb_episodes return avg_score def evaluate_episode(agent, env, split, method='greedy', idx=None): step = 0 done = False (ob, info) = env.reset(idx) state = agent.build_state(ob, info) log('Obs{}: {}'.format(step, ob.encode('utf-8'))) while not done: valid_acts = info['valid'] with torch.no_grad(): action_str = agent.act([state], [valid_acts], method=method)[0][0] log('Action{}: {}'.format(step, action_str)) (ob, rew, done, info) = env.step(action_str) log('Reward{}: {}, Score {}, Done {}'.format(step, rew, info['score'], done)) step += 1 log('Obs{}: {}'.format(step, ob.encode('utf-8'))) state = agent.build_state(ob, info) tb.logkv_mean(f'{split}Score', info['score']) if 'verbose' in info: for (k, v) in info['verbose'].items(): if k.startswith('r'): tb.logkv_mean(f'{split}_' + k, v) return info['score'] def agg(envs, attr): res = defaultdict(int) for env in envs: for (k, v) in getattr(env, attr).items(): res[k] += v return res def train(agent, eval_env, test_env, envs, args): start = time.time() (states, valids, transitions) = ([], [], []) state0 = None for env in envs: (ob, info) = env.reset() if state0 is None: state0 = (ob, info) states.append(agent.build_state(ob, info)) valids.append(info['valid']) for step in range(1, args.max_steps + 1): (action_strs, action_ids, values) = agent.act(states, valids, method=args.exploration_method) with torch.no_grad(): (action_values, _) = agent.network.rl_forward(states[:1], agent.encode_valids(valids[:1])) actions = sorted(zip(state0[1]['valid'], action_values.tolist()), key=lambda x: -x[1]) log('State {}: {}'.format(step, state0[0].lower().encode('utf-8'))) log('Goal {}: {}'.format(step, state0[1]['goal'].lower().encode('utf-8'))) log('Actions{}: {}'.format(step, actions)) log('>> Values{}: {}'.format(step, float(values[0]))) log('>> Action{}: {}'.format(step, action_strs[0])) state0 = None (next_states, next_valids, rewards, dones) = ([], [], [], []) for (env, action_str, action_id, state) in zip(envs, action_strs, action_ids, states): (ob, reward, done, info) = env.step(action_str) if state0 is None: state0 = (ob, info) r_att = r_opt = 0 if 'verbose' in info: r_att = info['verbose'].get('r_att', 0) r_option = info['verbose'].get('r_option ', 0) r_price = info['verbose'].get('r_price', 0) r_type = info['verbose'].get('r_type', 0) w_att = info['verbose'].get('w_att', 0) w_option = info['verbose'].get('w_option', 0) w_price = info['verbose'].get('w_price', 0) reward_str = f'{reward / 10:.2f} = ({r_att:.2f} * {w_att:.2f} + {r_option:.2f} * {w_option:.2f} + {r_price:.2f} * {w_price:.2f}) * {r_type:.2f}' else: reward_str = str(reward) log('Reward{}: {}, Done {}\n'.format(step, reward_str, done)) next_state = agent.build_state(ob, info) next_valid = info['valid'] (next_states, next_valids, rewards, dones) = (next_states + [next_state], next_valids + [next_valid], rewards + [reward], dones + [done]) if done: tb.logkv_mean('EpisodeScore', info['score']) category = env.session['goal']['category'] tb.logkv_mean(f'EpisodeScore_{category}', info['score']) if 'verbose' in info: for (k, v) in info['verbose'].items(): if k.startswith('r'): tb.logkv_mean(k, v) transitions.append(TransitionPG(states, action_ids, rewards, values, agent.encode_valids(valids), dones)) if len(transitions) >= args.bptt: (_, _, last_values) = agent.act(next_states, next_valids, method='softmax') stats = agent.update(transitions, last_values, step=step) for (k, v) in stats.items(): tb.logkv_mean(k, v) del transitions[:] torch.cuda.empty_cache() for (i, env) in enumerate(envs): if dones[i]: (ob, info) = env.reset() if i == 0: state0 = (ob, info) next_states[i] = agent.build_state(ob, info) next_valids[i] = info['valid'] (states, valids) = (next_states, next_valids) if step % args.eval_freq == 0: evaluate(agent, eval_env, 'eval') if step % args.test_freq == 0: evaluate(agent, test_env, 'test', 500) if step % args.log_freq == 0: tb.logkv('Step', step) tb.logkv('FPS', int(step * len(envs) / (time.time() - start))) for (k, v) in agg(envs, 'stats').items(): tb.logkv(k, v) items_clicked = agg(envs, 'items_clicked') tb.logkv('ItemsClicked', len(items_clicked)) tb.dumpkvs() if step % args.ckpt_freq == 0: agent.save() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--seed', default=0, type=int) parser.add_argument('--output_dir', default='logs') parser.add_argument('--ckpt_freq', default=10000, type=int) parser.add_argument('--eval_freq', default=500, type=int) parser.add_argument('--test_freq', default=5000, type=int) parser.add_argument('--log_freq', default=100, type=int) parser.add_argument('--wandb', default=1, type=int) parser.add_argument('--num_envs', default=4, type=int) parser.add_argument('--step_limit', default=100, type=int) parser.add_argument('--max_steps', default=300000, type=int) parser.add_argument('--learning_rate', default=1e-05, type=float) parser.add_argument('--gamma', default=0.9, type=float) parser.add_argument('--clip', default=10, type=float) parser.add_argument('--bptt', default=8, type=int) parser.add_argument('--exploration_method', default='softmax', type=str, choices=['eps', 'softmax']) parser.add_argument('--w_pg', default=1, type=float) parser.add_argument('--w_td', default=1, type=float) parser.add_argument('--w_il', default=0, type=float) parser.add_argument('--w_en', default=1, type=float) parser.add_argument('--network', default='bert', type=str, choices=['bert', 'rnn']) parser.add_argument('--bert_path', default='', type=str, help='which bert to load') parser.add_argument('--embedding_dim', default=128, type=int) parser.add_argument('--hidden_dim', default=128, type=int) parser.add_argument('--grad_encoder', default=1, type=int) parser.add_argument('--get_image', default=1, type=int, help='use image in models') parser.add_argument('--num', default=None, type=int) parser.add_argument('--click_item_name', default=1, type=int) parser.add_argument('--state_format', default='text_rich', type=str) parser.add_argument('--human_goals', default=1, type=int, help='use human goals') parser.add_argument('--num_prev_obs', default=0, type=int, help='number of previous observations') parser.add_argument('--num_prev_actions', default=0, type=int, help='number of previous actions') parser.add_argument('--extra_search_path', default='./data/goal_query_predict.json', type=str, help='path for extra search queries') parser.add_argument('--ban_buy', default=0, type=int, help='ban buy action before selecting options') parser.add_argument('--score_handicap', default=0, type=int, help='provide score in state') parser.add_argument('--go_to_item', default=0, type=int) parser.add_argument('--go_to_search', default=0, type=int) parser.add_argument('--harsh_reward', default=0, type=int) parser.add_argument('--debug', default=0, type=int, help='debug mode') parser.add_argument('--f', help='a dummy argument to fool ipython', default='1') return parser.parse_known_args() def main(): (args, unknown) = parse_args() if args.debug: args.num_envs = 2 args.wandb = 0 args.human_goals = 0 args.num = 100 print(unknown) print(args) configure_logger(args.output_dir, args.wandb) agent = Agent(args) train_env = WebEnv(args, split='train', id='train_') server = train_env.env.server eval_env = WebEnv(args, split='eval', id='eval_', server=server) test_env = WebEnv(args, split='test', id='test_', server=server) envs = [WebEnv(args, split='train', server=server, id=f'train{i}_') for i in range(args.num_envs)] print('loaded') train(agent, eval_env, test_env, envs, args) if __name__ == '__main__': main() # File: WebShop-master/baseline_models/train_search_il.py import json import os import random from datasets import Dataset, DatasetDict, load_from_disk from transformers import BartForConditionalGeneration, BartTokenizer, Trainer, TrainingArguments from transformers.models.bart.modeling_bart import shift_tokens_right tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') BOS_TOKEN_ID = 0 PAD_TOKEN_ID = 1 EOS_TOKEN_ID = 2 UNK_TOKEN_ID = 3 PATH = './data/goal_query_map.json' HUMAN_GOAL_PATH = './data/human_goals.json' GOAL_PATH = './data/items_human_ins.json' def process_str(s): s = s.lower().replace('"', '').replace("'", '').strip() return s def process_goal(state): state = state.lower().replace('"', '').replace("'", '') state = state.replace('amazon shopping game\ninstruction:', '').replace('webshop\ninstruction:', '') state = state.replace('\n[button] search [button_]', '').strip() if ', and price lower than' in state: state = state.split(', and price lower than')[0] return state def get_data(split): data = json.load(open(PATH)) (goals, searches) = ([], []) for (goal, search_list) in data.items(): goal = process_goal(goal) for search in search_list: search = process_str(search) goals.append(goal) searches.append(search) n = len(goals) human_goals = json.load(open(HUMAN_GOAL_PATH, 'r')) goal_range = range(len(human_goals)) if split == 'train': goal_range = range(500, len(human_goals)) elif split == 'validation': goal_range = range(500, 1500) elif split == 'test': goal_range = range(0, 500) elif split == 'all': all_data = json.load(open(GOAL_PATH)) all_goals = [] all_goals_processed = [] for ins_list in all_data.values(): for ins in ins_list: ins = ins['instruction'] all_goals.append(ins) all_goals_processed.append(process_str(ins)) return (all_goals_processed, all_goals) (goals_, searches_) = ([], []) for (goal, search) in zip(goals, searches): if goal in human_goals and human_goals.index(goal) in goal_range: goals_.append(goal) searches_.append(search) return (goals_, searches_) def get_dataset(name, flip=False, variant=None, size=None): fname = name + '-flip' if flip else name fpath = os.path.join(os.path.dirname(__file__), fname) d = {} splits = ['train', 'validation', 'test'] if name == 'web_search': splits = ['train', 'validation', 'test', 'all'] for split in splits: (input, output) = get_data(split) if name != 'nl2bash' else get_data(split, variant=variant) l = len(input) if size is None else int(len(input) * size) print('{} size: {}'.format(split, l)) if flip: (input, output) = (output, input) (input, output) = (input[:l], output[:l]) d[split] = process_dataset(input, output) d = DatasetDict(d) return d def process_dataset(input, output, max_len=256): input_encodings = tokenizer(input, padding='max_length', max_length=max_len, truncation=True, return_tensors='pt') output_encodings = tokenizer(output, padding='max_length', max_length=max_len, truncation=True, return_tensors='pt') labels = output_encodings['input_ids'] decoder_input_ids = shift_tokens_right(labels, PAD_TOKEN_ID, EOS_TOKEN_ID) labels[labels[:, :] == PAD_TOKEN_ID] = -100 dataset = Dataset.from_dict({'input_ids': input_encodings['input_ids'], 'attention_mask': input_encodings['attention_mask'], 'decoder_input_ids': decoder_input_ids, 'labels': labels}) dataset.set_format(type='torch', columns=['input_ids', 'labels', 'decoder_input_ids', 'attention_mask']) return dataset if __name__ == '__main__': dataset = get_dataset('web_search', flip=False) train_dataset = dataset['train'] print(train_dataset[0]) model = BartForConditionalGeneration.from_pretrained('facebook/bart-base') model.resize_token_embeddings(len(tokenizer)) training_args = TrainingArguments(output_dir='./ckpts/web_search', num_train_epochs=10, per_device_train_batch_size=4, per_device_eval_batch_size=4, warmup_steps=50, weight_decay=0.01, evaluation_strategy='steps', logging_dir='./logs', logging_steps=50, eval_steps=20, save_steps=200) trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=dataset['validation'], compute_metrics=None) trainer.train() # File: WebShop-master/run_envs/run_web_agent_site_env.py """""" import gym from rich import print from rich.markup import escape from web_agent_site.envs import WebAgentSiteEnv from web_agent_site.models import HumanPolicy, RandomPolicy from web_agent_site.utils import DEBUG_PROD_SIZE if __name__ == '__main__': env = WebAgentSiteEnv(observation_mode='text', render=False, num_products=DEBUG_PROD_SIZE) global_step = 0 try: policy = RandomPolicy() observation = env.observation while True: print(observation) available_actions = env.get_available_actions() print('Available actions:', available_actions) action = policy.forward(observation, available_actions) (observation, reward, done, info) = env.step(action) print(f'Taking action "{escape(action)}" -> Reward = {reward}') if done: break global_step += 1 finally: env.close() # File: WebShop-master/run_envs/run_web_agent_text_env.py """""" import gym from rich import print from rich.markup import escape from web_agent_site.envs import WebAgentTextEnv from web_agent_site.models import RandomPolicy from web_agent_site.utils import DEBUG_PROD_SIZE if __name__ == '__main__': env = gym.make('WebAgentTextEnv-v0', observation_mode='text', num_products=DEBUG_PROD_SIZE) env.reset() try: policy = RandomPolicy() observation = env.observation while True: print(observation) available_actions = env.get_available_actions() print('Available actions:', available_actions) action = policy.forward(observation, available_actions) (observation, reward, done, info) = env.step(action) print(f'Taking action "{escape(action)}" -> Reward = {reward}') if done: break finally: env.close() # File: WebShop-master/search_engine/convert_product_file_format.py import sys import json from tqdm import tqdm sys.path.insert(0, '../') from web_agent_site.utils import DEFAULT_FILE_PATH from web_agent_site.engine.engine import load_products (all_products, *_) = load_products(filepath=DEFAULT_FILE_PATH) docs = [] for p in tqdm(all_products, total=len(all_products)): option_texts = [] options = p.get('options', {}) for (option_name, option_contents) in options.items(): option_contents_text = ', '.join(option_contents) option_texts.append(f'{option_name}: {option_contents_text}') option_text = ', and '.join(option_texts) doc = dict() doc['id'] = p['asin'] doc['contents'] = ' '.join([p['Title'], p['Description'], p['BulletPoints'][0], option_text]).lower() doc['product'] = p docs.append(doc) with open('./resources_100/documents.jsonl', 'w+') as f: for doc in docs[:100]: f.write(json.dumps(doc) + '\n') with open('./resources/documents.jsonl', 'w+') as f: for doc in docs: f.write(json.dumps(doc) + '\n') with open('./resources_1k/documents.jsonl', 'w+') as f: for doc in docs[:1000]: f.write(json.dumps(doc) + '\n') with open('./resources_100k/documents.jsonl', 'w+') as f: for doc in docs[:100000]: f.write(json.dumps(doc) + '\n') # File: WebShop-master/search_engine/lucene_searcher.py import json from pyserini.search.lucene import LuceneSearcher from rich import print searcher = LuceneSearcher('indexes') hits = searcher.search('rubber sole shoes', k=20) for hit in hits: doc = searcher.doc(hit.docid) print(doc) obj = json.loads(doc.raw())['product']['Title'] print(obj) print(len(hits)) # File: WebShop-master/transfer/app.py import gradio as gr import json, time, torch from transformers import BartTokenizer, BartForConditionalGeneration, AutoModel, AutoTokenizer from webshop_lite import dict_to_fake_html from predict_help import Page, convert_dict_to_actions, convert_html_to_text, parse_results_amz, parse_item_page_amz, parse_results_ws, parse_item_page_ws, parse_results_ebay, parse_item_page_ebay, WEBSHOP_URL, WEBSHOP_SESSION ENVIRONMENTS = ['amazon', 'webshop', 'ebay'] BERT_MODEL_PATH = 'webshop/il-choice-bert-image_0' bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') bart_model = BartForConditionalGeneration.from_pretrained('webshop/il_search_bart') bert_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left') bert_tokenizer.add_tokens(['[button]', '[button_]', '[clicked button]', '[clicked button_]'], special_tokens=True) bert_model = AutoModel.from_pretrained(BERT_MODEL_PATH, trust_remote_code=True) def process_str(s): s = s.lower().replace('"', '').replace("'", '').strip() s = s.replace('[sep]', '[SEP]') return s def process_goal(state): state = state.lower().replace('"', '').replace("'", '') state = state.replace('amazon shopping game\ninstruction:', '').replace('webshop\ninstruction:', '') state = state.replace('\n[button] search [button_]', '').strip() if ', and price lower than' in state: state = state.split(', and price lower than')[0] return state def data_collator(batch): (state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, labels, images) = ([], [], [], [], [], [], []) for sample in batch: state_input_ids.append(sample['state_input_ids']) state_attention_mask.append(sample['state_attention_mask']) action_input_ids.extend(sample['action_input_ids']) action_attention_mask.extend(sample['action_attention_mask']) sizes.append(sample['sizes']) labels.append(sample['labels']) images.append(sample['images']) max_state_len = max((sum(x) for x in state_attention_mask)) max_action_len = max((sum(x) for x in action_attention_mask)) return {'state_input_ids': torch.tensor(state_input_ids)[:, :max_state_len], 'state_attention_mask': torch.tensor(state_attention_mask)[:, :max_state_len], 'action_input_ids': torch.tensor(action_input_ids)[:, :max_action_len], 'action_attention_mask': torch.tensor(action_attention_mask)[:, :max_action_len], 'sizes': torch.tensor(sizes), 'images': torch.tensor(images), 'labels': torch.tensor(labels)} def bart_predict(input): input_ids = bart_tokenizer(input)['input_ids'] input_ids = torch.tensor(input_ids).unsqueeze(0) output = bart_model.generate(input_ids, max_length=512, num_return_sequences=5, num_beams=5) return bart_tokenizer.batch_decode(output.tolist(), skip_special_tokens=True)[0] def bert_predict(obs, info, softmax=True): valid_acts = info['valid'] assert valid_acts[0].startswith('click[') state_encodings = bert_tokenizer(process_str(obs), max_length=512, truncation=True, padding='max_length') action_encodings = bert_tokenizer(list(map(process_str, valid_acts)), max_length=512, truncation=True, padding='max_length') batch = {'state_input_ids': state_encodings['input_ids'], 'state_attention_mask': state_encodings['attention_mask'], 'action_input_ids': action_encodings['input_ids'], 'action_attention_mask': action_encodings['attention_mask'], 'sizes': len(valid_acts), 'images': info['image_feat'].tolist(), 'labels': 0} batch = data_collator([batch]) outputs = bert_model(**batch) if softmax: idx = torch.multinomial(torch.nn.functional.softmax(outputs.logits[0], dim=0), 1)[0].item() else: idx = outputs.logits[0].argmax(0).item() return valid_acts[idx] def get_return_value(env, asin, options, search_terms, page_num, product): asin_url = None if env == 'webshop': query_str = '+'.join(search_terms.split()) options_str = json.dumps(options) asin_url = f'{WEBSHOP_URL}/item_page/{WEBSHOP_SESSION}/{asin}/{query_str}/{page_num}/{options_str}' else: asin_url = f'https://www.ebay.com/itm/{asin}' if env == 'ebay' else f'https://www.amazon.com/dp/{asin}' product_reduced = {k: v for (k, v) in product.items() if k in ['asin', 'Title', 'Description', 'BulletPoints']} product_reduced['Description'] = product_reduced['Description'][:100] + '...' product_reduced['Features'] = product_reduced.pop('BulletPoints') product_reduced['Features'] = product_reduced['Features'][:100] + '...' html = '
To learn more about this project, check out the project page!
", description="Sim-to-real transfer of agent trained on WebShop to search a desired product on Amazon from any natural language query!
").launch(inline=False) # File: WebShop-master/transfer/predict_help.py from bs4 import BeautifulSoup from bs4.element import Comment from enum import Enum import re, time from urllib.parse import urlencode import json, requests, torch class Page(Enum): DESC = 'description' FEATURES = 'features' ITEM_PAGE = 'item_page' RESULTS = 'results' REVIEWS = 'reviews' SEARCH = 'search' SUB_PAGE = 'item_sub_page' HEADER_ = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.64 Safari/537.36' DEBUG_HTML = 'temp.html' NUM_PROD_LIMIT = 10 WEBSHOP_URL = 'http://3.83.245.205:3000' WEBSHOP_SESSION = 'abc' def parse_results_ebay(query, page_num=None, verbose=True): query_string = '+'.join(query.split()) page_num = 1 if page_num is None else page_num url = f'https://www.ebay.com/sch/i.html?_nkw={query_string}&_pgn={page_num}' if verbose: print(f'Search Results URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.text, 'html.parser') products = soup.select('.s-item__wrapper.clearfix') results = [] for item in products[:NUM_PROD_LIMIT]: title = item.select_one('.s-item__title').text.strip() if 'shop on ebay' in title.lower(): continue link = item.select_one('.s-item__link')['href'] asin = link.split('?')[0][len('https://www.ebay.com/itm/'):] try: price = item.select_one('.s-item__price').text if 'to' in price: prices = price.split(' to ') price = [p.strip('$') for p in prices] except: price = None results.append({'asin': asin, 'Title': title, 'Price': price}) if verbose: print(f'Scraped {len(results)} products') return results def parse_item_page_ebay(asin, verbose=True): product_dict = {} product_dict['asin'] = asin url = f'https://www.ebay.com/itm/{asin}' if verbose: print(f'Item Page URL: {url}') begin = time.time() webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) end = time.time() if verbose: print(f'Item page scraping took {end - begin} seconds') soup = BeautifulSoup(webpage.content, 'html.parser') try: product_dict['Title'] = soup.find('h1', {'class': 'x-item-title__mainTitle'}).text.strip() except: product_dict['Title'] = 'N/A' try: price_str = soup.find('div', {'class': 'mainPrice'}).text prices = re.findall('\\d*\\.?\\d+', price_str) product_dict['Price'] = prices[0] except: product_dict['Price'] = 'N/A' try: img_div = soup.find('div', {'id': 'mainImgHldr'}) img_link = img_div.find('img', {'id': 'icImg'})['src'] product_dict['MainImage'] = img_link except: product_dict['MainImage'] = '' try: rating = soup.find('span', {'class': 'reviews-star-rating'})['title'].split()[0] except: rating = None product_dict['Rating'] = rating (options, options_to_images) = ({}, {}) try: option_blocks = soup.findAll('select', {'class': 'msku-sel'}) for block in option_blocks: name = block['name'].strip().strip(':') option_tags = block.findAll('option') opt_list = [] for option_tag in option_tags: if 'select' not in option_tag.text.lower(): opt_list.append(option_tag.text) options[name] = opt_list except: options = {} (product_dict['options'], product_dict['option_to_image']) = (options, options_to_images) desc = None try: desc_link = soup.find('iframe', {'id': 'desc_ifr'})['src'] desc_webpage = requests.get(desc_link, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) desc_soup = BeautifulSoup(desc_webpage.content, 'html.parser') desc = ' '.join(desc_soup.text.split()) except: desc = 'N/A' product_dict['Description'] = desc features = None try: features = soup.find('div', {'class': 'x-about-this-item'}).text except: features = 'N/A' product_dict['BulletPoints'] = features return product_dict def parse_results_ws(query, page_num=None, verbose=True): query_string = '+'.join(query.split()) page_num = 1 if page_num is None else page_num url = f'{WEBSHOP_URL}/search_results/{WEBSHOP_SESSION}/{query_string}/{page_num}' if verbose: print(f'Search Results URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') products = soup.findAll('div', {'class': 'list-group-item'}) results = [] for product in products: asin = product.find('a', {'class': 'product-link'}) title = product.find('h4', {'class': 'product-title'}) price = product.find('h5', {'class': 'product-price'}) if '\n' in title: title = title.text.split('\n')[0].strip() else: title = title.text.strip().strip('\n') if 'to' in price.text: prices = price.text.split(' to ') price = [float(p.strip().strip('\n$')) for p in prices] else: price = float(price.text.strip().strip('\n$')) results.append({'asin': asin.text, 'Title': title, 'Price': price}) if verbose: print(f'Scraped {len(results)} products') return results def parse_item_page_ws(asin, query, page_num, options, verbose=True): product_dict = {} product_dict['asin'] = asin query_string = '+'.join(query.split()) options_string = json.dumps(options) url = f'{WEBSHOP_URL}/item_page/{WEBSHOP_SESSION}/{asin}/{query_string}/{page_num}/{options_string}' if verbose: print(f'Item Page URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') product_dict['Title'] = soup.find('h2').text h4_headers = soup.findAll('h4') for header in h4_headers: text = header.text if 'Price' in text: product_dict['Price'] = text.split(':')[1].strip().strip('$') elif 'Rating' in text: product_dict['Rating'] = text.split(':')[1].strip() product_dict['MainImage'] = soup.find('img')['src'] (options, options_to_image) = ({}, {}) option_blocks = soup.findAll('div', {'class': 'radio-toolbar'}) for block in option_blocks: name = block.find('input')['name'] labels = block.findAll('label') inputs = block.findAll('input') opt_list = [] for (label, input) in zip(labels, inputs): opt = label.text opt_img_path = input['onclick'].split('href=')[1].strip("';") opt_img_url = f'{WEBSHOP_URL}{opt_img_path}' opt_list.append(opt) options_to_image[opt] = opt_img_url options[name] = opt_list product_dict['options'] = options product_dict['option_to_image'] = options_to_image url = f'{WEBSHOP_URL}/item_sub_page/{WEBSHOP_SESSION}/{asin}/{query_string}/{page_num}/Description/{options_string}' if verbose: print(f'Item Description URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') product_dict['Description'] = soup.find(name='p', attrs={'class': 'product-info'}).text.strip() url = f'{WEBSHOP_URL}/item_sub_page/{WEBSHOP_SESSION}/{asin}/{query_string}/{page_num}/Features/{options_string}' if verbose: print(f'Item Features URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') bullets = soup.find(name='ul').findAll(name='li') product_dict['BulletPoints'] = '\n'.join([b.text.strip() for b in bullets]) return product_dict def parse_results_amz(query, page_num=None, verbose=True): url = 'https://www.amazon.com/s?k=' + query.replace(' ', '+') if page_num is not None: url += '&page=' + str(page_num) if verbose: print(f'Search Results URL: {url}') webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) soup = BeautifulSoup(webpage.content, 'html.parser') products = soup.findAll('div', {'data-component-type': 's-search-result'}) if products is None: temp = open(DEBUG_HTML, 'w') temp.write(str(soup)) temp.close() raise Exception("Couldn't find search results page, outputted html for inspection") results = [] for product in products[:NUM_PROD_LIMIT]: asin = product['data-asin'] title = product.find('h2', {'class': 'a-size-mini'}) price_div = product.find('div', {'class': 's-price-instructions-style'}) price = price_div.find('span', {'class': 'a-offscreen'}) result = {'asin': asin, 'Title': title.text.strip(), 'Price': price.text.strip().strip('$')} results.append(result) if verbose: print('Scraped', len(results), 'products') return results def parse_item_page_amz(asin, verbose=True): product_dict = {} product_dict['asin'] = asin url = f'https://www.amazon.com/dp/{asin}' if verbose: print('Item Page URL:', url) begin = time.time() webpage = requests.get(url, headers={'User-Agent': HEADER_, 'Accept-Language': 'en-US, en;q=0.5'}) end = time.time() if verbose: print(f'Item page scraping took {end - begin} seconds') soup = BeautifulSoup(webpage.content, 'html.parser') try: title = soup.find('span', attrs={'id': 'productTitle'}) title = title.string.strip().replace(',', '') except AttributeError: title = 'N/A' product_dict['Title'] = title try: parent_price_span = soup.find(name='span', class_='apexPriceToPay') price_span = parent_price_span.find(name='span', class_='a-offscreen') price = float(price_span.getText().replace('$', '')) except AttributeError: price = 'N/A' product_dict['Price'] = price try: rating = soup.find(name='span', attrs={'id': 'acrPopover'}) if rating is None: rating = 'N/A' else: rating = rating.text except AttributeError: rating = 'N/A' product_dict['Rating'] = rating.strip('\n').strip() try: features = soup.find(name='div', attrs={'id': 'feature-bullets'}).text except AttributeError: features = 'N/A' product_dict['BulletPoints'] = features try: desc_body = soup.find(name='div', attrs={'id': 'productDescription_feature_div'}) desc_div = desc_body.find(name='div', attrs={'id': 'productDescription'}) desc_ps = desc_div.findAll(name='p') desc = ' '.join([p.text for p in desc_ps]) except AttributeError: desc = 'N/A' product_dict['Description'] = desc.strip() try: imgtag = soup.find('img', {'id': 'landingImage'}) imageurl = dict(imgtag.attrs)['src'] except AttributeError: imageurl = '' product_dict['MainImage'] = imageurl (options, options_to_image) = ({}, {}) try: option_body = soup.find(name='div', attrs={'id': 'softlinesTwister_feature_div'}) if option_body is None: option_body = soup.find(name='div', attrs={'id': 'twister_feature_div'}) option_blocks = option_body.findAll(name='ul') for block in option_blocks: name = json.loads(block['data-a-button-group'])['name'] opt_list = [] for li in block.findAll('li'): img = li.find(name='img') if img is not None: opt = img['alt'].strip() opt_img = img['src'] if len(opt) > 0: options_to_image[opt] = opt_img else: opt = li.text.strip() if len(opt) > 0: opt_list.append(opt) options[name.replace('_name', '').replace('twister_', '')] = opt_list except AttributeError: options = {} (product_dict['options'], product_dict['option_to_image']) = (options, options_to_image) return product_dict def convert_html_to_text(html, simple=False, clicked_options=None, visited_asins=None): def tag_visible(element): ignore = {'style', 'script', 'head', 'title', 'meta', '[document]'} return element.parent.name not in ignore and (not isinstance(element, Comment)) html_obj = BeautifulSoup(html, 'html.parser') texts = html_obj.findAll(text=True) visible_texts = filter(tag_visible, texts) if simple: return ' [SEP] '.join((t.strip() for t in visible_texts if t != '\n')) else: observation = '' for t in visible_texts: if t == '\n': continue if t.parent.name == 'button': processed_t = f'[button] {t} [button]' elif t.parent.name == 'label': if f'{t}' in clicked_options: processed_t = f' [clicked button] {t} [clicked button]' observation = f'You have clicked {t}.\n' + observation else: processed_t = f' [button] {t} [button]' elif t.parent.get('class') == ['product-link']: if f'{t}' in visited_asins: processed_t = f'\n[clicked button] {t} [clicked button]' else: processed_t = f'\n[button] {t} [button]' else: processed_t = str(t) observation += processed_t + '\n' return observation def convert_dict_to_actions(page_type, products=None, asin=None, page_num=None) -> dict: info = {'valid': []} if page_type == Page.RESULTS: info['valid'] = ['click[back to search]'] if products is None or page_num is None: print(page_num) print(products) raise Exception('Provide `products`, `page_num` to get `results` valid actions') if len(products) > 10: info['valid'].append('click[next >]') if page_num > 1: info['valid'].append('click[< prev]') for product in products: info['valid'].append('click[item - ' + product['Title'] + ']') if page_type == Page.ITEM_PAGE: if products is None or asin is None: raise Exception('Provide `products` and `asin` to get `item_page` valid actions') info['valid'] = ['click[back to search]', 'click[< prev]', 'click[description]', 'click[features]', 'click[buy now]'] if 'options' in products[asin]: for (key, values) in products[asin]['options'].items(): for value in values: info['valid'].append('click[' + value + ']') if page_type == Page.SUB_PAGE: info['valid'] = ['click[back to search]', 'click[< prev]'] info['image_feat'] = torch.zeros(512) return info # File: WebShop-master/transfer/webshop_lite.py import os from flask import render_template_string, Flask from predict_help import Page app = Flask(__name__) app.debug = True SESSION_ID = 'ABC' TEMPLATE_DIR = '../web_agent_site/templates/' KEYWORDS = ['placeholder (not needed)'] QUERY = '' product_map = {} def read_html_template(path): with open(path) as f: template = f.read() return template @app.route('/', methods=['GET', 'POST']) def index(session_id, **kwargs): print('Hello world') @app.route('/', methods=['GET', 'POST']) def search_results(data): path = os.path.join(TEMPLATE_DIR, 'results_page.html') html = render_template_string(read_html_template(path=path), session_id=SESSION_ID, products=data, keywords=KEYWORDS, page=1, total=len(data), instruction_text=QUERY) return html @app.route('/', methods=['GET', 'POST']) def item_page(session_id, asin, keywords, page, options): path = os.path.join(TEMPLATE_DIR, 'item_page.html') html = render_template_string(read_html_template(path=path), session_id=session_id, product_info=product_map[asin], keywords=keywords, page=page, asin=asin, options=options, instruction_text=QUERY) return html @app.route('/', methods=['GET', 'POST']) def item_sub_page(session_id, asin, keywords, page, sub_page, options): path = os.path.join(TEMPLATE_DIR, sub_page.value.lower() + '_page.html') html = render_template_string(read_html_template(path), session_id=session_id, product_info=product_map[asin], keywords=keywords, page=page, asin=asin, options=options, instruction_text=QUERY) return html @app.route('/', methods=['GET', 'POST']) def done(asin, options, session_id, **kwargs): path = os.path.join(TEMPLATE_DIR, 'done_page.html') html = render_template_string(read_html_template(path), session_id=session_id, reward=1, asin=asin, options=product_map[asin]['options'], reward_info=kwargs.get('reward_info'), goal_attrs=kwargs.get('goal_attrs'), purchased_attrs=kwargs.get('purchased_attrs'), goal=kwargs.get('goal'), mturk_code=kwargs.get('mturk_code'), query=kwargs.get('query'), category=kwargs.get('category'), product_category=kwargs.get('product_category')) return html def dict_to_fake_html(data, page_type, asin=None, sub_page_type=None, options=None, prod_map={}, query=''): global QUERY, product_map QUERY = query product_map = prod_map with app.app_context(), app.test_request_context(): if page_type == Page.RESULTS: return search_results(data) if page_type == Page.ITEM_PAGE: return item_page(SESSION_ID, asin, KEYWORDS, 1, options) if page_type == Page.SUB_PAGE: if sub_page_type is not None: return item_sub_page(SESSION_ID, asin, KEYWORDS, 1, sub_page_type, options) else: raise Exception('Sub page of type', sub_page_type, 'unrecognized') # File: WebShop-master/web_agent_site/app.py import argparse, json, logging, random from pathlib import Path from ast import literal_eval from flask import Flask, request, redirect, url_for from rich import print from web_agent_site.engine.engine import load_products, init_search_engine, convert_web_app_string_to_var, get_top_n_product_from_keywords, get_product_per_page, map_action_to_html, END_BUTTON from web_agent_site.engine.goal import get_reward, get_goals from web_agent_site.utils import generate_mturk_code, setup_logger, DEFAULT_FILE_PATH, DEBUG_PROD_SIZE app = Flask(__name__) search_engine = None all_products = None product_item_dict = None product_prices = None attribute_to_asins = None goals = None weights = None user_sessions = dict() user_log_dir = None SHOW_ATTRS_TAB = False @app.route('/') def home(): return redirect(url_for('index', session_id='abc')) @app.route('/': query = ' '.join(keywords[1:]).strip() top_n_products = [p for p in all_products if p['query'] == query] else: keywords = ' '.join(keywords) hits = search_engine.search(keywords, k=SEARCH_RETURN_N) docs = [search_engine.doc(hit.docid) for hit in hits] top_n_asins = [json.loads(doc.raw())['id'] for doc in docs] top_n_products = [product_item_dict[asin] for asin in top_n_asins if asin in product_item_dict] return top_n_products def get_product_per_page(top_n_products, page): return top_n_products[(page - 1) * PRODUCT_WINDOW:page * PRODUCT_WINDOW] def generate_product_prices(all_products): product_prices = dict() for product in all_products: asin = product['asin'] pricing = product['pricing'] if not pricing: price = 100.0 elif len(pricing) == 1: price = pricing[0] else: price = random.uniform(*pricing[:2]) product_prices[asin] = price return product_prices def init_search_engine(num_products=None): if num_products == 100: indexes = 'indexes_100' elif num_products == 1000: indexes = 'indexes_1k' elif num_products == 100000: indexes = 'indexes_100k' elif num_products is None: indexes = 'indexes' else: raise NotImplementedError(f'num_products being {num_products} is not supported yet.') search_engine = LuceneSearcher(os.path.join(BASE_DIR, f'../search_engine/{indexes}')) return search_engine def clean_product_keys(products): for product in products: product.pop('product_information', None) product.pop('brand', None) product.pop('brand_url', None) product.pop('list_price', None) product.pop('availability_quantity', None) product.pop('availability_status', None) product.pop('total_reviews', None) product.pop('total_answered_questions', None) product.pop('seller_id', None) product.pop('seller_name', None) product.pop('fulfilled_by_amazon', None) product.pop('fast_track_message', None) product.pop('aplus_present', None) product.pop('small_description_old', None) print('Keys cleaned.') return products def load_products(filepath, num_products=None, human_goals=True): with open(filepath) as f: products = json.load(f) print('Products loaded.') products = clean_product_keys(products) all_reviews = dict() all_ratings = dict() if human_goals: with open(HUMAN_ATTR_PATH) as f: human_attributes = json.load(f) with open(DEFAULT_ATTR_PATH) as f: attributes = json.load(f) with open(HUMAN_ATTR_PATH) as f: human_attributes = json.load(f) print('Attributes loaded.') asins = set() all_products = [] attribute_to_asins = defaultdict(set) if num_products is not None: products = products[:num_products] for (i, p) in tqdm(enumerate(products), total=len(products)): asin = p['asin'] if asin == 'nan' or len(asin) > 10: continue if asin in asins: continue else: asins.add(asin) products[i]['category'] = p['category'] products[i]['query'] = p['query'] products[i]['product_category'] = p['product_category'] products[i]['Title'] = p['name'] products[i]['Description'] = p['full_description'] products[i]['Reviews'] = all_reviews.get(asin, []) products[i]['Rating'] = all_ratings.get(asin, 'N.A.') for r in products[i]['Reviews']: if 'score' not in r: r['score'] = r.pop('stars') if 'review' not in r: r['body'] = '' else: r['body'] = r.pop('review') products[i]['BulletPoints'] = p['small_description'] if isinstance(p['small_description'], list) else [p['small_description']] pricing = p.get('pricing') if pricing is None or not pricing: pricing = [100.0] price_tag = '$100.0' else: pricing = [float(Decimal(re.sub('[^\\d.]', '', price))) for price in pricing.split('$')[1:]] if len(pricing) == 1: price_tag = f'${pricing[0]}' else: price_tag = f'${pricing[0]} to ${pricing[1]}' pricing = pricing[:2] products[i]['pricing'] = pricing products[i]['Price'] = price_tag options = dict() customization_options = p['customization_options'] option_to_image = dict() if customization_options: for (option_name, option_contents) in customization_options.items(): if option_contents is None: continue option_name = option_name.lower() option_values = [] for option_content in option_contents: option_value = option_content['value'].strip().replace('/', ' | ').lower() option_image = option_content.get('image', None) option_values.append(option_value) option_to_image[option_value] = option_image options[option_name] = option_values products[i]['options'] = options products[i]['option_to_image'] = option_to_image if asin in attributes and 'attributes' in attributes[asin]: products[i]['Attributes'] = attributes[asin]['attributes'] else: products[i]['Attributes'] = ['DUMMY_ATTR'] if human_goals: if asin in human_attributes: products[i]['instructions'] = human_attributes[asin] else: products[i]['instruction_text'] = attributes[asin].get('instruction', None) products[i]['instruction_attributes'] = attributes[asin].get('instruction_attributes', None) products[i]['MainImage'] = p['images'][0] products[i]['query'] = p['query'].lower().strip() all_products.append(products[i]) for p in all_products: for a in p['Attributes']: attribute_to_asins[a].add(p['asin']) product_item_dict = {p['asin']: p for p in all_products} product_prices = generate_product_prices(all_products) return (all_products, product_item_dict, product_prices, attribute_to_asins) # File: WebShop-master/web_agent_site/engine/goal.py """""" import itertools import random import spacy from collections import defaultdict from rich import print from thefuzz import fuzz from web_agent_site.engine.normalize import normalize_color nlp = spacy.load('en_core_web_sm') PRICE_RANGE = [10.0 * i for i in range(1, 100)] def get_goals(all_products, product_prices, human_goals=True): if human_goals: return get_human_goals(all_products, product_prices) else: return get_synthetic_goals(all_products, product_prices) def get_human_goals(all_products, product_prices): goals = [] cnt_atts = defaultdict(int) cnt = 0 for item in all_products: asin = item['asin'] if 'instructions' not in item: continue for product in item['instructions']: attributes = product['instruction_attributes'] if len(attributes) == 0: cnt += 1 continue if product_prices is not None: price = product_prices[asin] price_range = [p for p in PRICE_RANGE if p > price][:4] if len(price_range) >= 2: (_, price_upper) = sorted(random.sample(price_range, 2)) price_text = f', and price lower than {price_upper:.2f} dollars' else: price_upper = 1000000 price_text = '' else: price_upper = 1000000 goals.append({'asin': asin, 'category': item['category'], 'query': item['query'], 'name': item['name'], 'product_category': item['product_category'], 'instruction_text': product['instruction'].strip('.') + price_text, 'attributes': attributes, 'price_upper': price_upper, 'goal_options': product['instruction_options']}) for att in attributes: cnt_atts[att] += 1 for goal in goals: goal['weight'] = 1 print(cnt, 'skipped') return goals def get_synthetic_goals(all_products, product_prices): goals = [] cnt_atts = defaultdict(int) for product in all_products: if 'instruction_text' not in product or product['instruction_text'] is None: continue product_goals = [] asin = product['asin'] attributes = product['instruction_attributes'] assert len(attributes) > 0 if product_prices is not None: price = product_prices[asin] price_range = [p for p in PRICE_RANGE if p > price][:4] if len(price_range) >= 2: (_, price_upper) = sorted(random.sample(price_range, 2)) price_text = f', and price lower than {price_upper:.2f} dollars' else: price_upper = 1000000 price_text = '' else: price_upper = 1000000 price_text = '' instruction_text = product['instruction_text'] options = product['options'] option_names = sorted(options) combinations = list(itertools.product(*(options[option_name] for option_name in option_names))) for combination in combinations: goal_options = dict() for (i, o) in enumerate(combination): goal_options[option_names[i]] = o option_text = ', and '.join([f'{k}: {v}' for (k, v) in goal_options.items()]) option_text = ' with ' + option_text if option_text else '' product_goals.append({'asin': asin, 'category': product['category'], 'query': product['query'], 'name': product['name'], 'product_category': product['product_category'], 'instruction_text': f'{instruction_text}{option_text}{price_text}', 'attributes': attributes, 'price_upper': price_upper, 'goal_options': goal_options, 'name': product['Title']}) for att in attributes: cnt_atts[att] += 1 goals += product_goals for goal in goals: goal['weight'] = sum((1.0 / cnt_atts[att] for att in goal['attributes'])) / len(goal['attributes']) return goals def get_type_reward(purchased_product, goal): query_match = purchased_product['query'] == goal['query'] purchased_product_category = [x.strip() for x in purchased_product['product_category'].split('›')] goal_product_category = [x.strip() for x in goal['product_category'].split('›')] category_match = len(set(purchased_product_category) & set(goal_product_category)) >= 2 purchased_type = purchased_product['name'] desired_type = goal['name'] purchased_type_parse = nlp(purchased_type) desired_type_parse = nlp(desired_type) purchased_type_parse = [t.text.lower() for t in purchased_type_parse if t.pos_ in ('PNOUN', 'NOUN', 'PROPN')] desired_type_parse = [t.text.lower() for t in desired_type_parse if t.pos_ in ('PNOUN', 'NOUN', 'PROPN')] n_intersect_type = len(set(purchased_type_parse) & set(desired_type_parse)) if len(desired_type_parse) == 0: title_score = 0.2 else: title_score = n_intersect_type / len(desired_type_parse) r_type = 1.0 match = query_match or category_match or title_score > 0.2 if not match: r_type = 0.5 if title_score < 0.1: r_type = 0.1 if title_score == 0.0: r_type = 0.0 return dict(r_type=r_type, query_match=query_match, category_match=category_match, title_score=title_score) def get_attribute_reward(purchased_product, goal): purchased_attrs = purchased_product['Attributes'] goal_attrs = goal['attributes'] num_attr_matches = 0 for g_attr in goal_attrs: matched = False for p_attr in purchased_attrs: score = fuzz.token_set_ratio(p_attr, g_attr) if score > 85: num_attr_matches += 1 matched = True break if not matched and (g_attr in purchased_product['Title'].lower() or g_attr in ' '.join(purchased_product['BulletPoints']).lower() or g_attr in purchased_product['Description'].lower()): num_attr_matches += 1 matched = True r_attr = num_attr_matches / len(goal_attrs) return (r_attr, num_attr_matches) def get_option_reward(purchased_options, goal_options): purchased_options = [normalize_color(o) for o in purchased_options] goal_options = [normalize_color(o) for o in goal_options] num_option_matches = 0 for g_option in goal_options: for p_option in purchased_options: score = fuzz.token_set_ratio(p_option, g_option) if score > 85: num_option_matches += 1 break r_option = num_option_matches / len(goal_options) if len(goal_options) > 0 else None return (r_option, num_option_matches) def get_reward(purchased_product, goal, price, options, **kwargs): r_type_dict = get_type_reward(purchased_product, goal) r_price = price <= goal['price_upper'] if goal['price_upper'] > 0 else None (r_att, num_attr_matches) = get_attribute_reward(purchased_product, goal) (r_option, num_option_matches) = get_option_reward(list(options.values()), goal['goal_options'].items() if isinstance(goal['goal_options'], dict) else goal['goal_options']) total_reward = (num_attr_matches + num_option_matches + r_price) / (len(goal['attributes']) + len(goal['goal_options']) + 1) total_reward *= r_type_dict['r_type'] if kwargs.get('verbose', False): info = {'r_type': r_type_dict['r_type'], 'r_att': r_att, 'w_att': len(goal['attributes']) / (len(goal['attributes']) + len(goal['goal_options']) + 1), 'query_match': r_type_dict['query_match'], 'category_match': r_type_dict['category_match'], 'title_score': r_type_dict['title_score']} if r_option is not None: info['r_option'] = r_option info['w_option'] = len(goal['goal_options']) / (len(goal['attributes']) + len(goal['goal_options']) + 1) if r_price is not None: info['r_price'] = r_price info['w_price'] = 1 / (len(goal['attributes']) + len(goal['goal_options']) + 1) return (total_reward, info) return total_reward # File: WebShop-master/web_agent_site/engine/normalize.py import re from typing import Tuple COLOR_SET = ['alabaster', 'apricot', 'aqua', 'ash', 'asphalt', 'azure', 'banana', 'beige', 'black', 'blue', 'blush', 'bordeaux', 'bronze', 'brown', 'burgundy', 'camel', 'camo', 'caramel', 'champagne', 'charcoal', 'cheetah', 'chestnut', 'chocolate', 'christmas', 'coffee', 'cognac', 'copper', 'coral', 'cranberry', 'cream', 'crystal', 'dark', 'denim', 'eggplant', 'elephant', 'espresso', 'fuchsia', 'gold', 'granite', 'grape', 'graphite', 'grass', 'gray', 'green', 'grey', 'heather', 'indigo', 'ivory', 'ivy', 'khaki', 'lavender', 'lemon', 'leopard', 'light', 'lilac', 'lime', 'magenta', 'maroon', 'mauve', 'merlot', 'midnight', 'mint', 'mocha', 'multicolor', 'mushroom', 'mustard', 'natural', 'navy', 'nude', 'olive', 'orange', 'peach', 'pewter', 'pink', 'plum', 'purple', 'rainbow', 'red', 'rose', 'royal', 'rust', 'sand', 'sapphire', 'seashell', 'silver', 'skull', 'slate', 'steel', 'stone', 'stonewash', 'sunflower', 'tan', 'taupe', 'teal', 'tiger', 'turquoise', 'violet', 'walnut', 'wheat', 'white', 'wine', 'yellow'] SIZE_SET = ['xx-large', '3x-large', '4x-large', '5x-large', 'x-large', 'x-small', 'medium', 'large', 'small', 'queen', 'twin', 'full', 'king', 'one size', 'pack'] SIZE_PATTERNS = [re.compile('(.*)neck(.*)sleeve'), re.compile('(.*) women \\| (.*) men'), re.compile('(.*)w x(.*)l'), re.compile('(.*)w by (.*)l'), re.compile('(.*)w x(.*)h'), re.compile('(.*)wide'), re.compile('(.*)x-wide'), re.compile('(.*)narrow'), re.compile('(.*)petite'), re.compile('(.*)inch'), re.compile('(.*)plus'), re.compile('(.*)mm'), re.compile('women(.*)'), re.compile('(.*)x(.*)'), re.compile('(.*)ft'), re.compile('(.*)feet'), re.compile('(.*)meter'), re.compile('(.*)yards'), re.compile('(.*)\\*(.*)'), re.compile('(.*)\\-(.*)'), re.compile('(\\d+)"$'), re.compile('(\\d+)f$'), re.compile('(\\d+)m$'), re.compile('(\\d+)cm$'), re.compile('(\\d+)g$')] SIZE_PATTERNS = [re.compile(s) for s in SIZE_SET] + SIZE_PATTERNS def normalize_color(color_string: str) -> str: for norm_color in COLOR_SET: if norm_color in color_string: return norm_color return color_string def normalize_color_size(product_prices: dict) -> Tuple[dict, dict]: (all_colors, all_sizes) = (set(), set()) for ((_, color, size), _) in product_prices.items(): all_colors.add(color.lower()) all_sizes.add(size.lower()) color_mapping = {'N.A.': 'not_matched'} for c in all_colors: matched = False for base in COLOR_SET: if base in c: color_mapping[c] = base matched = True break if not matched: color_mapping[c] = 'not_matched' size_mapping = {'N.A.': 'not_matched'} for s in all_sizes: matched = False for pattern in SIZE_PATTERNS: m = re.search(pattern, s) if m is not None: matched = True size_mapping[s] = pattern.pattern break if not matched: if s.replace('.', '', 1).isdigit(): size_mapping[s] = 'numeric_size' matched = True if not matched: size_mapping[s] = 'not_matched' return (color_mapping, size_mapping) # File: WebShop-master/web_agent_site/envs/__init__.py from gym.envs.registration import register from web_agent_site.envs.web_agent_site_env import WebAgentSiteEnv from web_agent_site.envs.web_agent_text_env import WebAgentTextEnv register(id='WebAgentSiteEnv-v0', entry_point='web_agent_site.envs:WebAgentSiteEnv') register(id='WebAgentTextEnv-v0', entry_point='web_agent_site.envs:WebAgentTextEnv') # File: WebShop-master/web_agent_site/envs/web_agent_site_env.py import gym import random import requests import string import time from bs4 import BeautifulSoup from bs4.element import Comment from gym import spaces from os.path import join, dirname, abspath from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import ElementNotInteractableException from web_agent_site.engine.engine import parse_action, END_BUTTON class WebAgentSiteEnv(gym.Env): def __init__(self, observation_mode='html', **kwargs): super(WebAgentSiteEnv, self).__init__() self.observation_mode = observation_mode self.kwargs = kwargs service = Service(join(dirname(abspath(__file__)), 'chromedriver')) options = Options() if 'render' not in kwargs or not kwargs['render']: options.add_argument('--headless') self.browser = webdriver.Chrome(service=service, options=options) self.text_to_clickable = None self.assigned_session = kwargs.get('session') self.session = None self.reset() def step(self, action): reward = 0.0 done = False info = None (action_name, action_arg) = parse_action(action) if action_name == 'search': try: search_bar = self.browser.find_element_by_id('search_input') except Exception: pass else: search_bar.send_keys(action_arg) search_bar.submit() elif action_name == 'click': try: self.text_to_clickable[action_arg].click() except ElementNotInteractableException: button = self.text_to_clickable[action_arg] self.browser.execute_script('arguments[0].click();', button) reward = self.get_reward() if action_arg == END_BUTTON: done = True elif action_name == 'end': done = True else: print('Invalid action. No action performed.') if 'pause' in self.kwargs: time.sleep(self.kwargs['pause']) return (self.observation, reward, done, info) def get_available_actions(self): try: search_bar = self.browser.find_element_by_id('search_input') except Exception: has_search_bar = False else: has_search_bar = True buttons = self.browser.find_elements_by_class_name('btn') product_links = self.browser.find_elements_by_class_name('product-link') buying_options = self.browser.find_elements_by_css_selector("input[type='radio']") self.text_to_clickable = {f'{b.text}': b for b in buttons + product_links} for opt in buying_options: opt_value = opt.get_attribute('value') self.text_to_clickable[f'{opt_value}'] = opt return dict(has_search_bar=has_search_bar, clickables=list(self.text_to_clickable.keys())) def _parse_html(self, html=None, url=None): if html is None: if url is not None: html = requests.get(url) else: html = self.state['html'] html_obj = BeautifulSoup(html, 'html.parser') return html_obj def get_reward(self): html_obj = self._parse_html() r = html_obj.find(id='reward') r = float(r.findChildren('pre')[0].string) if r is not None else 0.0 return r def get_instruction_text(self): html_obj = self._parse_html(self.browser.page_source) instruction_text = html_obj.find(id='instruction-text').h4.text return instruction_text def convert_html_to_text(self, html): texts = self._parse_html(html).findAll(text=True) visible_texts = filter(tag_visible, texts) observation = ' [SEP] '.join((t.strip() for t in visible_texts if t != '\n')) return observation @property def state(self): return dict(url=self.browser.current_url, html=self.browser.page_source, instruction_text=self.instruction_text) @property def observation(self): html = self.state['html'] if self.observation_mode == 'html': return html elif self.observation_mode == 'text': return self.convert_html_to_text(html) else: raise ValueError(f'Observation mode {self.observation_mode} not supported.') @property def action_space(self): return NotImplementedError @property def observation_space(self): return NotImplementedError def reset(self): if self.assigned_session is not None: self.session = self.assigned_session else: self.session = ''.join(random.choices(string.ascii_lowercase, k=5)) init_url = f'http://127.0.0.1:3000/{self.session}' self.browser.get(init_url) self.instruction_text = self.get_instruction_text() return (self.observation, None) def render(self, mode='human'): return NotImplementedError def close(self): self.browser.close() print('Browser closed.') def tag_visible(element): ignore = {'style', 'script', 'head', 'title', 'meta', '[document]'} return element.parent.name not in ignore and (not isinstance(element, Comment)) # File: WebShop-master/web_agent_site/envs/web_agent_text_env.py import gym import json import random import string import time import torch import numpy as np from bs4 import BeautifulSoup from bs4.element import Comment from collections import defaultdict from flask import Flask from web_agent_site.engine.engine import load_products, init_search_engine, get_top_n_product_from_keywords, map_action_to_html, parse_action, get_product_per_page, ACTION_TO_TEMPLATE, END_BUTTON, NEXT_PAGE, PREV_PAGE, BACK_TO_SEARCH from web_agent_site.engine.goal import get_reward, get_goals from web_agent_site.utils import DEFAULT_FILE_PATH, FEAT_CONV, FEAT_IDS, random_idx app = Flask(__name__) class WebAgentTextEnv(gym.Env): def __init__(self, observation_mode='html', file_path=DEFAULT_FILE_PATH, server=None, **kwargs): super(WebAgentTextEnv, self).__init__() self.observation_mode = observation_mode self.kwargs = kwargs self.file_path = file_path self.base_url = 'http://127.0.0.1:3000' self.server = SimServer(self.base_url, self.file_path, self.kwargs.get('filter_goals'), self.kwargs.get('limit_goals', -1), self.kwargs.get('num_products'), self.kwargs.get('human_goals'), self.kwargs.get('show_attrs', False)) if server is None else server self.browser = SimBrowser(self.server) self.session = self.kwargs.get('session') self.session_prefix = self.kwargs.get('session_prefix') if self.kwargs.get('get_image', 0): self.feats = torch.load(FEAT_CONV) self.ids = torch.load(FEAT_IDS) self.ids = {url: idx for (idx, url) in enumerate(self.ids)} self.prev_obs = [] self.prev_actions = [] self.num_prev_obs = self.kwargs.get('num_prev_obs', 0) self.num_prev_actions = self.kwargs.get('num_prev_actions', 0) self.reset() def step(self, action): info = None self.get_available_actions() (action_name, action_arg) = parse_action(action) if action_arg is not None: action_arg = action_arg.lower() if action_name == 'search' and action_arg is not None and (action_arg != ''): status = self.browser.search(action_arg) elif action_name == 'click' and action_arg in self.text_to_clickable.keys() and (action_arg != 'search'): status = self.browser.click(action_arg, self.text_to_clickable) else: status = dict(reward=0, done=False) ob = self.observation text_list = [ob] self.prev_actions.append(action) for i in range(1, 1 + max(self.num_prev_obs, self.num_prev_actions)): if len(self.prev_actions) >= i and self.num_prev_actions >= i: text_list.append(self.prev_actions[-i]) if len(self.prev_obs) >= i and self.num_prev_obs >= i: text_list.append(self.prev_obs[-i]) state = ' [SEP] '.join(text_list[::-1]) self.prev_obs.append(ob) return (state, status['reward'], status['done'], info) def get_available_actions(self): html_obj = self._parse_html() search_bar = html_obj.find(id='search_input') has_search_bar = True if search_bar is not None else False buttons = html_obj.find_all(class_='btn') product_links = html_obj.find_all(class_='product-link') buying_options = html_obj.select('input[type="radio"]') self.text_to_clickable = {f'{b.get_text()}'.lower(): b for b in buttons + product_links} for opt in buying_options: opt_value = opt.get('value') self.text_to_clickable[f'{opt_value}'] = opt return dict(has_search_bar=has_search_bar, clickables=list(self.text_to_clickable.keys())) def get_image(self): html_obj = self._parse_html(self.browser.page_source) image_url = html_obj.find(id='product-image') if image_url is not None: image_url = image_url['src'] if image_url in self.ids: image_idx = self.ids[image_url] image = self.feats[image_idx] return image return torch.zeros(512) def get_instruction_text(self): html_obj = self._parse_html(self.browser.page_source) instruction_text = html_obj.find(id='instruction-text').h4.text return instruction_text def _parse_html(self, html=None): if html is None: html = self.state['html'] html_obj = BeautifulSoup(html, 'html.parser') return html_obj @property def observation(self): html = self.state['html'] if self.observation_mode == 'html': return html elif self.observation_mode == 'text': return self.convert_html_to_text(html, simple=True) elif self.observation_mode == 'text_rich': return self.convert_html_to_text(html, simple=False) elif self.observation_mode == 'url': return self.state['url'] else: raise ValueError(f'Observation mode {self.observation_mode} not supported.') @property def state(self): return dict(url=self.browser.current_url, html=self.browser.page_source, instruction_text=self.instruction_text) def convert_html_to_text(self, html, simple=False): texts = self._parse_html(html).findAll(text=True) visible_texts = filter(tag_visible, texts) if simple: return ' [SEP] '.join((t.strip() for t in visible_texts if t != '\n')) else: observation = '' for t in visible_texts: if t == '\n': continue if t.parent.name == 'button': processed_t = f'[button] {t} [button_]' elif t.parent.name == 'label': if f'"{t}"' in self.state['url']: processed_t = f' [clicked button] {t} [clicked button_]' observation = f'You have clicked {t}.\n' + observation else: processed_t = f' [button] {t} [button_]' elif t.parent.get('class') == ['product-link']: if f'{t}' in self.server.user_sessions[self.session]['asins']: processed_t = f'\n[clicked button] {t} [clicked button_]' else: processed_t = f'\n[button] {t} [button_]' else: processed_t = str(t) observation += processed_t + '\n' return observation def reset(self, session=None, instruction_text=None): session_int = None if session is not None: self.session = str(session) if isinstance(session, int): session_int = session else: self.session = ''.join(random.choices(string.ascii_lowercase, k=10)) if self.session_prefix is not None: self.session = self.session_prefix + self.session init_url = f'{self.base_url}/{self.session}' self.browser.get(init_url, session_id=self.session, session_int=session_int) self.text_to_clickable = None self.instruction_text = self.get_instruction_text() if instruction_text is None else instruction_text obs = self.observation self.prev_obs = [obs] self.prev_actions = [] return (obs, None) def render(self, mode='human'): pass def close(self): pass def tag_visible(element): ignore = {'style', 'script', 'head', 'title', 'meta', '[document]'} return element.parent.name not in ignore and (not isinstance(element, Comment)) class SimServer: def __init__(self, base_url, file_path, filter_goals=None, limit_goals=-1, num_products=None, human_goals=0, show_attrs=False): self.base_url = base_url (self.all_products, self.product_item_dict, self.product_prices, _) = load_products(filepath=file_path, num_products=num_products, human_goals=human_goals) self.search_engine = init_search_engine(num_products=num_products) self.goals = get_goals(self.all_products, self.product_prices, human_goals) self.show_attrs = show_attrs random.seed(233) random.shuffle(self.goals) if filter_goals is not None: self.goals = [goal for (i, goal) in enumerate(self.goals) if filter_goals(i, goal)] if limit_goals != -1 and limit_goals < len(self.goals): self.weights = [goal['weight'] for goal in self.goals] self.cum_weights = [0] + np.cumsum(self.weights).tolist() idxs = [] while len(idxs) < limit_goals: idx = random_idx(self.cum_weights) if idx not in idxs: idxs.append(idx) self.goals = [self.goals[i] for i in idxs] print(f'Loaded {len(self.goals)} goals.') self.weights = [goal['weight'] for goal in self.goals] self.cum_weights = [0] + np.cumsum(self.weights).tolist() self.user_sessions = dict() self.search_time = 0 self.render_time = 0 self.sample_time = 0 self.assigned_instruction_text = None @app.route('/', methods=['GET', 'POST']) def index(self, session_id, **kwargs): html = map_action_to_html('start', session_id=session_id, instruction_text=kwargs['instruction_text']) url = f'{self.base_url}/{session_id}' return (html, url) @app.route('/', methods=['GET', 'POST']) def search_results(self, session_id, **kwargs): session = self.user_sessions[session_id] keywords = kwargs['keywords'] assert isinstance(keywords, list) page = 1 if 'page' not in kwargs else kwargs['page'] session['page'] = page session['keywords'] = keywords session['actions']['search'] += 1 session['asin'] = None session['options'] = {} old_time = time.time() top_n_products = get_top_n_product_from_keywords(keywords, self.search_engine, self.all_products, self.product_item_dict) self.search_time += time.time() - old_time products = get_product_per_page(top_n_products, page) keywords_url_string = '+'.join(keywords) url = f'{self.base_url}/search_results/{session_id}/{keywords_url_string}/{page}' old_time = time.time() html = map_action_to_html('search', session_id=session_id, products=products, keywords=session['keywords'], page=page, total=len(top_n_products), instruction_text=session['goal']['instruction_text']) self.render_time += time.time() - old_time return (html, url) @app.route('/', methods=['GET', 'POST']) def item_page(self, session_id, **kwargs): session = self.user_sessions[session_id] clickable_name = kwargs['clickable_name'] text_to_clickable = kwargs['text_to_clickable'] clickable = text_to_clickable[clickable_name] if clickable.get('class') is not None and clickable.get('class')[0] == 'product-link': session['asin'] = clickable_name.upper() session['actions']['asin'] += 1 session['asins'].add(session['asin']) elif clickable.get('name') is not None: clickable_key = clickable['name'].lower() session['options'][clickable_key] = clickable_name session['actions']['options'] += 1 product_info = self.product_item_dict[session['asin']] keywords_url_string = '+'.join(session['keywords']) option_string = json.dumps(session['options']) url = f"{self.base_url}/item_page/{session_id}/{session['asin']}/{keywords_url_string}/{session['page']}/{option_string}" html = map_action_to_html('click', session_id=session_id, product_info=product_info, keywords=session['keywords'], page=session['page'], asin=session['asin'], options=session['options'], instruction_text=session['goal']['instruction_text'], show_attrs=self.show_attrs) return (html, url) @app.route('/', methods=['GET', 'POST']) def item_sub_page(self, session_id, **kwargs): session = self.user_sessions[session_id] clickable_name = kwargs['clickable_name'] for k in ACTION_TO_TEMPLATE: if clickable_name.lower() == k.lower(): clickable_name = k break product_info = self.product_item_dict[session['asin']] session['actions'][clickable_name] += 1 keywords_url_string = '+'.join(session['keywords']) url = f"{self.base_url}/item_sub_page/{session_id}/{session['asin']}/{keywords_url_string}/{session['page']}/{clickable_name}/{session['options']}" html = map_action_to_html(f'click[{clickable_name}]', session_id=session_id, product_info=product_info, keywords=session['keywords'], page=session['page'], asin=session['asin'], options=session['options'], instruction_text=session['goal']['instruction_text']) return (html, url) @app.route('/', methods=['GET', 'POST']) def done(self, session_id, **kwargs): session = self.user_sessions[session_id] goal = self.user_sessions[session_id]['goal'] purchased_product = self.product_item_dict[session['asin']] session['actions']['purchase'] += 1 price = self.product_prices.get(session['asin']) (reward, info) = get_reward(purchased_product, goal, price=price, options=session['options'], verbose=True) self.user_sessions[session_id]['verbose_info'] = info self.user_sessions[session_id]['done'] = True self.user_sessions[session_id]['reward'] = reward url = f"{self.base_url}/done/{session_id}/{session['asin']}/{session['options']}" html = map_action_to_html(f'click[{END_BUTTON}]', session_id=session_id, reward=reward, asin=session['asin'], options=session['options'], instruction_text=session['goal']['instruction_text']) return (html, url, reward) def receive(self, session_id, current_url, session_int=None, **kwargs): status = dict(reward=0.0, done=False) with app.app_context(), app.test_request_context(): if session_id not in self.user_sessions: idx = session_int if session_int is not None and isinstance(session_int, int) else random_idx(self.cum_weights) goal = self.goals[idx] instruction_text = goal['instruction_text'] self.user_sessions[session_id] = {'goal': goal, 'done': False} else: instruction_text = self.user_sessions[session_id]['goal']['instruction_text'] if self.assigned_instruction_text is not None: instruction_text = self.assigned_instruction_text self.user_sessions[session_id]['goal']['instruction_text'] = instruction_text session = self.user_sessions[session_id] if not kwargs: kwargs['instruction_text'] = instruction_text (html, url) = self.index(session_id, **kwargs) self.user_sessions[session_id].update({'keywords': None, 'page': None, 'asin': None, 'asins': set(), 'options': dict(), 'actions': defaultdict(int)}) elif 'keywords' in kwargs: (html, url) = self.search_results(session_id, **kwargs) elif 'clickable_name' in kwargs: clickable_name = kwargs['clickable_name'].lower() if clickable_name == END_BUTTON.lower(): (html, url, reward) = self.done(session_id, **kwargs) status['reward'] = reward status['done'] = True elif clickable_name == BACK_TO_SEARCH.lower(): (html, url, status) = self.receive(session_id, current_url) elif clickable_name == NEXT_PAGE.lower() and self.get_page_name(current_url) == 'search_results': (html, url, status) = self.receive(session_id, current_url, keywords=session['keywords'], page=session['page'] + 1) elif clickable_name == PREV_PAGE.lower() and self.get_page_name(current_url) == 'search_results': (html, url, status) = self.receive(session_id, current_url, keywords=session['keywords'], page=session['page'] - 1) elif clickable_name == PREV_PAGE.lower() and self.get_page_name(current_url) == 'item_sub_page': (html, url) = self.item_page(session_id, **kwargs) elif clickable_name == PREV_PAGE.lower() and self.get_page_name(current_url) == 'item_page': (html, url) = self.search_results(session_id, keywords=session['keywords'], page=session['page'], **kwargs) elif clickable_name in [k.lower() for k in ACTION_TO_TEMPLATE]: (html, url) = self.item_sub_page(session_id, **kwargs) else: (html, url) = self.item_page(session_id, **kwargs) return (html, url, status) def get_page_name(self, url): if url is None: return None page_names = ['search_results', 'item_page', 'item_sub_page', 'done'] for page_name in page_names: if page_name in url: return page_name return '' class SimBrowser: def __init__(self, server): self.server = server self.current_url = None self.page_source = None self.session_id = None def get(self, url, session_id=None, session_int=None): self.session_id = url.split('/')[-1] if session_id is None else session_id (self.page_source, _, _) = self.server.receive(self.session_id, self.current_url, session_int=session_int) self.current_url = url def click(self, clickable_name, text_to_clickable): (self.page_source, self.current_url, status) = self.server.receive(self.session_id, current_url=self.current_url, clickable_name=clickable_name, text_to_clickable=text_to_clickable) return status def search(self, keywords): if isinstance(keywords, str): keywords = keywords.split(' ') (self.page_source, self.current_url, status) = self.server.receive(self.session_id, current_url=self.current_url, keywords=keywords) return status # File: WebShop-master/web_agent_site/models/models.py """""" import random random.seed(4) class BasePolicy: def __init__(self): pass def forward(observation, available_actions): raise NotImplementedError class HumanPolicy(BasePolicy): def __init__(self): super().__init__() def forward(self, observation, available_actions): action = input('> ') return action class RandomPolicy(BasePolicy): def __init__(self): super().__init__() def forward(self, observation, available_actions): if available_actions['has_search_bar']: action = 'search[shoes]' else: action_arg = random.choice(available_actions['clickables']) action = f'click[{action_arg}]' return action # File: WebShop-master/web_agent_site/utils.py import bisect import hashlib import logging import random from os.path import dirname, abspath, join BASE_DIR = dirname(abspath(__file__)) DEBUG_PROD_SIZE = None DEFAULT_ATTR_PATH = join(BASE_DIR, '../data/items_ins_v2_1000.json') DEFAULT_FILE_PATH = join(BASE_DIR, '../data/items_shuffle_1000.json') DEFAULT_REVIEW_PATH = join(BASE_DIR, '../data/reviews.json') FEAT_CONV = join(BASE_DIR, '../data/feat_conv.pt') FEAT_IDS = join(BASE_DIR, '../data/feat_ids.pt') HUMAN_ATTR_PATH = join(BASE_DIR, '../data/items_human_ins.json') HUMAN_ATTR_PATH = join(BASE_DIR, '../data/items_human_ins.json') def random_idx(cum_weights): pos = random.uniform(0, cum_weights[-1]) idx = bisect.bisect(cum_weights, pos) idx = min(idx, len(cum_weights) - 2) return idx def setup_logger(session_id, user_log_dir): logger = logging.getLogger(session_id) formatter = logging.Formatter('%(message)s') file_handler = logging.FileHandler(user_log_dir / f'{session_id}.jsonl', mode='w') file_handler.setFormatter(formatter) logger.setLevel(logging.INFO) logger.addHandler(file_handler) return logger def generate_mturk_code(session_id: str) -> str: sha = hashlib.sha1(session_id.encode()) return sha.hexdigest()[:10].upper()