# File: tokenizers-main/bindings/python/py_src/tokenizers/__init__.py from enum import Enum from typing import List, Tuple, Union Offsets = Tuple[int, int] TextInputSequence = str '' PreTokenizedInputSequence = Union[List[str], Tuple[str]] '' TextEncodeInput = Union[TextInputSequence, Tuple[TextInputSequence, TextInputSequence], List[TextInputSequence]] '' PreTokenizedEncodeInput = Union[PreTokenizedInputSequence, Tuple[PreTokenizedInputSequence, PreTokenizedInputSequence], List[PreTokenizedInputSequence]] '' InputSequence = Union[TextInputSequence, PreTokenizedInputSequence] '' EncodeInput = Union[TextEncodeInput, PreTokenizedEncodeInput] '' class OffsetReferential(Enum): ORIGINAL = 'original' NORMALIZED = 'normalized' class OffsetType(Enum): BYTE = 'byte' CHAR = 'char' class SplitDelimiterBehavior(Enum): REMOVED = 'removed' ISOLATED = 'isolated' MERGED_WITH_PREVIOUS = 'merged_with_previous' MERGED_WITH_NEXT = 'merged_with_next' CONTIGUOUS = 'contiguous' from .tokenizers import AddedToken, Encoding, NormalizedString, PreTokenizedString, Regex, Token, Tokenizer, decoders, models, normalizers, pre_tokenizers, processors, trainers, __version__ from .implementations import BertWordPieceTokenizer, ByteLevelBPETokenizer, CharBPETokenizer, SentencePieceBPETokenizer, SentencePieceUnigramTokenizer # File: tokenizers-main/bindings/python/py_src/tokenizers/decoders/__init__.py from .. import decoders Decoder = decoders.Decoder ByteLevel = decoders.ByteLevel Replace = decoders.Replace WordPiece = decoders.WordPiece ByteFallback = decoders.ByteFallback Fuse = decoders.Fuse Strip = decoders.Strip Metaspace = decoders.Metaspace BPEDecoder = decoders.BPEDecoder CTC = decoders.CTC Sequence = decoders.Sequence # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/base_tokenizer.py from typing import Dict, List, Optional, Tuple, Union from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer from tokenizers.decoders import Decoder from tokenizers.models import Model from tokenizers.normalizers import Normalizer from tokenizers.pre_tokenizers import PreTokenizer from tokenizers.processors import PostProcessor Offsets = Tuple[int, int] class BaseTokenizer: def __init__(self, tokenizer: Tokenizer, parameters=None): self._tokenizer = tokenizer self._parameters = parameters if parameters is not None else {} def __repr__(self): return 'Tokenizer(vocabulary_size={}, {})'.format(self._tokenizer.get_vocab_size(), ', '.join((k + '=' + str(v) for (k, v) in self._parameters.items()))) def num_special_tokens_to_add(self, is_pair: bool) -> int: return self._tokenizer.num_special_tokens_to_add(is_pair) def get_vocab(self, with_added_tokens: bool=True) -> Dict[str, int]: return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens) def get_added_tokens_decoder(self) -> Dict[int, AddedToken]: return self._tokenizer.get_added_tokens_decoder() def get_vocab_size(self, with_added_tokens: bool=True) -> int: return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens) def enable_padding(self, direction: Optional[str]='right', pad_to_multiple_of: Optional[int]=None, pad_id: Optional[int]=0, pad_type_id: Optional[int]=0, pad_token: Optional[str]='[PAD]', length: Optional[int]=None): return self._tokenizer.enable_padding(direction=direction, pad_to_multiple_of=pad_to_multiple_of, pad_id=pad_id, pad_type_id=pad_type_id, pad_token=pad_token, length=length) def no_padding(self): return self._tokenizer.no_padding() @property def padding(self) -> Optional[dict]: return self._tokenizer.padding def enable_truncation(self, max_length: int, stride: Optional[int]=0, strategy: Optional[str]='longest_first'): return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy) def no_truncation(self): return self._tokenizer.no_truncation() @property def truncation(self) -> Optional[dict]: return self._tokenizer.truncation def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int: return self._tokenizer.add_tokens(tokens) def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int: return self._tokenizer.add_special_tokens(special_tokens) def normalize(self, sequence: str) -> str: return self._tokenizer.normalize(sequence) def encode(self, sequence: InputSequence, pair: Optional[InputSequence]=None, is_pretokenized: bool=False, add_special_tokens: bool=True) -> Encoding: if sequence is None: raise ValueError("encode: `sequence` can't be `None`") return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens) def encode_batch(self, inputs: List[EncodeInput], is_pretokenized: bool=False, add_special_tokens: bool=True) -> List[Encoding]: if inputs is None: raise ValueError("encode_batch: `inputs` can't be `None`") return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens) def decode(self, ids: List[int], skip_special_tokens: Optional[bool]=True) -> str: if ids is None: raise ValueError('None input is not valid. Should be a list of integers.') return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens) def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool]=True) -> str: if sequences is None: raise ValueError('None input is not valid. Should be list of list of integers.') return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens) def token_to_id(self, token: str) -> Optional[int]: return self._tokenizer.token_to_id(token) def id_to_token(self, id: int) -> Optional[str]: return self._tokenizer.id_to_token(id) def save_model(self, directory: str, prefix: Optional[str]=None): return self._tokenizer.model.save(directory, prefix=prefix) def save(self, path: str, pretty: bool=True): return self._tokenizer.save(path, pretty) def to_str(self, pretty: bool=False): return self._tokenizer.to_str(pretty) def post_process(self, encoding: Encoding, pair: Optional[Encoding]=None, add_special_tokens: bool=True) -> Encoding: return self._tokenizer.post_process(encoding, pair, add_special_tokens) @property def model(self) -> Model: return self._tokenizer.model @model.setter def model(self, model: Model): self._tokenizer.model = model @property def normalizer(self) -> Normalizer: return self._tokenizer.normalizer @normalizer.setter def normalizer(self, normalizer: Normalizer): self._tokenizer.normalizer = normalizer @property def pre_tokenizer(self) -> PreTokenizer: return self._tokenizer.pre_tokenizer @pre_tokenizer.setter def pre_tokenizer(self, pre_tokenizer: PreTokenizer): self._tokenizer.pre_tokenizer = pre_tokenizer @property def post_processor(self) -> PostProcessor: return self._tokenizer.post_processor @post_processor.setter def post_processor(self, post_processor: PostProcessor): self._tokenizer.post_processor = post_processor @property def decoder(self) -> Decoder: return self._tokenizer.decoder @decoder.setter def decoder(self, decoder: Decoder): self._tokenizer.decoder = decoder # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py from typing import Dict, Iterator, List, Optional, Union from tokenizers import AddedToken, Tokenizer, decoders, trainers from tokenizers.models import WordPiece from tokenizers.normalizers import BertNormalizer from tokenizers.pre_tokenizers import BertPreTokenizer from tokenizers.processors import BertProcessing from .base_tokenizer import BaseTokenizer class BertWordPieceTokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, unk_token: Union[str, AddedToken]='[UNK]', sep_token: Union[str, AddedToken]='[SEP]', cls_token: Union[str, AddedToken]='[CLS]', pad_token: Union[str, AddedToken]='[PAD]', mask_token: Union[str, AddedToken]='[MASK]', clean_text: bool=True, handle_chinese_chars: bool=True, strip_accents: Optional[bool]=None, lowercase: bool=True, wordpieces_prefix: str='##'): if vocab is not None: tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token))) else: tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token))) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) if tokenizer.token_to_id(str(sep_token)) is not None: tokenizer.add_special_tokens([str(sep_token)]) if tokenizer.token_to_id(str(cls_token)) is not None: tokenizer.add_special_tokens([str(cls_token)]) if tokenizer.token_to_id(str(pad_token)) is not None: tokenizer.add_special_tokens([str(pad_token)]) if tokenizer.token_to_id(str(mask_token)) is not None: tokenizer.add_special_tokens([str(mask_token)]) tokenizer.normalizer = BertNormalizer(clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase) tokenizer.pre_tokenizer = BertPreTokenizer() if vocab is not None: sep_token_id = tokenizer.token_to_id(str(sep_token)) if sep_token_id is None: raise TypeError('sep_token not found in the vocabulary') cls_token_id = tokenizer.token_to_id(str(cls_token)) if cls_token_id is None: raise TypeError('cls_token not found in the vocabulary') tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id)) tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix) parameters = {'model': 'BertWordPiece', 'unk_token': unk_token, 'sep_token': sep_token, 'cls_token': cls_token, 'pad_token': pad_token, 'mask_token': mask_token, 'clean_text': clean_text, 'handle_chinese_chars': handle_chinese_chars, 'strip_accents': strip_accents, 'lowercase': lowercase, 'wordpieces_prefix': wordpieces_prefix} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab: str, **kwargs): vocab = WordPiece.read_file(vocab) return BertWordPieceTokenizer(vocab, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##'): trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##', length: Optional[int]=None): trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/byte_level_bpe.py from typing import Dict, Iterator, List, Optional, Tuple, Union from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers from tokenizers.models import BPE from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str from .base_tokenizer import BaseTokenizer class ByteLevelBPETokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, add_prefix_space: bool=False, lowercase: bool=False, dropout: Optional[float]=None, unicode_normalizer: Optional[str]=None, continuing_subword_prefix: Optional[str]=None, end_of_word_suffix: Optional[str]=None, trim_offsets: bool=False): if vocab is not None and merges is not None: tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, continuing_subword_prefix=continuing_subword_prefix or '', end_of_word_suffix=end_of_word_suffix or '')) else: tokenizer = Tokenizer(BPE()) normalizers = [] if unicode_normalizer: normalizers += [unicode_normalizer_from_str(unicode_normalizer)] if lowercase: normalizers += [Lowercase()] if len(normalizers) > 0: if len(normalizers) > 1: tokenizer.normalizer = Sequence(normalizers) else: tokenizer.normalizer = normalizers[0] tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space) tokenizer.decoder = decoders.ByteLevel() tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets) parameters = {'model': 'ByteLevelBPE', 'add_prefix_space': add_prefix_space, 'lowercase': lowercase, 'dropout': dropout, 'unicode_normalizer': unicode_normalizer, 'continuing_subword_prefix': continuing_subword_prefix, 'end_of_word_suffix': end_of_word_suffix, 'trim_offsets': trim_offsets} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): (vocab, merges) = BPE.read_file(vocab_filename, merges_filename) return ByteLevelBPETokenizer(vocab, merges, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[]): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet()) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[], length: Optional[int]=None): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet()) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/char_level_bpe.py from typing import Dict, Iterator, List, Optional, Tuple, Union from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers from ..models import BPE from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str from .base_tokenizer import BaseTokenizer class CharBPETokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='', suffix: str='', dropout: Optional[float]=None, lowercase: bool=False, unicode_normalizer: Optional[str]=None, bert_normalizer: bool=True, split_on_whitespace_only: bool=False): if vocab is not None and merges is not None: tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=str(unk_token), end_of_word_suffix=suffix)) else: tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix)) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) normalizers = [] if unicode_normalizer: normalizers += [unicode_normalizer_from_str(unicode_normalizer)] if bert_normalizer: normalizers += [BertNormalizer(lowercase=False)] if lowercase: normalizers += [Lowercase()] if len(normalizers) > 0: if len(normalizers) > 1: tokenizer.normalizer = Sequence(normalizers) else: tokenizer.normalizer = normalizers[0] if split_on_whitespace_only: tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit() else: tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tokenizer.decoder = decoders.BPEDecoder(suffix=suffix) parameters = {'model': 'BPE', 'unk_token': unk_token, 'suffix': suffix, 'dropout': dropout, 'lowercase': lowercase, 'unicode_normalizer': unicode_normalizer, 'bert_normalizer': bert_normalizer, 'split_on_whitespace_only': split_on_whitespace_only} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): (vocab, merges) = BPE.read_file(vocab_filename, merges_filename) return CharBPETokenizer(vocab, merges, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=[''], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='', show_progress: bool=True): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=[''], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='', show_progress: bool=True, length: Optional[int]=None): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_bpe.py from typing import Dict, Iterator, List, Optional, Tuple, Union from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers from tokenizers.models import BPE from tokenizers.normalizers import NFKC from .base_tokenizer import BaseTokenizer class SentencePieceBPETokenizer(BaseTokenizer): def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='', replacement: str='▁', add_prefix_space: bool=True, dropout: Optional[float]=None, fuse_unk: Optional[bool]=False): if vocab is not None and merges is not None: tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) else: tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) tokenizer.normalizer = NFKC() prepend_scheme = 'always' if add_prefix_space else 'never' tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) parameters = {'model': 'SentencePieceBPE', 'unk_token': unk_token, 'replacement': replacement, 'add_prefix_space': add_prefix_space, 'dropout': dropout} super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): (vocab, merges) = BPE.read_file(vocab_filename, merges_filename) return SentencePieceBPETokenizer(vocab, merges, **kwargs) def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=[''], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=[''], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True, length: Optional[int]=None): trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) # File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py import json import os from typing import Iterator, List, Optional, Union, Tuple from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.models import Unigram from .base_tokenizer import BaseTokenizer class SentencePieceUnigramTokenizer(BaseTokenizer): def __init__(self, vocab: Optional[List[Tuple[str, float]]]=None, replacement: str='▁', add_prefix_space: bool=True): if vocab is not None: tokenizer = Tokenizer(Unigram(vocab)) else: tokenizer = Tokenizer(Unigram()) tokenizer.normalizer = normalizers.Sequence([normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}'), ' ')]) prepend_scheme = 'always' if add_prefix_space else 'never' tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) parameters = {'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space} super().__init__(tokenizer, parameters) def train(self, files: Union[str, List[str]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None): if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None, length: Optional[int]=None): if special_tokens is None: special_tokens = [] if initial_alphabet is None: initial_alphabet = [] trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token) self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length) @staticmethod def from_spm(filename: str): try: import sys sys.path.append('.') import sentencepiece_model_pb2 as model except Exception: raise Exception("You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required.") m = model.ModelProto() m.ParseFromString(open(filename, 'rb').read()) precompiled_charsmap = m.normalizer_spec.precompiled_charsmap vocab = [(piece.piece, piece.score) for piece in m.pieces] unk_id = m.trainer_spec.unk_id model_type = m.trainer_spec.model_type byte_fallback = m.trainer_spec.byte_fallback if model_type != 1: raise Exception("You're trying to run a `Unigram` model but you're file was trained with a different algorithm") replacement = '▁' add_prefix_space = True tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback)) if precompiled_charsmap: tokenizer.normalizer = normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(' {2,}'), ' ')]) else: tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(' {2,}'), ' ')]) prepend_scheme = 'always' if add_prefix_space else 'never' tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme) parameters = {'model': 'SentencePieceUnigram'} obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters) BaseTokenizer.__init__(obj, tokenizer, parameters) return obj # File: tokenizers-main/bindings/python/py_src/tokenizers/normalizers/__init__.py from .. import normalizers Normalizer = normalizers.Normalizer BertNormalizer = normalizers.BertNormalizer NFD = normalizers.NFD NFKD = normalizers.NFKD NFC = normalizers.NFC NFKC = normalizers.NFKC Sequence = normalizers.Sequence Lowercase = normalizers.Lowercase Prepend = normalizers.Prepend Strip = normalizers.Strip StripAccents = normalizers.StripAccents Nmt = normalizers.Nmt Precompiled = normalizers.Precompiled Replace = normalizers.Replace ByteLevel = normalizers.ByteLevel NORMALIZERS = {'nfc': NFC, 'nfd': NFD, 'nfkc': NFKC, 'nfkd': NFKD} def unicode_normalizer_from_str(normalizer: str) -> Normalizer: if normalizer not in NORMALIZERS: raise ValueError('{} is not a known unicode normalizer. Available are {}'.format(normalizer, NORMALIZERS.keys())) return NORMALIZERS[normalizer]() # File: tokenizers-main/bindings/python/py_src/tokenizers/pre_tokenizers/__init__.py from .. import pre_tokenizers PreTokenizer = pre_tokenizers.PreTokenizer BertPreTokenizer = pre_tokenizers.BertPreTokenizer ByteLevel = pre_tokenizers.ByteLevel CharDelimiterSplit = pre_tokenizers.CharDelimiterSplit Digits = pre_tokenizers.Digits Metaspace = pre_tokenizers.Metaspace Punctuation = pre_tokenizers.Punctuation Sequence = pre_tokenizers.Sequence Split = pre_tokenizers.Split UnicodeScripts = pre_tokenizers.UnicodeScripts Whitespace = pre_tokenizers.Whitespace WhitespaceSplit = pre_tokenizers.WhitespaceSplit # File: tokenizers-main/bindings/python/py_src/tokenizers/tools/visualizer.py import itertools import os import re from string import Template from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple from tokenizers import Encoding, Tokenizer dirname = os.path.dirname(__file__) css_filename = os.path.join(dirname, 'visualizer-styles.css') with open(css_filename) as f: css = f.read() class Annotation: start: int end: int label: int def __init__(self, start: int, end: int, label: str): self.start = start self.end = end self.label = label AnnotationList = List[Annotation] PartialIntList = List[Optional[int]] class CharStateKey(NamedTuple): token_ix: Optional[int] anno_ix: Optional[int] class CharState: char_ix: Optional[int] def __init__(self, char_ix): self.char_ix = char_ix self.anno_ix: Optional[int] = None self.tokens: List[int] = [] @property def token_ix(self): return self.tokens[0] if len(self.tokens) > 0 else None @property def is_multitoken(self): return len(self.tokens) > 1 def partition_key(self) -> CharStateKey: return CharStateKey(token_ix=self.token_ix, anno_ix=self.anno_ix) class Aligned: pass class EncodingVisualizer: unk_token_regex = re.compile('(.{1}\x08)?(unk|oov)(\x08.{1})?', flags=re.IGNORECASE) def __init__(self, tokenizer: Tokenizer, default_to_notebook: bool=True, annotation_converter: Optional[Callable[[Any], Annotation]]=None): if default_to_notebook: try: from IPython.core.display import HTML, display except ImportError: raise Exception("We couldn't import IPython utils for html display.\n Are you running in a notebook?\n You can also pass `default_to_notebook=False` to get back raw HTML\n ") self.tokenizer = tokenizer self.default_to_notebook = default_to_notebook self.annotation_coverter = annotation_converter pass def __call__(self, text: str, annotations: AnnotationList=[], default_to_notebook: Optional[bool]=None) -> Optional[str]: final_default_to_notebook = self.default_to_notebook if default_to_notebook is not None: final_default_to_notebook = default_to_notebook if final_default_to_notebook: try: from IPython.core.display import HTML, display except ImportError: raise Exception("We couldn't import IPython utils for html display.\n Are you running in a notebook?") if self.annotation_coverter is not None: annotations = list(map(self.annotation_coverter, annotations)) encoding = self.tokenizer.encode(text) html = EncodingVisualizer.__make_html(text, encoding, annotations) if final_default_to_notebook: display(HTML(html)) else: return html @staticmethod def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]: if len(annotations) == 0: return {} labels = set(map(lambda x: x.label, annotations)) num_labels = len(labels) h_step = int(255 / num_labels) if h_step < 20: h_step = 20 s = 32 l = 64 h = 10 colors = {} for label in sorted(labels): colors[label] = f'hsl({h},{s}%,{l}%' h += h_step return colors @staticmethod def consecutive_chars_to_html(consecutive_chars_list: List[CharState], text: str, encoding: Encoding): first = consecutive_chars_list[0] if first.char_ix is None: stoken = encoding.tokens[first.token_ix] return f'' last = consecutive_chars_list[-1] start = first.char_ix end = last.char_ix + 1 span_text = text[start:end] css_classes = [] data_items = {} if first.token_ix is not None: css_classes.append('token') if first.is_multitoken: css_classes.append('multi-token') if first.token_ix % 2: css_classes.append('odd-token') else: css_classes.append('even-token') if EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None: css_classes.append('special-token') data_items['stok'] = encoding.tokens[first.token_ix] else: css_classes.append('non-token') css = f'''class="{' '.join(css_classes)}"''' data = '' for (key, val) in data_items.items(): data += f' data-{key}="{val}"' return f'{span_text}' @staticmethod def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str: char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations) current_consecutive_chars = [char_states[0]] prev_anno_ix = char_states[0].anno_ix spans = [] label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations) cur_anno_ix = char_states[0].anno_ix if cur_anno_ix is not None: anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append(f'') for cs in char_states[1:]: cur_anno_ix = cs.anno_ix if cur_anno_ix != prev_anno_ix: spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding)) current_consecutive_chars = [cs] if prev_anno_ix is not None: spans.append('') if cur_anno_ix is not None: anno = annotations[cur_anno_ix] label = anno.label color = label_colors_dict[label] spans.append(f'') prev_anno_ix = cur_anno_ix if cs.partition_key() == current_consecutive_chars[0].partition_key(): current_consecutive_chars.append(cs) else: spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding)) current_consecutive_chars = [cs] spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding)) res = HTMLBody(spans) return res @staticmethod def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList: annotation_map = [None] * len(text) for (anno_ix, a) in enumerate(annotations): for i in range(a.start, a.end): annotation_map[i] = anno_ix return annotation_map @staticmethod def __make_char_states(text: str, encoding: Encoding, annotations: AnnotationList) -> List[CharState]: annotation_map = EncodingVisualizer.__make_anno_map(text, annotations) char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))] for (token_ix, token) in enumerate(encoding.tokens): offsets = encoding.token_to_chars(token_ix) if offsets is not None: (start, end) = offsets for i in range(start, end): char_states[i].tokens.append(token_ix) for (char_ix, anno_ix) in enumerate(annotation_map): char_states[char_ix].anno_ix = anno_ix return char_states def HTMLBody(children: List[str], css_styles=css) -> str: children_text = ''.join(children) return f'\n \n \n \n \n \n
\n {children_text}\n
\n \n \n ' # File: tokenizers-main/bindings/python/stub.py import argparse import inspect import os from pathlib import Path INDENT = ' ' * 4 GENERATED_COMMENT = '# Generated content DO NOT EDIT\n' def do_indent(text: str, indent: str): return text.replace('\n', f'\n{indent}') def function(obj, indent, text_signature=None): if text_signature is None: text_signature = obj.__text_signature__ string = '' string += f'{indent}def {obj.__name__}{text_signature}:\n' indent += INDENT string += f'{indent}"""\n' string += f'{indent}{do_indent(obj.__doc__, indent)}\n' string += f'{indent}"""\n' string += f'{indent}pass\n' string += '\n' string += '\n' return string def member_sort(member): if inspect.isclass(member): value = 10 + len(inspect.getmro(member)) else: value = 1 return value def fn_predicate(obj): value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj) if value: return obj.__doc__ and obj.__text_signature__ and (not obj.__name__.startswith('_')) if inspect.isgetsetdescriptor(obj): return obj.__doc__ and (not obj.__name__.startswith('_')) return False def get_module_members(module): members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))] members.sort(key=member_sort) return members def pyi_file(obj, indent=''): string = '' if inspect.ismodule(obj): string += GENERATED_COMMENT members = get_module_members(obj) for member in members: string += pyi_file(member, indent) elif inspect.isclass(obj): indent += INDENT mro = inspect.getmro(obj) if len(mro) > 2: inherit = f'({mro[1].__name__})' else: inherit = '' string += f'class {obj.__name__}{inherit}:\n' body = '' if obj.__doc__: body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n' fns = inspect.getmembers(obj, fn_predicate) if obj.__text_signature__: body += f'{indent}def __init__{obj.__text_signature__}:\n' body += f'{indent + INDENT}pass\n' body += '\n' for (name, fn) in fns: body += pyi_file(fn, indent=indent) if not body: body += f'{indent}pass\n' string += body string += '\n\n' elif inspect.isbuiltin(obj): string += f'{indent}@staticmethod\n' string += function(obj, indent) elif inspect.ismethoddescriptor(obj): string += function(obj, indent) elif inspect.isgetsetdescriptor(obj): string += f'{indent}@property\n' string += function(obj, indent, text_signature='(self)') else: raise Exception(f'Object {obj} is not supported') return string def py_file(module, origin): members = get_module_members(module) string = GENERATED_COMMENT string += f'from .. import {origin}\n' string += '\n' for member in members: name = member.__name__ string += f'{name} = {origin}.{name}\n' return string import subprocess from typing import List, Optional, Tuple def do_ruff(code, is_pyi: bool): command = ['ruff', 'format', '--config', 'pyproject.toml', '--silent', '-'] if is_pyi: command.extend(['--stdin-filename', 'test.pyi']) process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, _) = process.communicate(input=code.encode('utf-8')) return stdout.decode('utf-8') def write(module, directory, origin, check=False): submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)] filename = os.path.join(directory, '__init__.pyi') pyi_content = pyi_file(module) pyi_content = do_ruff(pyi_content, is_pyi=True) os.makedirs(directory, exist_ok=True) if check: with open(filename, 'r') as f: data = f.read() assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(pyi_content) filename = os.path.join(directory, '__init__.py') py_content = py_file(module, origin) py_content = do_ruff(py_content, is_pyi=False) os.makedirs(directory, exist_ok=True) is_auto = False if not os.path.exists(filename): is_auto = True else: with open(filename, 'r') as f: line = f.readline() if line == GENERATED_COMMENT: is_auto = True if is_auto: if check: with open(filename, 'r') as f: data = f.read() assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`' else: with open(filename, 'w') as f: f.write(py_content) for (name, submodule) in submodules: write(submodule, os.path.join(directory, name), f'{name}', check=check) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--check', action='store_true') args = parser.parse_args() import tokenizers write(tokenizers.tokenizers, 'py_src/tokenizers/', 'tokenizers', check=args.check) # File: tokenizers-main/docs/source/_ext/entities.py from collections import defaultdict, abc from typing import cast from docutils import nodes from docutils.parsers.rst import Directive import sphinx from sphinx.locale import _ from sphinx.util.docutils import SphinxDirective from sphinx.errors import ExtensionError from conf import languages as LANGUAGES logger = sphinx.util.logging.getLogger(__name__) GLOBALNAME = '$GLOBAL$' def update(d, u): for (k, v) in u.items(): if isinstance(v, abc.Mapping): d[k] = update(d.get(k, {}), v) else: d[k] = v return d class EntityNode(nodes.General, nodes.Element): pass class EntitiesNode(nodes.General, nodes.Element): pass class AllEntities: def __init__(self): self.entities = defaultdict(dict) @classmethod def install(cls, env): if not hasattr(env, 'entity_all_entities'): entities = cls() env.entity_all_entities = entities return env.entity_all_entities def merge(self, other): self.entities.update(other.entities) def purge(self, docname): for env_docname in [GLOBALNAME, docname]: self.entities[env_docname] = dict([(name, entity) for (name, entity) in self.entities[env_docname].items() if entity['docname'] != docname]) def _extract_entities(self, nodes): pass def _extract_options(self, nodes): pass def _add_entities(self, entities, language, is_global, docname): scope = GLOBALNAME if is_global else docname for entity in entities: name = f"{language}-{entity['name']}" content = entity['content'] if name in self.entities[scope]: logger.warning(f'''Entity "{name}" has already been defined{(' globally' if is_global else '')}''', location=docname) self.entities[scope][name] = {'docname': docname, 'content': content} def _extract_global(self, nodes): for node in nodes: if node.tagname != 'field': raise Exception(f'Expected a field, found {node.tagname}') (name, _) = node.children if name.tagname != 'field_name': raise Exception(f'Expected a field name here, found {name_node.tagname}') if str(name.children[0]) == 'global': return True def _extract_entities(self, nodes): entities = [] for node in nodes: if node.tagname != 'definition_list_item': raise Exception(f'Expected a list item here, found {node.tagname}') (name_node, content_node) = node.children if name_node.tagname != 'term': raise Exception(f'Expected a term here, found {name_node.tagname}') if content_node.tagname != 'definition': raise Exception(f'Expected a definition here, found {content_node.tagname}') name = str(name_node.children[0]) if len(content_node.children) == 1 and content_node.children[0].tagname == 'paragraph': content = content_node.children[0].children[0] else: content = content_node entities.append({'name': name, 'content': content}) return entities def extract(self, node, docname): is_global = False entities = [] language = None for node in node.children: if language is None and node.tagname != 'paragraph': raise Exception(f'Expected language name:\n.. entities:: ') elif language is None and node.tagname == 'paragraph': language = str(node.children[0]) if language not in LANGUAGES: raise Exception(f'Unknown language "{language}. Might be missing a newline after language"') elif node.tagname == 'field_list': is_global = self._extract_global(node.children) elif node.tagname == 'definition_list': entities.extend(self._extract_entities(node.children)) else: raise Exception(f'Expected a list of terms/options, found {node.tagname}') self._add_entities(entities, language, is_global, docname) def resolve_pendings(self, app): env = app.builder.env updates = defaultdict(dict) for env_docname in self.entities.keys(): for (name, entity) in self.entities[env_docname].items(): docname = entity['docname'] node = entity['content'] for node in node.traverse(sphinx.addnodes.pending_xref): contnode = cast(nodes.TextElement, node[0].deepcopy()) newnode = None typ = node['reftype'] target = node['reftarget'] refdoc = node.get('refdoc', docname) domain = None try: if 'refdomain' in node and node['refdomain']: try: domain = env.domains[node['refdomain']] except KeyError as exc: raise NoUri(target, typ) from exc newnode = domain.resolve_xref(env, refdoc, app.builder, typ, target, node, contnode) except NoUri: newnode = contnode updates[env_docname][name] = {'docname': docname, 'content': newnode or contnode} update(self.entities, updates) def get(self, language, name, docname): name = f'{language}-{name}' if name in self.entities[docname]: return self.entities[docname][name] elif name in self.entities[GLOBALNAME]: return self.entities[GLOBALNAME][name] else: return None class EntitiesDirective(SphinxDirective): has_content = True def run(self): content = nodes.definition_list() self.state.nested_parse(self.content, self.content_offset, content) try: entities = AllEntities.install(self.env) entities.extract(content, self.env.docname) except Exception as err: raise self.error(f'Malformed directive "entities": {err}') return [] def entity_role(name, rawtext, text, lineno, inliner, options={}, content=[]): node = EntityNode() node.entity = text return ([node], []) def process_entity_nodes(app, doctree, docname): env = app.builder.env entities = AllEntities.install(env) entities.resolve_pendings(app) language = None try: language = next((l for l in LANGUAGES if l in app.tags)) except Exception: logger.warning(f'No language tag specified, not resolving entities in {docname}') for node in doctree.traverse(EntityNode): if language is None: node.replace_self(nodes.Text(_(node.entity), _(node.entity))) else: entity = entities.get(language, node.entity, docname) if entity is None: node.replace_self(nodes.Text(_(node.entity), _(node.entity))) logger.warning(f'Entity "{node.entity}" has not been defined', location=node) else: node.replace_self(entity['content']) def purge_entities(app, env, docname): entities = AllEntities.install(env) entities.purge(docname) def merge_entities(app, env, docnames, other): entities = AllEntities.install(env) other_entities = AllEntities.install(other) entities.merge(other_entities) def setup(app): app.add_node(EntityNode) app.add_node(EntitiesNode) app.add_directive('entities', EntitiesDirective) app.add_role('entity', entity_role) app.connect('doctree-resolved', process_entity_nodes) app.connect('env-merge-info', merge_entities) app.connect('env-purge-doc', purge_entities) return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True} # File: tokenizers-main/docs/source/_ext/rust_doc.py from docutils import nodes import sphinx from sphinx.locale import _ from conf import rust_version logger = sphinx.util.logging.getLogger(__name__) class RustRef: def __call__(self, name, rawtext, text, lineno, inliner, options={}, content=[]): doctype = name.split('_')[1] parts = text.split('::') if text.startswith('~'): title = parts[-1] parts[0] = parts[0][1:] else: content = text link = self.base_link() if doctype == 'struct': (l, title) = self.make_struct_link(parts, title) if doctype == 'func': (l, title) = self.make_func_link(parts, title) if doctype == 'meth': (l, title) = self.make_meth_link(parts, title) if doctype == 'trait': (l, title) = self.make_trait_link(parts, title) link += l node = nodes.reference(internal=False, refuri=link, text=title) wrapper = nodes.literal(classes=['xref']) wrapper += node return ([wrapper], []) def base_link(self): return f'https://docs.rs/tokenizers/{rust_version}' def make_struct_link(self, parts, title): link = '' struct_name = parts[-1] path = parts[:-1] for p in path: link += f'/{p}' link += f'/struct.{struct_name}.html' return (link, title) def make_func_link(self, parts, title): link = '' fn_name = parts[-1] path = parts[:-1] for p in path: link += f'/{p}' link += f'/fn.{fn_name}.html' return (link, title) def make_meth_link(self, parts, title): meth_name = parts[-1] if meth_name.endswith('()'): meth_name = meth_name[:-2] (link, title) = self.make_struct_link(parts[:-1], title) link += f'#method.{meth_name}' if not title.endswith(')'): title += '()' return (link, title) def make_trait_link(self, parts, title): link = '' trait_name = parts[-1] path = parts[:-1] for p in path: link += f'/{p}' link += f'/trait.{trait_name}.html' return (link, title) def setup(app): app.add_role('rust_struct', RustRef()) app.add_role('rust_func', RustRef()) app.add_role('rust_meth', RustRef()) app.add_role('rust_trait', RustRef()) return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True} # File: tokenizers-main/docs/source/_ext/toctree_tags.py import re from sphinx.directives.other import TocTree class TocTreeTags(TocTree): hasPat = re.compile('^\\s*:(.+):(.+)$') def filter_entries(self, entries): filtered = [] for e in entries: m = self.hasPat.match(e) if m != None: if self.env.app.tags.has(m.groups()[0]): filtered.append(m.groups()[1]) else: filtered.append(e) return filtered def run(self): self.content = self.filter_entries(self.content) return super().run() def setup(app): app.add_directive('toctree-tags', TocTreeTags) return {'version': '0.1'} # File: tokenizers-main/docs/source/conf.py import os import sys sys.path.insert(0, os.path.abspath('./_ext')) sys.path.insert(0, os.path.abspath('.')) project = 'tokenizers' copyright = '2020, huggingface' author = 'huggingface' release = '' languages = ['node', 'rust', 'python'] rust_version = 'latest' extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'entities', 'rust_doc', 'toctree_tags'] templates_path = ['_templates'] exclude_patterns = [] html_theme = 'sphinx_rtd_theme' html_theme_options = {'analytics_id': 'UA-83738774-2'} html_static_path = ['_static'] def setup(app): for language in languages: if not tags.has(language): exclude_patterns.append(f'tutorials/{language}/*') app.add_css_file('css/huggingface.css') app.add_css_file('css/code-snippets.css') app.add_js_file('js/custom.js')