diff --git "a/Supervisionado/FabNER/dev.json" "b/Supervisionado/FabNER/dev.json" new file mode 100644--- /dev/null +++ "b/Supervisionado/FabNER/dev.json" @@ -0,0 +1 @@ +[{"sentence": "Properties like macro- and microstructure , mechanical properties like hardness and its course in the layers , high-cycle fatigue resistance in bending and fatigue damage mechanisms were investigated with the emphasis on fatigue crack initiation process evaluated using scanning electron microscopy .", "entities": [{"name": "Properties", "type": "concept or principle", "pos": [0, 10]}, {"name": "microstructure", "type": "concept or principle", "pos": [27, 41]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [44, 65]}, {"name": "hardness", "type": "machanical property", "pos": [71, 79]}, {"name": "fatigue", "type": "machanical property", "pos": [122, 129]}, {"name": "bending", "type": "manufacturing process", "pos": [144, 151]}, {"name": "fatigue damage", "type": "machanical property", "pos": [156, 170]}, {"name": "fatigue", "type": "machanical property", "pos": [221, 228]}, {"name": "process", "type": "concept or principle", "pos": [246, 253]}, {"name": "scanning electron microscopy", "type": "process characterization", "pos": [270, 298]}]}, {"sentence": "The results indicated that surface additive laser welded layers of a high quality can be reached .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [27, 34]}, {"name": "additive", "type": "material", "pos": [35, 43]}, {"name": "welded", "type": "manufacturing process", "pos": [50, 56]}, {"name": "quality", "type": "concept or principle", "pos": [74, 81]}, {"name": "be", "type": "material", "pos": [86, 88]}]}, {"sentence": "On the other hand , some drop of fatigue resistance and endurance limit was observed , affected by surface defects – small welding imperfections Ti-6Al-4V and AlSi5 wires were used for wire and arc additive manufacturing using the direct current cold metal transfer welding .", "entities": [{"name": "fatigue", "type": "machanical property", "pos": [33, 40]}, {"name": "endurance limit", "type": "machanical property", "pos": [56, 71]}, {"name": "surface defects", "type": "concept or principle", "pos": [99, 114]}, {"name": "welding", "type": "manufacturing process", "pos": [123, 130]}, {"name": "imperfections", "type": "concept or principle", "pos": [131, 144]}, {"name": "AlSi5", "type": "material", "pos": [159, 164]}, {"name": "wire and arc additive manufacturing", "type": "manufacturing process", "pos": [185, 220]}, {"name": "cold metal transfer", "type": "manufacturing process", "pos": [246, 265]}]}, {"sentence": "Ti alloy was deposited first , and then Al alloy was deposited on the Ti layer .", "entities": [{"name": "Ti alloy", "type": "material", "pos": [0, 8]}, {"name": "Al alloy", "type": "material", "pos": [40, 48]}, {"name": "Ti", "type": "material", "pos": [70, 72]}, {"name": "layer", "type": "process parameter", "pos": [73, 78]}]}, {"sentence": "A small amount of Ti alloy was melted when the first layer of Al alloy was deposited due to the low heat input .", "entities": [{"name": "Ti alloy", "type": "material", "pos": [18, 26]}, {"name": "melted", "type": "concept or principle", "pos": [31, 37]}, {"name": "layer", "type": "process parameter", "pos": [53, 58]}, {"name": "Al alloy", "type": "material", "pos": [62, 70]}, {"name": "heat", "type": "concept or principle", "pos": [100, 104]}]}, {"sentence": "A component composed of Ti/Al dissimilar alloys can be produced .", "entities": [{"name": "component", "type": "machine or equipment", "pos": [2, 11]}, {"name": "dissimilar alloys", "type": "material", "pos": [30, 47]}, {"name": "be", "type": "material", "pos": [52, 54]}]}, {"sentence": "The interface layer between the Ti and Al alloys included a continuous layer and a discontinuous layer .", "entities": [{"name": "interface", "type": "concept or principle", "pos": [4, 13]}, {"name": "Ti", "type": "material", "pos": [32, 34]}, {"name": "Al alloys", "type": "material", "pos": [39, 48]}, {"name": "layer", "type": "process parameter", "pos": [71, 76]}, {"name": "layer", "type": "process parameter", "pos": [97, 102]}]}, {"sentence": "The continuous layer was composed of Ti7Al5Si12 , and the discontinuous layer consisted of Ti ( Al1-xSix ) 3 .", "entities": [{"name": "layer", "type": "process parameter", "pos": [15, 20]}, {"name": "Ti7Al5Si12", "type": "material", "pos": [37, 47]}, {"name": "layer", "type": "process parameter", "pos": [72, 77]}, {"name": "Ti", "type": "material", "pos": [91, 93]}]}, {"sentence": "Element Si was rich in the continuous layer .", "entities": [{"name": "Element", "type": "material", "pos": [0, 7]}, {"name": "layer", "type": "process parameter", "pos": [38, 43]}]}, {"sentence": "The hardness and modulus of the interface layer were between those of Al and Ti alloys .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [4, 12]}, {"name": "interface", "type": "concept or principle", "pos": [32, 41]}, {"name": "Al", "type": "material", "pos": [70, 72]}, {"name": "Ti alloys", "type": "material", "pos": [77, 86]}]}, {"sentence": "The average tensile strength of the component was 79 MPa .", "entities": [{"name": "average", "type": "concept or principle", "pos": [4, 11]}, {"name": "strength", "type": "machanical property", "pos": [20, 28]}, {"name": "component", "type": "machine or equipment", "pos": [36, 45]}, {"name": "MPa", "type": "concept or principle", "pos": [53, 56]}]}, {"sentence": "The fracture located at the interface layer .", "entities": [{"name": "fracture", "type": "concept or principle", "pos": [4, 12]}, {"name": "interface", "type": "concept or principle", "pos": [28, 37]}]}, {"sentence": "A finite element model is developed to calculate the heat propagation of a circular thin-walled component fabricated in gas metal arc welding based additive manufacturing .", "entities": [{"name": "finite element model", "type": "concept or principle", "pos": [2, 22]}, {"name": "heat propagation", "type": "concept or principle", "pos": [53, 69]}, {"name": "thin-walled component", "type": "application", "pos": [84, 105]}, {"name": "fabricated", "type": "concept or principle", "pos": [106, 116]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [120, 141]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [148, 170]}]}, {"sentence": "The heat evolution , thermal cycle feature , and temperature gradient in molten pool and deposited layers are revealed .", "entities": [{"name": "heat evolution", "type": "concept or principle", "pos": [4, 18]}, {"name": "thermal cycle", "type": "process parameter", "pos": [21, 34]}, {"name": "feature", "type": "engineering feature", "pos": [35, 42]}, {"name": "temperature gradient", "type": "process parameter", "pos": [49, 69]}, {"name": "molten pool", "type": "concept or principle", "pos": [73, 84]}, {"name": "deposited layers", "type": "process characterization", "pos": [89, 105]}]}, {"sentence": "The temperature simulations at some locations are in agreement with measured values from thermocouples .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [4, 15]}, {"name": "simulations", "type": "enabling technology", "pos": [16, 27]}, {"name": "thermocouples", "type": "machine or equipment", "pos": [89, 102]}]}, {"sentence": "As the deposition process proceeds , the high-temperature regions of the substrate and molten pool increase .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "deposition process", "type": "manufacturing process", "pos": [7, 25]}, {"name": "substrate", "type": "material", "pos": [73, 82]}, {"name": "molten pool", "type": "concept or principle", "pos": [87, 98]}]}, {"sentence": "The temperature gradient in the molten pool decreases with the increasing deposition height .", "entities": [{"name": "temperature gradient", "type": "process parameter", "pos": [4, 24]}, {"name": "molten pool", "type": "concept or principle", "pos": [32, 43]}, {"name": "deposition", "type": "concept or principle", "pos": [74, 84]}]}, {"sentence": "The heat dissipation condition in the molten pool of current layer tightly depends on the deposition direction of fore layer .", "entities": [{"name": "heat dissipation", "type": "concept or principle", "pos": [4, 20]}, {"name": "molten pool", "type": "concept or principle", "pos": [38, 49]}, {"name": "layer", "type": "process parameter", "pos": [61, 66]}, {"name": "deposition direction", "type": "process parameter", "pos": [90, 110]}, {"name": "layer", "type": "process parameter", "pos": [119, 124]}]}, {"sentence": "At the deposition ending moment , the heat conduction in the axial direction is the predominant heat dissipation orientation , whereas the circumferential orientation becomes the main heat dissipation direction in the top layers .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [7, 17]}, {"name": "heat conduction", "type": "concept or principle", "pos": [38, 53]}, {"name": "heat dissipation", "type": "concept or principle", "pos": [96, 112]}, {"name": "orientation", "type": "concept or principle", "pos": [113, 124]}, {"name": "heat dissipation", "type": "concept or principle", "pos": [184, 200]}]}, {"sentence": "An automated arc-welding-based additive manufacturing system was reported .", "entities": [{"name": "arc-welding-based additive manufacturing", "type": "manufacturing process", "pos": [13, 53]}]}, {"sentence": "Integrated additive and subtractive manufacturing methodology was developed .", "entities": [{"name": "additive", "type": "material", "pos": [11, 19]}, {"name": "subtractive manufacturing", "type": "manufacturing process", "pos": [24, 49]}, {"name": "methodology", "type": "concept or principle", "pos": [50, 61]}]}, {"sentence": "Deposition paths and welding parameters were automatically generated .", "entities": [{"name": "Deposition paths", "type": "process parameter", "pos": [0, 16]}, {"name": "welding", "type": "manufacturing process", "pos": [21, 28]}, {"name": "parameters", "type": "concept or principle", "pos": [29, 39]}]}, {"sentence": "User interface using only CAD models as inputs was developed .", "entities": [{"name": "interface", "type": "concept or principle", "pos": [5, 14]}, {"name": "CAD models", "type": "enabling technology", "pos": [26, 36]}, {"name": "as", "type": "material", "pos": [37, 39]}]}, {"sentence": "Arc welding has been widely explored for additive manufacturing of large metal components over the last three decades due to its lower capital cost , an unlimited build envelope , and higher deposition rates .", "entities": [{"name": "Arc welding", "type": "manufacturing process", "pos": [0, 11]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [41, 63]}, {"name": "metal", "type": "material", "pos": [73, 78]}, {"name": "components", "type": "machine or equipment", "pos": [79, 89]}, {"name": "capital cost", "type": "concept or principle", "pos": [135, 147]}, {"name": "build envelope", "type": "process parameter", "pos": [163, 177]}, {"name": "deposition rates", "type": "process parameter", "pos": [191, 207]}]}, {"sentence": "Although significant improvements have been made , an arc welding process has yet to be incorporated in a commercially available additive manufacturing system .", "entities": [{"name": "arc welding", "type": "manufacturing process", "pos": [54, 65]}, {"name": "be", "type": "material", "pos": [85, 87]}, {"name": "additive manufacturing system", "type": "machine or equipment", "pos": [129, 158]}]}, {"sentence": "The next step in exploiting “ true ” arc-welding-based additive manufacturing is to develop the automation software required to produce CAD-to-part capability .", "entities": [{"name": "step", "type": "concept or principle", "pos": [9, 13]}, {"name": "arc-welding-based additive manufacturing", "type": "manufacturing process", "pos": [37, 77]}, {"name": "automation", "type": "concept or principle", "pos": [96, 106]}, {"name": "CAD-to-part", "type": "concept or principle", "pos": [136, 147]}]}, {"sentence": "This study focuses on developing a fully automated system using robotic gas metal arc welding to additively manufacture metal components .", "entities": [{"name": "gas metal arc welding", "type": "manufacturing process", "pos": [72, 93]}, {"name": "additively manufacture", "type": "manufacturing process", "pos": [97, 119]}, {"name": "components", "type": "machine or equipment", "pos": [126, 136]}]}, {"sentence": "The system contains several modules , including bead modelling , slicing , deposition path planning , weld setting , and post-process machining .", "entities": [{"name": "bead modelling", "type": "concept or principle", "pos": [48, 62]}, {"name": "slicing", "type": "concept or principle", "pos": [65, 72]}, {"name": "deposition path planning", "type": "concept or principle", "pos": [75, 99]}, {"name": "weld", "type": "engineering feature", "pos": [102, 106]}, {"name": "post-process machining", "type": "manufacturing process", "pos": [121, 143]}]}, {"sentence": "Among these modules , bead modelling provides the essential database for process control , and an innovative path planning strategy fulfils the requirements of the automated system .", "entities": [{"name": "bead modelling", "type": "concept or principle", "pos": [22, 36]}, {"name": "database", "type": "enabling technology", "pos": [60, 68]}, {"name": "process control", "type": "concept or principle", "pos": [73, 88]}, {"name": "path planning", "type": "enabling technology", "pos": [109, 122]}]}, {"sentence": "Finally , a thin-walled aluminium structure has been fabricated automatically using only a CAD model as the informational input to the system .", "entities": [{"name": "thin-walled aluminium structure", "type": "machine or equipment", "pos": [12, 43]}, {"name": "fabricated", "type": "concept or principle", "pos": [53, 63]}, {"name": "CAD model", "type": "enabling technology", "pos": [91, 100]}, {"name": "as", "type": "material", "pos": [101, 103]}]}, {"sentence": "This exercise demonstrates that the developed system is a significant contribution towards the ultimate goal of producing a practical and highly automated arc-welding-based additive manufacturing system for industrial application .", "entities": [{"name": "arc-welding-based additive manufacturing", "type": "manufacturing process", "pos": [155, 195]}, {"name": "industrial", "type": "application", "pos": [207, 217]}]}, {"sentence": "Laser additive manufacturing titanium alloy 40 mm thick plate can obtain full penetration joint by EBW .", "entities": [{"name": "Laser additive manufacturing", "type": "manufacturing process", "pos": [0, 28]}, {"name": "alloy", "type": "material", "pos": [38, 43]}, {"name": "mm", "type": "manufacturing process", "pos": [47, 49]}, {"name": "penetration joint", "type": "concept or principle", "pos": [78, 95]}, {"name": "EBW", "type": "manufacturing process", "pos": [99, 102]}]}, {"sentence": "In fusion zone , due to acicular α′ formation , the microhardness is higher than base metal and heat affected zone .", "entities": [{"name": "fusion zone", "type": "concept or principle", "pos": [3, 14]}, {"name": "microhardness", "type": "concept or principle", "pos": [52, 65]}, {"name": "base metal", "type": "material", "pos": [81, 91]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [96, 114]}]}, {"sentence": "All tensile samples fail in base metal .", "entities": [{"name": "tensile", "type": "machanical property", "pos": [4, 11]}, {"name": "samples", "type": "concept or principle", "pos": [12, 19]}, {"name": "base metal", "type": "material", "pos": [28, 38]}]}, {"sentence": "The L-joint shows higher strength but lower ductility than T-joint .", "entities": [{"name": "L-joint", "type": "engineering feature", "pos": [4, 11]}, {"name": "strength", "type": "machanical property", "pos": [25, 33]}, {"name": "ductility", "type": "machanical property", "pos": [44, 53]}, {"name": "T-joint", "type": "engineering feature", "pos": [59, 66]}]}, {"sentence": "Individually fabrication parts by laser additive manufacturing ( LAM ) and then jointing them together through electron beam welding ( EBW ) is a viable way for manufacturing large components with reduction of internal stress .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [13, 24]}, {"name": "laser additive manufacturing", "type": "manufacturing process", "pos": [34, 62]}, {"name": "LAM", "type": "manufacturing process", "pos": [65, 68]}, {"name": "electron beam welding", "type": "manufacturing process", "pos": [111, 132]}, {"name": "EBW", "type": "manufacturing process", "pos": [135, 138]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [161, 174]}, {"name": "components", "type": "machine or equipment", "pos": [181, 191]}, {"name": "reduction", "type": "concept or principle", "pos": [197, 206]}, {"name": "internal stress", "type": "machanical property", "pos": [210, 225]}]}, {"sentence": "For investigating the microstructure and mechanical property of EBW joint along longitudinal and transverse direction in LAMed component , two LAMed Ti–6.5Al–3.5Mo–1.5Zr–0.3Si plates were successfully welded without defects .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [22, 36]}, {"name": "mechanical property", "type": "concept or principle", "pos": [41, 60]}, {"name": "EBW", "type": "manufacturing process", "pos": [64, 67]}, {"name": "component", "type": "machine or equipment", "pos": [127, 136]}, {"name": "Ti–6.5Al–3.5Mo–1.5Zr–0.3Si", "type": "material", "pos": [149, 175]}, {"name": "welded", "type": "manufacturing process", "pos": [201, 207]}, {"name": "defects", "type": "concept or principle", "pos": [216, 223]}]}, {"sentence": "Results show that the microstructure of base metal ( BM ) is a typical basket-weave morphology that exhibits lamellar α within β matrix .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [22, 36]}, {"name": "base metal", "type": "material", "pos": [40, 50]}, {"name": "BM", "type": "material", "pos": [53, 55]}, {"name": "basket-weave morphology", "type": "concept or principle", "pos": [71, 94]}, {"name": "lamellar", "type": "concept or principle", "pos": [109, 117]}]}, {"sentence": "In heat affected zone ( HAZ ) , the part of primary α transforms to β with the some very fine lamellar αs precipitates out .", "entities": [{"name": "heat affected zone", "type": "concept or principle", "pos": [3, 21]}, {"name": "HAZ", "type": "concept or principle", "pos": [24, 27]}, {"name": "lamellar", "type": "concept or principle", "pos": [94, 102]}, {"name": "precipitates", "type": "material", "pos": [106, 118]}]}, {"sentence": "Due to the fast solidification rate , a large number of acicular α′ forms in fusion zone ( FZ ) , leading to the highest microhardness .", "entities": [{"name": "solidification rate", "type": "process parameter", "pos": [16, 35]}, {"name": "fusion zone", "type": "concept or principle", "pos": [77, 88]}, {"name": "FZ", "type": "concept or principle", "pos": [91, 93]}, {"name": "microhardness", "type": "concept or principle", "pos": [121, 134]}]}, {"sentence": "All tensile samples fail in BM region with the fracture type of intergranular dimpled fracture .", "entities": [{"name": "tensile", "type": "machanical property", "pos": [4, 11]}, {"name": "samples", "type": "concept or principle", "pos": [12, 19]}, {"name": "BM", "type": "material", "pos": [28, 30]}, {"name": "fracture", "type": "concept or principle", "pos": [47, 55]}, {"name": "fracture", "type": "concept or principle", "pos": [86, 94]}]}, {"sentence": "Compared with the T-joint , the L-joint shows higher ultimate tensile strength and yield strength , but lower elongation and reduction of area due to the morphology of columnar grains and the strong texture of β < 010 > parallel to the deposition direction .", "entities": [{"name": "T-joint", "type": "engineering feature", "pos": [18, 25]}, {"name": "L-joint", "type": "engineering feature", "pos": [32, 39]}, {"name": "ultimate tensile strength", "type": "machanical property", "pos": [53, 78]}, {"name": "yield strength", "type": "machanical property", "pos": [83, 97]}, {"name": "elongation", "type": "machanical property", "pos": [110, 120]}, {"name": "reduction of area", "type": "process characterization", "pos": [125, 142]}, {"name": "morphology", "type": "concept or principle", "pos": [154, 164]}, {"name": "columnar grains", "type": "machanical property", "pos": [168, 183]}, {"name": "texture", "type": "engineering feature", "pos": [199, 206]}, {"name": "deposition direction", "type": "process parameter", "pos": [236, 256]}]}, {"sentence": "In Laser-based Manufacturing , the configuration of process parameters aims to maintain quality measures within specific boundaries and it is obtained through experimentation .", "entities": [{"name": "Laser-based Manufacturing", "type": "manufacturing process", "pos": [3, 28]}, {"name": "configuration", "type": "concept or principle", "pos": [35, 48]}, {"name": "process parameters", "type": "concept or principle", "pos": [52, 70]}, {"name": "quality", "type": "concept or principle", "pos": [88, 95]}, {"name": "boundaries", "type": "engineering feature", "pos": [121, 131]}]}, {"sentence": "The idea developed and presented in this paper concerns the prediction of the performance of adaptive control policies , based on process modeling .", "entities": [{"name": "prediction", "type": "concept or principle", "pos": [60, 70]}, {"name": "performance", "type": "concept or principle", "pos": [78, 89]}, {"name": "adaptive control", "type": "concept or principle", "pos": [93, 109]}, {"name": "process modeling", "type": "concept or principle", "pos": [130, 146]}]}, {"sentence": "Two examples of Laser-based Manufacturing are deployed in order to verify the response of adaptive control algorithms through empirical design , Laser welding and Laser-based Additive Manufacturing processes .", "entities": [{"name": "Laser-based Manufacturing", "type": "manufacturing process", "pos": [16, 41]}, {"name": "adaptive control", "type": "concept or principle", "pos": [90, 106]}, {"name": "empirical", "type": "concept or principle", "pos": [126, 135]}, {"name": "design", "type": "engineering feature", "pos": [136, 142]}, {"name": "Laser welding", "type": "manufacturing process", "pos": [145, 158]}, {"name": "Laser-based Additive Manufacturing", "type": "manufacturing process", "pos": [163, 197]}]}, {"sentence": "The penetration depth has been utilized as the quality criterion of the adaptive control loop for both processes .", "entities": [{"name": "penetration depth", "type": "process parameter", "pos": [4, 21]}, {"name": "as", "type": "material", "pos": [23, 25]}, {"name": "quality", "type": "concept or principle", "pos": [47, 54]}, {"name": "adaptive control", "type": "concept or principle", "pos": [72, 88]}, {"name": "processes", "type": "concept or principle", "pos": [103, 112]}]}, {"sentence": "The solidification phase has also been examined .", "entities": [{"name": "solidification phase", "type": "concept or principle", "pos": [4, 24]}]}, {"sentence": "Dissolved oxygen in weld zone leads to distinct microstructures from base metal after annealing .", "entities": [{"name": "oxygen", "type": "material", "pos": [10, 16]}, {"name": "weld zone", "type": "concept or principle", "pos": [20, 29]}, {"name": "microstructures", "type": "material", "pos": [48, 63]}, {"name": "base metal", "type": "material", "pos": [69, 79]}, {"name": "annealing", "type": "manufacturing process", "pos": [86, 95]}]}, {"sentence": "The repaired specimens have lower plasticity and slightly higher strength than base metal .", "entities": [{"name": "plasticity", "type": "machanical property", "pos": [34, 44]}, {"name": "strength", "type": "machanical property", "pos": [65, 73]}, {"name": "base metal", "type": "material", "pos": [79, 89]}]}, {"sentence": "Columnar grain boundary α phases in weld zone are the earliest microcracks nucleation sites .", "entities": [{"name": "Columnar grain boundary", "type": "concept or principle", "pos": [0, 23]}, {"name": "weld zone", "type": "concept or principle", "pos": [36, 45]}, {"name": "microcracks", "type": "concept or principle", "pos": [63, 74]}]}, {"sentence": "Gas tungsten arc welding was used to repair the laser additive manufactured Ti-5Al-5Mo-5V-1Cr-1Fe ( Ti-55511 ) alloy with a subsequent triplex annealing treatment .", "entities": [{"name": "Gas tungsten arc welding", "type": "manufacturing process", "pos": [0, 24]}, {"name": "laser", "type": "enabling technology", "pos": [48, 53]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [54, 75]}, {"name": "alloy", "type": "material", "pos": [111, 116]}, {"name": "annealing treatment", "type": "manufacturing process", "pos": [143, 162]}]}, {"sentence": "The tensile properties of heat treated specimens containing of different proportions of weld zone were designed to evaluate the influence of weld zone on tensile properties of the alloy .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [4, 22]}, {"name": "heat", "type": "concept or principle", "pos": [26, 30]}, {"name": "weld zone", "type": "concept or principle", "pos": [88, 97]}, {"name": "designed", "type": "engineering feature", "pos": [103, 111]}, {"name": "weld zone", "type": "concept or principle", "pos": [141, 150]}, {"name": "tensile properties", "type": "machanical property", "pos": [154, 172]}, {"name": "alloy", "type": "material", "pos": [180, 185]}]}, {"sentence": "Microstructures , microhardness and tensile tests were performed to study the mechanical properties and fracture behaviors of the specimens .", "entities": [{"name": "Microstructures", "type": "material", "pos": [0, 15]}, {"name": "microhardness", "type": "concept or principle", "pos": [18, 31]}, {"name": "tensile tests", "type": "process characterization", "pos": [36, 49]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [78, 99]}, {"name": "fracture", "type": "concept or principle", "pos": [104, 112]}]}, {"sentence": "Results show that dissolved oxygen in the weld zone has a strong influence on increasing the number of α phase nucleation sites that can lead to different αp morphologies in the base metal and weld zone .", "entities": [{"name": "oxygen", "type": "material", "pos": [28, 34]}, {"name": "weld zone", "type": "concept or principle", "pos": [42, 51]}, {"name": "phase nucleation sites", "type": "concept or principle", "pos": [105, 127]}, {"name": "lead", "type": "material", "pos": [137, 141]}, {"name": "morphologies", "type": "concept or principle", "pos": [158, 170]}, {"name": "base metal", "type": "material", "pos": [178, 188]}, {"name": "weld zone", "type": "concept or principle", "pos": [193, 202]}]}, {"sentence": "These different αp can lead to distinct microstructures after triplex annealing treatment but with similar α volume fractions .", "entities": [{"name": "lead", "type": "material", "pos": [23, 27]}, {"name": "microstructures", "type": "material", "pos": [40, 55]}, {"name": "annealing treatment", "type": "manufacturing process", "pos": [70, 89]}, {"name": "volume fractions", "type": "process parameter", "pos": [109, 125]}]}, {"sentence": "Besides , plasticity deterioration of the repaired tensile specimens is mainly attributed to the formation of columnar grain boundary α phases in the weld zone which are considered to be the earliest nucleation sites of microcracks and confirmed by in situ tensile test .", "entities": [{"name": "plasticity", "type": "machanical property", "pos": [10, 20]}, {"name": "tensile specimens", "type": "machine or equipment", "pos": [51, 68]}, {"name": "columnar grain boundary", "type": "concept or principle", "pos": [110, 133]}, {"name": "weld zone", "type": "concept or principle", "pos": [150, 159]}, {"name": "be", "type": "material", "pos": [184, 186]}, {"name": "nucleation", "type": "concept or principle", "pos": [200, 210]}, {"name": "microcracks", "type": "concept or principle", "pos": [220, 231]}, {"name": "in situ", "type": "concept or principle", "pos": [249, 256]}]}, {"sentence": "With the increase of WZ proportions in the cross section of tensile specimens , the plasticity of the alloy gradually decreases .", "entities": [{"name": "WZ", "type": "concept or principle", "pos": [21, 23]}, {"name": "cross section", "type": "concept or principle", "pos": [43, 56]}, {"name": "tensile specimens", "type": "machine or equipment", "pos": [60, 77]}, {"name": "plasticity", "type": "machanical property", "pos": [84, 94]}, {"name": "alloy", "type": "material", "pos": [102, 107]}]}, {"sentence": "Ultrasonic additive manufacturing ( UAM ) is a solid-state additive manufacturing technique employing principles of ultrasonic welding coupled with mechanized tape layering to fabricate fully functional parts .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "solid-state", "type": "concept or principle", "pos": [47, 58]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [59, 81]}, {"name": "ultrasonic welding", "type": "manufacturing process", "pos": [116, 134]}, {"name": "fabricate", "type": "manufacturing process", "pos": [176, 185]}]}, {"sentence": "However , parts fabricated using UAM often exhibit a reduction in strength levels when loaded normal to the welding interfaces ( Z-direction ) .", "entities": [{"name": "fabricated", "type": "concept or principle", "pos": [16, 26]}, {"name": "UAM", "type": "manufacturing process", "pos": [33, 36]}, {"name": "reduction", "type": "concept or principle", "pos": [53, 62]}, {"name": "strength", "type": "machanical property", "pos": [66, 74]}, {"name": "welding interfaces", "type": "engineering feature", "pos": [108, 126]}, {"name": "Z-direction", "type": "engineering feature", "pos": [129, 140]}]}, {"sentence": "In this work , the effect of post-weld heat treatments ( PWHT ) on Al-6061 builds fabricated using the UAM process was explored aiming to improve the mechanical strength of the UAM builds .", "entities": [{"name": "post-weld heat treatments", "type": "manufacturing process", "pos": [29, 54]}, {"name": "PWHT", "type": "concept or principle", "pos": [57, 61]}, {"name": "Al-6061", "type": "material", "pos": [67, 74]}, {"name": "fabricated", "type": "concept or principle", "pos": [82, 92]}, {"name": "UAM", "type": "manufacturing process", "pos": [103, 106]}, {"name": "process", "type": "concept or principle", "pos": [107, 114]}, {"name": "mechanical strength", "type": "machanical property", "pos": [150, 169]}, {"name": "UAM", "type": "manufacturing process", "pos": [177, 180]}, {"name": "builds", "type": "process characterization", "pos": [181, 187]}]}, {"sentence": "Tensile testing with digital image correlation ( DIC ) coupled with metallography along with multi-scale structure characterization ( SEM-EBSD ) was used to investigate and rationalize the mechanical performance of the UAM builds .", "entities": [{"name": "Tensile testing", "type": "process characterization", "pos": [0, 15]}, {"name": "digital image correlation", "type": "concept or principle", "pos": [21, 46]}, {"name": "DIC", "type": "concept or principle", "pos": [49, 52]}, {"name": "metallography", "type": "concept or principle", "pos": [68, 81]}, {"name": "multi-scale structure characterization", "type": "process characterization", "pos": [93, 131]}, {"name": "SEM-EBSD", "type": "enabling technology", "pos": [134, 142]}, {"name": "mechanical", "type": "application", "pos": [189, 199]}, {"name": "UAM", "type": "manufacturing process", "pos": [219, 222]}, {"name": "builds", "type": "process characterization", "pos": [223, 229]}]}, {"sentence": "It was established that PWHTs may improve the Z-strength level by the factor of ~3÷3.5 ( from ~46 to 177 MPa ) .", "entities": [{"name": "PWHTs", "type": "manufacturing process", "pos": [24, 29]}, {"name": "Z-strength", "type": "machanical property", "pos": [46, 56]}, {"name": "MPa", "type": "concept or principle", "pos": [105, 108]}]}, {"sentence": "The improvements in the strength level were primarily aided by material aging and grain growth across the bond interface .", "entities": [{"name": "strength", "type": "machanical property", "pos": [24, 32]}, {"name": "material aging", "type": "concept or principle", "pos": [63, 77]}, {"name": "grain growth", "type": "concept or principle", "pos": [82, 94]}, {"name": "bond interface", "type": "concept or principle", "pos": [106, 120]}]}, {"sentence": "Ultrasonic additive manufacturing ( UAM ) is a solid-state additive manufacturing process that uses fundamental principles of ultrasonic welding and sequential layering of tapes to fabricate complex three-dimensional ( 3-D ) components .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "solid-state", "type": "concept or principle", "pos": [47, 58]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [59, 89]}, {"name": "ultrasonic welding", "type": "manufacturing process", "pos": [126, 144]}, {"name": "fabricate", "type": "manufacturing process", "pos": [181, 190]}, {"name": "three-dimensional", "type": "concept or principle", "pos": [199, 216]}, {"name": "3-D", "type": "concept or principle", "pos": [219, 222]}, {"name": "components", "type": "machine or equipment", "pos": [225, 235]}]}, {"sentence": "One of the factors limiting the use of this technology is the poor tensile strength along the z-axis .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [44, 54]}, {"name": "tensile strength", "type": "machanical property", "pos": [67, 83]}, {"name": "z-axis", "type": "concept or principle", "pos": [94, 100]}]}, {"sentence": "Recent work has demonstrated the improvement of the z-axis properties after post-processing treatments .", "entities": [{"name": "z-axis properties", "type": "concept or principle", "pos": [52, 69]}, {"name": "post-processing treatments", "type": "manufacturing process", "pos": [76, 102]}]}, {"sentence": "The abnormally high stability of the grains at the interface during post-weld heat treatments is , however , not yet well understood .", "entities": [{"name": "stability", "type": "machanical property", "pos": [20, 29]}, {"name": "grains", "type": "concept or principle", "pos": [37, 43]}, {"name": "interface", "type": "concept or principle", "pos": [51, 60]}, {"name": "post-weld heat treatments", "type": "manufacturing process", "pos": [68, 93]}]}, {"sentence": "In this work we use multiscale characterization to understand the stability of the grains during post-weld heat treatments .", "entities": [{"name": "stability", "type": "machanical property", "pos": [66, 75]}, {"name": "grains", "type": "concept or principle", "pos": [83, 89]}, {"name": "post-weld heat treatments", "type": "manufacturing process", "pos": [97, 122]}]}, {"sentence": "Aluminum alloy ( 6061 ) builds , fabricated using ultrasonic additive manufacturing , were post-weld heat treated at 180 , 330 and 580 °C .", "entities": [{"name": "Aluminum alloy", "type": "material", "pos": [0, 14]}, {"name": "builds", "type": "process characterization", "pos": [24, 30]}, {"name": "fabricated", "type": "concept or principle", "pos": [33, 43]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [50, 83]}, {"name": "post-weld heat treated", "type": "manufacturing process", "pos": [91, 113]}]}, {"sentence": "The grains close to the tape interfaces are stable during post-weld heat treatments at high temperatures ( i.e. , 580 °C ) .", "entities": [{"name": "grains", "type": "concept or principle", "pos": [4, 10]}, {"name": "post-weld heat treatments", "type": "manufacturing process", "pos": [58, 83]}, {"name": "temperatures", "type": "process parameter", "pos": [92, 104]}]}, {"sentence": "This is in contrast to rapid grain growth that takes place in the bulk .", "entities": [{"name": "rapid grain growth", "type": "concept or principle", "pos": [23, 41]}]}, {"sentence": "Transmission electron microscopy and atom-probe tomography display a significant enrichment of oxygen and magnesium near the stable interfaces .", "entities": [{"name": "Transmission electron microscopy", "type": "process characterization", "pos": [0, 32]}, {"name": "atom-probe tomography", "type": "process characterization", "pos": [37, 58]}, {"name": "oxygen", "type": "material", "pos": [95, 101]}, {"name": "magnesium", "type": "material", "pos": [106, 115]}]}, {"sentence": "Based on the detailed characterization , two mechanisms are proposed and evaluated : nonequilibrium nano-dispersed oxides impeding the grain growth due to grain boundary pinning , or grain boundary segregation of magnesium and oxygen reducing the grain boundary energy .", "entities": [{"name": "nano-dispersed oxides", "type": "material", "pos": [100, 121]}, {"name": "grain growth", "type": "concept or principle", "pos": [135, 147]}, {"name": "grain boundary", "type": "concept or principle", "pos": [155, 169]}, {"name": "grain boundary", "type": "concept or principle", "pos": [183, 197]}, {"name": "magnesium", "type": "material", "pos": [213, 222]}, {"name": "oxygen", "type": "material", "pos": [227, 233]}, {"name": "grain boundary energy", "type": "concept or principle", "pos": [247, 268]}]}, {"sentence": "Additive manufacturing will be an option to develop prototypes or mechanical parts that will be made faster and cheaper than other techniques such as laser cladding or electron beam .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "be", "type": "material", "pos": [28, 30]}, {"name": "prototypes", "type": "concept or principle", "pos": [52, 62]}, {"name": "mechanical parts", "type": "machine or equipment", "pos": [66, 82]}, {"name": "be", "type": "material", "pos": [93, 95]}, {"name": "as", "type": "material", "pos": [102, 104]}, {"name": "cladding", "type": "manufacturing process", "pos": [156, 164]}, {"name": "electron beam", "type": "concept or principle", "pos": [168, 181]}]}, {"sentence": "The main objective of this research was to study the optimal initial conditions of the proposed additive manufacturing system in order to obtain metal prototypes .", "entities": [{"name": "research", "type": "concept or principle", "pos": [27, 35]}, {"name": "additive manufacturing system", "type": "machine or equipment", "pos": [96, 125]}, {"name": "metal", "type": "material", "pos": [145, 150]}]}, {"sentence": "This optimal conditions have been presented taking into account the measurements of geometrical conditions and surface finishing .", "entities": [{"name": "surface finishing", "type": "manufacturing process", "pos": [111, 128]}]}, {"sentence": "The proposed additive manufacturing system consist on an integration of a Fronius TPS 4000 CMT R welding machine with a BF30 Vario Optimun CNC milling machine .", "entities": [{"name": "additive manufacturing system", "type": "machine or equipment", "pos": [13, 42]}, {"name": "Fronius TPS 4000 CMT R", "type": "machine or equipment", "pos": [74, 96]}, {"name": "machine", "type": "machine or equipment", "pos": [105, 112]}, {"name": "CNC milling", "type": "manufacturing process", "pos": [139, 150]}]}, {"sentence": "Once the material was selected , the optimal conditions to make the first layer have been obtained .", "entities": [{"name": "material", "type": "material", "pos": [9, 17]}, {"name": "layer", "type": "process parameter", "pos": [74, 79]}]}, {"sentence": "Previous simple geometries , such as prismatic and cylindrical parts have been manufactured .", "entities": [{"name": "simple", "type": "manufacturing process", "pos": [9, 15]}, {"name": "geometries", "type": "concept or principle", "pos": [16, 26]}, {"name": "as", "type": "material", "pos": [34, 36]}, {"name": "cylindrical", "type": "concept or principle", "pos": [51, 62]}, {"name": "manufactured", "type": "concept or principle", "pos": [79, 91]}]}, {"sentence": "Efficient way of depositing thin-walled overhang features , without supports , based on inclined slicing and weld-deposition .", "entities": [{"name": "overhang features", "type": "engineering feature", "pos": [40, 57]}, {"name": "supports", "type": "application", "pos": [68, 76]}, {"name": "slicing", "type": "concept or principle", "pos": [97, 104]}, {"name": "weld-deposition", "type": "concept or principle", "pos": [109, 124]}]}, {"sentence": "Uses higher order kinematics to the work piece for fabricating complex thin-walled fully dense functional metallic parts .", "entities": [{"name": "kinematics", "type": "concept or principle", "pos": [18, 28]}, {"name": "work piece", "type": "machine or equipment", "pos": [36, 46]}, {"name": "fabricating", "type": "manufacturing process", "pos": [51, 62]}, {"name": "fully dense", "type": "process parameter", "pos": [83, 94]}, {"name": "metallic parts", "type": "machine or equipment", "pos": [106, 120]}]}, {"sentence": "Geometrical modelling of the weld-bead to predict the layer thickness of a given layer for bead-on-bead deposition .", "entities": [{"name": "modelling", "type": "enabling technology", "pos": [12, 21]}, {"name": "weld-bead", "type": "engineering feature", "pos": [29, 38]}, {"name": "layer thickness", "type": "process parameter", "pos": [54, 69]}, {"name": "layer", "type": "process parameter", "pos": [81, 86]}, {"name": "bead-on-bead deposition", "type": "concept or principle", "pos": [91, 114]}]}, {"sentence": "In-house MATLAB code to slice the CAD model and generate the tool path for inclined deposition of a given layer .", "entities": [{"name": "MATLAB code", "type": "concept or principle", "pos": [9, 20]}, {"name": "slice", "type": "concept or principle", "pos": [24, 29]}, {"name": "CAD model", "type": "enabling technology", "pos": [34, 43]}, {"name": "tool path", "type": "concept or principle", "pos": [61, 70]}, {"name": "deposition", "type": "concept or principle", "pos": [84, 94]}, {"name": "layer", "type": "process parameter", "pos": [106, 111]}]}, {"sentence": "Fabrication of complex thin-walled parts using GMAW based weld-deposition for illustration of above mentioned concepts .", "entities": [{"name": "Fabrication", "type": "manufacturing process", "pos": [0, 11]}, {"name": "thin-walled parts", "type": "engineering feature", "pos": [23, 40]}, {"name": "GMAW", "type": "manufacturing process", "pos": [47, 51]}, {"name": "weld-deposition", "type": "concept or principle", "pos": [58, 73]}]}, {"sentence": "Gas Metal Arc Welding ( GMAW ) based weld-deposition process is one of the deposition-based Additive Manufacturing ( AM ) processes with the ability to produce fully dense complex functional metallic objects .", "entities": [{"name": "Gas Metal Arc Welding", "type": "manufacturing process", "pos": [0, 21]}, {"name": "GMAW", "type": "manufacturing process", "pos": [24, 28]}, {"name": "weld-deposition process", "type": "concept or principle", "pos": [37, 60]}, {"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [92, 114]}, {"name": "AM", "type": "manufacturing process", "pos": [117, 119]}, {"name": "processes", "type": "concept or principle", "pos": [122, 131]}, {"name": "fully dense", "type": "process parameter", "pos": [160, 171]}, {"name": "metallic", "type": "material", "pos": [191, 199]}]}, {"sentence": "Due to its high deposition rates , high material and power efficiency , lower investment costs , simpler setup and work environment requirements it is slowly becoming a viable metallic AM method .", "entities": [{"name": "high deposition rates", "type": "process parameter", "pos": [11, 32]}, {"name": "material", "type": "material", "pos": [40, 48]}, {"name": "power efficiency", "type": "process parameter", "pos": [53, 69]}, {"name": "metallic AM", "type": "manufacturing process", "pos": [176, 187]}]}, {"sentence": "Amongst various geometrical features that can be realized in weld-deposition based AM , the thin-walled features ( i.e. , features with one single deposition pass ) are the toughest as the process has to overcome the bead-over-bead complexity .", "entities": [{"name": "geometrical features", "type": "engineering feature", "pos": [16, 36]}, {"name": "be", "type": "material", "pos": [46, 48]}, {"name": "weld-deposition based AM", "type": "manufacturing process", "pos": [61, 85]}, {"name": "deposition", "type": "concept or principle", "pos": [147, 157]}, {"name": "as", "type": "material", "pos": [159, 161]}, {"name": "process", "type": "concept or principle", "pos": [189, 196]}, {"name": "bead-over-bead", "type": "concept or principle", "pos": [217, 231]}]}, {"sentence": "Based on geometric modelling and experimentation , this paper presents an efficient technique for producing the thin-walled metallic structures , including objects with undercut features .", "entities": [{"name": "geometric modelling", "type": "concept or principle", "pos": [9, 28]}, {"name": "metallic structures", "type": "machine or equipment", "pos": [124, 143]}, {"name": "undercut", "type": "engineering feature", "pos": [169, 177]}]}, {"sentence": "This is possible by adding extra degrees of freedom or by using higher order kinematics to the work piece and/or to the deposition head by suitably aligning the overhanging feature in-line to the deposition direction .", "entities": [{"name": "degrees of freedom", "type": "concept or principle", "pos": [33, 51]}, {"name": "kinematics", "type": "concept or principle", "pos": [77, 87]}, {"name": "work piece", "type": "machine or equipment", "pos": [95, 105]}, {"name": "deposition", "type": "concept or principle", "pos": [120, 130]}, {"name": "overhanging feature", "type": "engineering feature", "pos": [161, 180]}, {"name": "deposition direction", "type": "process parameter", "pos": [196, 216]}]}, {"sentence": "An in-house MATLAB code was developed to slice the CAD model and generate the tool path for inclined deposition of a given layer of a thin-walled model .", "entities": [{"name": "MATLAB code", "type": "concept or principle", "pos": [12, 23]}, {"name": "slice", "type": "concept or principle", "pos": [41, 46]}, {"name": "CAD model", "type": "enabling technology", "pos": [51, 60]}, {"name": "tool path", "type": "concept or principle", "pos": [78, 87]}, {"name": "deposition", "type": "concept or principle", "pos": [101, 111]}, {"name": "layer", "type": "process parameter", "pos": [123, 128]}, {"name": "thin-walled model", "type": "machine or equipment", "pos": [134, 151]}]}, {"sentence": "A geometrical model proposed to predict the layer thickness of a given layer during such bead-on-bead deposition showed good correlation with experimental data .", "entities": [{"name": "geometrical model", "type": "concept or principle", "pos": [2, 19]}, {"name": "layer thickness", "type": "process parameter", "pos": [44, 59]}, {"name": "layer", "type": "process parameter", "pos": [71, 76]}, {"name": "bead-on-bead deposition", "type": "concept or principle", "pos": [89, 112]}, {"name": "experimental data", "type": "concept or principle", "pos": [142, 159]}]}, {"sentence": "Some illustrative complex thin-walled components successfully fabricated using this model have also been presented .", "entities": [{"name": "thin-walled components", "type": "application", "pos": [26, 48]}, {"name": "fabricated", "type": "concept or principle", "pos": [62, 72]}, {"name": "model", "type": "concept or principle", "pos": [84, 89]}]}, {"sentence": "Additive layer manufacturing ( ALM ) , using gas tungsten arc welding ( GTAW ) as heat source , is a promising technology in producing Inconel 625 components due to significant cost savings , high deposition rate and convenience of processing .", "entities": [{"name": "Additive layer manufacturing", "type": "manufacturing process", "pos": [0, 28]}, {"name": "ALM", "type": "manufacturing process", "pos": [31, 34]}, {"name": "gas tungsten arc welding", "type": "manufacturing process", "pos": [45, 69]}, {"name": "GTAW", "type": "manufacturing process", "pos": [72, 76]}, {"name": "as", "type": "material", "pos": [79, 81]}, {"name": "source", "type": "application", "pos": [87, 93]}, {"name": "technology", "type": "concept or principle", "pos": [111, 121]}, {"name": "Inconel 625", "type": "material", "pos": [135, 146]}, {"name": "components", "type": "machine or equipment", "pos": [147, 157]}, {"name": "high deposition rate", "type": "process parameter", "pos": [192, 212]}]}, {"sentence": "With the purpose of revealing how microstructure and mechanical properties are affected by the location within the manufactured wall component , the present study has been carried out .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [34, 48]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [53, 74]}, {"name": "manufactured", "type": "concept or principle", "pos": [115, 127]}, {"name": "component", "type": "machine or equipment", "pos": [133, 142]}]}, {"sentence": "The manufactured Inconel 625 consists of cellular grains without secondary dendrites in the near-substrate region , columnar dendrites structure oriented upwards in the layer bands , followed by the transition from directional dendrites to equiaxed grain in the top region .", "entities": [{"name": "manufactured", "type": "concept or principle", "pos": [4, 16]}, {"name": "Inconel 625", "type": "material", "pos": [17, 28]}, {"name": "cellular grains", "type": "concept or principle", "pos": [41, 56]}, {"name": "secondary dendrites", "type": "material", "pos": [65, 84]}, {"name": "columnar dendrites", "type": "material", "pos": [116, 134]}, {"name": "layer", "type": "process parameter", "pos": [169, 174]}, {"name": "transition", "type": "concept or principle", "pos": [199, 209]}, {"name": "directional dendrites", "type": "material", "pos": [215, 236]}, {"name": "equiaxed grain", "type": "concept or principle", "pos": [240, 254]}]}, {"sentence": "With the increase in deposited height , segregation behavior of alloying elements Nb and Mo constantly strengthens with maximal evolution in the top region .", "entities": [{"name": "segregation", "type": "concept or principle", "pos": [40, 51]}, {"name": "alloying elements", "type": "material", "pos": [64, 81]}, {"name": "Mo", "type": "material", "pos": [89, 91]}, {"name": "evolution", "type": "concept or principle", "pos": [128, 137]}]}, {"sentence": "The primary dendrite arm spacing has a well coherence with the content of Laves phase .", "entities": [{"name": "dendrite", "type": "biomedical", "pos": [12, 20]}, {"name": "Laves phase", "type": "concept or principle", "pos": [74, 85]}]}, {"sentence": "The microhardness and tensile strength show obvious variation in different regions .", "entities": [{"name": "microhardness", "type": "concept or principle", "pos": [4, 17]}, {"name": "tensile strength", "type": "machanical property", "pos": [22, 38]}, {"name": "variation", "type": "concept or principle", "pos": [52, 61]}]}, {"sentence": "The microhardness and tensile strength of near-substrate region are superior to that of layer bands and top region .", "entities": [{"name": "microhardness", "type": "concept or principle", "pos": [4, 17]}, {"name": "tensile strength", "type": "machanical property", "pos": [22, 38]}, {"name": "layer", "type": "process parameter", "pos": [88, 93]}]}, {"sentence": "The results are further explained in detail through the weld pool behavior and temperature field measurement .", "entities": [{"name": "weld pool", "type": "concept or principle", "pos": [56, 65]}, {"name": "temperature", "type": "process parameter", "pos": [79, 90]}, {"name": "measurement", "type": "process characterization", "pos": [97, 108]}]}, {"sentence": "This paper describes results of seam welding of relatively high temperature melting materials , AISI 304 , C-Mn steels , Ni-based alloys , CP Cu , CP Ni , Ti6Al4V and relatively low temperature melting material , AA6061 .", "entities": [{"name": "seam welding", "type": "manufacturing process", "pos": [32, 44]}, {"name": "temperature", "type": "process parameter", "pos": [64, 75]}, {"name": "melting materials", "type": "concept or principle", "pos": [76, 93]}, {"name": "AISI 304", "type": "material", "pos": [96, 104]}, {"name": "C-Mn steels", "type": "material", "pos": [107, 118]}, {"name": "Ni-based alloys", "type": "material", "pos": [121, 136]}, {"name": "Cu", "type": "material", "pos": [142, 144]}, {"name": "Ni", "type": "material", "pos": [150, 152]}, {"name": "Ti6Al4V", "type": "material", "pos": [155, 162]}, {"name": "temperature", "type": "process parameter", "pos": [182, 193]}, {"name": "melting material", "type": "concept or principle", "pos": [194, 210]}, {"name": "AA6061", "type": "material", "pos": [213, 219]}]}, {"sentence": "It describes the seam welding of multi-layered similar and dissimilar metallic sheets .", "entities": [{"name": "seam welding", "type": "manufacturing process", "pos": [17, 29]}, {"name": "metallic sheets", "type": "material", "pos": [70, 85]}]}, {"sentence": "The method described and involved advancing a rotating non-consumable rod ( CP Mo or AISI 304 ) toward the upper sheet of a metallic stack clamped under pressure .", "entities": [{"name": "rod", "type": "machine or equipment", "pos": [70, 73]}, {"name": "Mo", "type": "material", "pos": [79, 81]}, {"name": "AISI 304", "type": "material", "pos": [85, 93]}, {"name": "sheet", "type": "material", "pos": [113, 118]}, {"name": "metallic stack", "type": "material", "pos": [124, 138]}, {"name": "pressure", "type": "concept or principle", "pos": [153, 161]}]}, {"sentence": "As soon as the distal end of the rod touched the top portion of the upper metallic sheet , an axial force was applied .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "as", "type": "material", "pos": [8, 10]}, {"name": "rod", "type": "machine or equipment", "pos": [33, 36]}, {"name": "metallic sheet", "type": "material", "pos": [74, 88]}, {"name": "axial force", "type": "concept or principle", "pos": [94, 105]}]}, {"sentence": "After an initial dwell time , the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length , thereby forming a metallurgical bond between the metallic sheets .", "entities": [{"name": "dwell time", "type": "process parameter", "pos": [17, 27]}, {"name": "metallic stack", "type": "material", "pos": [34, 48]}, {"name": "rod", "type": "machine or equipment", "pos": [110, 113]}, {"name": "forming", "type": "manufacturing process", "pos": [144, 151]}, {"name": "metallurgical bond", "type": "concept or principle", "pos": [154, 172]}, {"name": "metallic sheets", "type": "material", "pos": [185, 200]}]}, {"sentence": "Multi-track and multi-metal seam welds of high temperature metallic sheets , AISI 304 , C-Mn steel , Nickel-based alloys , Cp Cu , Ti6Al4V and low temperature metallic sheets , AA6061 were obtained .", "entities": [{"name": "seam welds", "type": "engineering feature", "pos": [28, 38]}, {"name": "temperature", "type": "process parameter", "pos": [47, 58]}, {"name": "metallic sheets", "type": "material", "pos": [59, 74]}, {"name": "AISI 304", "type": "material", "pos": [77, 85]}, {"name": "C-Mn steel", "type": "material", "pos": [88, 98]}, {"name": "Nickel-based alloys", "type": "material", "pos": [101, 120]}, {"name": "Cu", "type": "material", "pos": [126, 128]}, {"name": "Ti6Al4V", "type": "material", "pos": [131, 138]}, {"name": "temperature", "type": "process parameter", "pos": [147, 158]}, {"name": "metallic sheets", "type": "material", "pos": [159, 174]}, {"name": "AA6061", "type": "material", "pos": [177, 183]}]}, {"sentence": "Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method .", "entities": [{"name": "Optical", "type": "process characterization", "pos": [0, 7]}, {"name": "scanning electron microscopy", "type": "process characterization", "pos": [12, 40]}, {"name": "U-bend test", "type": "process characterization", "pos": [68, 79]}, {"name": "defect", "type": "concept or principle", "pos": [95, 101]}, {"name": "seam welds", "type": "engineering feature", "pos": [107, 117]}, {"name": "be", "type": "material", "pos": [124, 126]}]}, {"sentence": "Tensile- shear testing showed that the seam welds of AISI 304 , C-Mn steel , Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening .", "entities": [{"name": "Tensile- shear testing", "type": "process characterization", "pos": [0, 22]}, {"name": "seam welds", "type": "engineering feature", "pos": [39, 49]}, {"name": "AISI 304", "type": "material", "pos": [53, 61]}, {"name": "C-Mn steel", "type": "material", "pos": [64, 74]}, {"name": "Nickel-based alloy", "type": "material", "pos": [77, 95]}, {"name": "base metal", "type": "material", "pos": [128, 138]}, {"name": "AA6061", "type": "material", "pos": [158, 164]}]}, {"sentence": "The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface , dynamic recrystallization and diffusion .", "entities": [{"name": "metallurgical bonding", "type": "concept or principle", "pos": [4, 25]}, {"name": "interface", "type": "concept or principle", "pos": [33, 42]}, {"name": "metallic sheets", "type": "material", "pos": [55, 70]}, {"name": "interface", "type": "concept or principle", "pos": [121, 130]}, {"name": "dynamic", "type": "concept or principle", "pos": [133, 140]}, {"name": "diffusion", "type": "concept or principle", "pos": [163, 172]}]}, {"sentence": "The method developed can be used as a means of welding , cladding and additive manufacturing .", "entities": [{"name": "be", "type": "material", "pos": [25, 27]}, {"name": "as", "type": "material", "pos": [33, 35]}, {"name": "welding", "type": "manufacturing process", "pos": [47, 54]}, {"name": "cladding", "type": "manufacturing process", "pos": [57, 65]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [70, 92]}]}, {"sentence": "In this paper the joinability of titanium Additive Manufactured ( AM ) parts is explored .", "entities": [{"name": "titanium", "type": "material", "pos": [33, 41]}, {"name": "Additive Manufactured", "type": "manufacturing process", "pos": [42, 63]}, {"name": "AM", "type": "manufacturing process", "pos": [66, 68]}]}, {"sentence": "Keyhole welding , using a pulsed laser beam , of conventionally produced parts is compared to AM parts .", "entities": [{"name": "Keyhole welding", "type": "manufacturing process", "pos": [0, 15]}, {"name": "pulsed laser beam", "type": "enabling technology", "pos": [26, 43]}, {"name": "AM parts", "type": "machine or equipment", "pos": [94, 102]}]}, {"sentence": "Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the layered manufacturing process .", "entities": [{"name": "Metal AM", "type": "manufacturing process", "pos": [0, 8]}, {"name": "porosities", "type": "machanical property", "pos": [50, 60]}, {"name": "non-isotropic", "type": "concept or principle", "pos": [71, 84]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [115, 136]}]}, {"sentence": "This study shows that due to these deficiencies more energy per unit weld length is required to obtain a similar keyhole geometry for titanium AM parts .", "entities": [{"name": "weld length", "type": "process parameter", "pos": [69, 80]}, {"name": "geometry", "type": "concept or principle", "pos": [121, 129]}, {"name": "titanium", "type": "material", "pos": [134, 142]}, {"name": "AM parts", "type": "machine or equipment", "pos": [143, 151]}]}, {"sentence": "It is also demonstrated that , with adjusted laser process parameters , good quality welds for aerospace applications in terms of pressure resistance and leak tightness are achievable .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [45, 50]}, {"name": "parameters", "type": "concept or principle", "pos": [59, 69]}, {"name": "quality welds", "type": "concept or principle", "pos": [77, 90]}, {"name": "aerospace", "type": "application", "pos": [95, 104]}, {"name": "pressure resistance", "type": "machanical property", "pos": [130, 149]}]}, {"sentence": "Part size in additive manufacturing is limited by the size of building area of AM equipment .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [13, 35]}, {"name": "area", "type": "process parameter", "pos": [71, 75]}, {"name": "AM", "type": "manufacturing process", "pos": [79, 81]}]}, {"sentence": "Occasionally , larger constructions that AM machines are able to produce , are needed , and this creates demand for welding AM parts together .", "entities": [{"name": "AM machines", "type": "machine or equipment", "pos": [41, 52]}, {"name": "welding", "type": "manufacturing process", "pos": [116, 123]}, {"name": "AM parts", "type": "machine or equipment", "pos": [124, 132]}]}, {"sentence": "However there is very little information on welding of additive manufactured stainless steels .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [44, 51]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [55, 76]}, {"name": "steels", "type": "material", "pos": [87, 93]}]}, {"sentence": "The aim of this study was to investigate the weldability aspects of AM material .", "entities": [{"name": "weldability", "type": "machanical property", "pos": [45, 56]}, {"name": "AM material", "type": "material", "pos": [68, 79]}]}, {"sentence": "In this study , comparison of the bead on plate welds between AM parts and sheet metal parts is done.Used material was 316L stainless steel , AM and sheet metal , and parts were welded with laser welding .", "entities": [{"name": "bead", "type": "process characterization", "pos": [34, 38]}, {"name": "welds", "type": "engineering feature", "pos": [48, 53]}, {"name": "AM parts", "type": "machine or equipment", "pos": [62, 70]}, {"name": "sheet metal", "type": "material", "pos": [75, 86]}, {"name": "material", "type": "material", "pos": [106, 114]}, {"name": "316L stainless steel", "type": "material", "pos": [119, 139]}, {"name": "AM", "type": "manufacturing process", "pos": [142, 144]}, {"name": "sheet metal", "type": "material", "pos": [149, 160]}, {"name": "welded", "type": "manufacturing process", "pos": [178, 184]}, {"name": "laser welding", "type": "manufacturing process", "pos": [190, 203]}]}, {"sentence": "Weld quality was evaluated visually from macroscopic images .", "entities": [{"name": "Weld quality", "type": "process parameter", "pos": [0, 12]}, {"name": "macroscopic images", "type": "concept or principle", "pos": [41, 59]}]}, {"sentence": "Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts .", "entities": [{"name": "welds", "type": "engineering feature", "pos": [55, 60]}, {"name": "AM parts", "type": "machine or equipment", "pos": [64, 72]}, {"name": "welds", "type": "engineering feature", "pos": [89, 94]}, {"name": "sheet metal", "type": "material", "pos": [98, 109]}]}, {"sentence": "Differences were found in penetration depths and in type of welding defects .", "entities": [{"name": "penetration depths", "type": "process parameter", "pos": [26, 44]}, {"name": "welding defects", "type": "concept or principle", "pos": [60, 75]}]}, {"sentence": "Nevertheless , this study presents that laser welding is suitable process for welding AM parts .", "entities": [{"name": "laser welding", "type": "manufacturing process", "pos": [40, 53]}, {"name": "process", "type": "concept or principle", "pos": [66, 73]}, {"name": "welding", "type": "manufacturing process", "pos": [78, 85]}, {"name": "AM parts", "type": "machine or equipment", "pos": [86, 94]}]}, {"sentence": "Additive manufacturing ( AM ) of high γ′ strengthened Nickel-base superalloys , such as IN738LC , is of high interest for applications in hot section components for gas turbines .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "Nickel-base superalloys", "type": "material", "pos": [54, 77]}, {"name": "as", "type": "material", "pos": [85, 87]}, {"name": "components", "type": "machine or equipment", "pos": [150, 160]}, {"name": "gas turbines", "type": "machine or equipment", "pos": [165, 177]}]}, {"sentence": "The creep property acts as the critical indicator of component performance under load at elevated temperature .", "entities": [{"name": "creep", "type": "machanical property", "pos": [4, 9]}, {"name": "as", "type": "material", "pos": [24, 26]}, {"name": "component", "type": "machine or equipment", "pos": [53, 62]}, {"name": "temperature", "type": "process parameter", "pos": [98, 109]}]}, {"sentence": "In order to evaluate the short-term creep behavior , slow strain rate tensile ( SSRT ) tests were performed .", "entities": [{"name": "creep behavior", "type": "machanical property", "pos": [36, 50]}, {"name": "slow strain rate tensile", "type": "concept or principle", "pos": [53, 77]}, {"name": "SSRT", "type": "concept or principle", "pos": [80, 84]}]}, {"sentence": "IN738LC bars were built by laser powder-bed-fusion ( L-PBF ) and then subjected to hot isostatic pressing ( HIP ) followed by the standard two-step heat treatment .", "entities": [{"name": "IN738LC", "type": "material", "pos": [0, 7]}, {"name": "laser powder-bed-fusion", "type": "manufacturing process", "pos": [27, 50]}, {"name": "L-PBF", "type": "manufacturing process", "pos": [53, 58]}, {"name": "hot isostatic pressing", "type": "manufacturing process", "pos": [83, 105]}, {"name": "HIP", "type": "manufacturing process", "pos": [108, 111]}, {"name": "standard", "type": "concept or principle", "pos": [130, 138]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [148, 162]}]}, {"sentence": "The samples were subjected to SSRT testing at 850 °C under strain rates of 1 × 10−5/s , 1 × 10−6/s , and 1 × 10��7/s .", "entities": [{"name": "samples", "type": "concept or principle", "pos": [4, 11]}, {"name": "SSRT", "type": "concept or principle", "pos": [30, 34]}, {"name": "strain rates", "type": "concept or principle", "pos": [59, 71]}]}, {"sentence": "In this research , the underlying creep deformation mechanism of AM processed IN738LC is investigated using the serial sectioning technique , electron backscatter diffraction ( EBSD ) , transmission electron microscopy ( TEM ) .", "entities": [{"name": "research", "type": "concept or principle", "pos": [8, 16]}, {"name": "creep deformation mechanism", "type": "concept or principle", "pos": [34, 61]}, {"name": "AM", "type": "manufacturing process", "pos": [65, 67]}, {"name": "IN738LC", "type": "material", "pos": [78, 85]}, {"name": "serial sectioning", "type": "enabling technology", "pos": [112, 129]}, {"name": "electron backscatter diffraction", "type": "process characterization", "pos": [142, 174]}, {"name": "EBSD", "type": "process characterization", "pos": [177, 181]}, {"name": "transmission electron microscopy", "type": "process characterization", "pos": [186, 218]}, {"name": "TEM", "type": "process characterization", "pos": [221, 224]}]}, {"sentence": "On the creep mechanism of AM polycrystalline IN738LC , grain boundary sliding is predominant .", "entities": [{"name": "creep", "type": "machanical property", "pos": [7, 12]}, {"name": "AM polycrystalline IN738LC", "type": "material", "pos": [26, 52]}, {"name": "grain boundary sliding", "type": "concept or principle", "pos": [55, 77]}]}, {"sentence": "However , due to the interlock feature of grain boundaries in AM processed IN738LC , the grain structure retains its integrity after deformation .", "entities": [{"name": "feature", "type": "engineering feature", "pos": [31, 38]}, {"name": "grain boundaries", "type": "concept or principle", "pos": [42, 58]}, {"name": "AM", "type": "manufacturing process", "pos": [62, 64]}, {"name": "IN738LC", "type": "material", "pos": [75, 82]}, {"name": "grain structure", "type": "concept or principle", "pos": [89, 104]}, {"name": "integrity", "type": "concept or principle", "pos": [117, 126]}, {"name": "deformation", "type": "concept or principle", "pos": [133, 144]}]}, {"sentence": "The dislocation motion acts as the major accommodation process of grain boundary sliding .", "entities": [{"name": "dislocation motion", "type": "concept or principle", "pos": [4, 22]}, {"name": "as", "type": "material", "pos": [28, 30]}, {"name": "process", "type": "concept or principle", "pos": [55, 62]}, {"name": "grain boundary sliding", "type": "concept or principle", "pos": [66, 88]}]}, {"sentence": "Dislocations bypass the γ′ precipitates by Orowan looping and wavy slip .", "entities": [{"name": "Dislocations", "type": "concept or principle", "pos": [0, 12]}, {"name": "precipitates", "type": "material", "pos": [27, 39]}, {"name": "Orowan looping", "type": "concept or principle", "pos": [43, 57]}]}, {"sentence": "The rearrangement of screw dislocations is responsible for the formation of subgrains within the grain interior .", "entities": [{"name": "screw dislocations", "type": "concept or principle", "pos": [21, 39]}, {"name": "subgrains", "type": "concept or principle", "pos": [76, 85]}, {"name": "grain", "type": "concept or principle", "pos": [97, 102]}]}, {"sentence": "This research elucidates the short-creep behavior of AM processed IN738LC .", "entities": [{"name": "research", "type": "concept or principle", "pos": [5, 13]}, {"name": "short-creep", "type": "concept or principle", "pos": [29, 40]}, {"name": "AM", "type": "manufacturing process", "pos": [53, 55]}, {"name": "IN738LC", "type": "material", "pos": [66, 73]}]}, {"sentence": "It also shed new light on the creep deformation mechanism of additive manufactured γ′ strengthened polycrystalline Nickel-base superalloys .", "entities": [{"name": "creep deformation mechanism", "type": "concept or principle", "pos": [30, 57]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [61, 82]}, {"name": "Nickel-base superalloys", "type": "material", "pos": [115, 138]}]}, {"sentence": "Due to the cost advantage , weld-based Additive Manufacturing ( AM ) is suitable for directly fabricating large metallic parts .", "entities": [{"name": "weld-based Additive Manufacturing", "type": "manufacturing process", "pos": [28, 61]}, {"name": "AM", "type": "manufacturing process", "pos": [64, 66]}, {"name": "fabricating", "type": "manufacturing process", "pos": [94, 105]}, {"name": "metallic parts", "type": "machine or equipment", "pos": [112, 126]}]}, {"sentence": "One of challenges for weld-based Additive M anufacturing is to build overhanging structure or tilt structure at a large slant angle , because liquid metal on the boundary would flow down by gravity due to lack of sufficient support .", "entities": [{"name": "Additive", "type": "material", "pos": [33, 41]}, {"name": "build", "type": "process parameter", "pos": [63, 68]}, {"name": "structure", "type": "concept or principle", "pos": [81, 90]}, {"name": "tilt structure", "type": "engineering feature", "pos": [94, 108]}, {"name": "slant angle", "type": "process parameter", "pos": [120, 131]}, {"name": "liquid metal", "type": "material", "pos": [142, 154]}, {"name": "boundary", "type": "engineering feature", "pos": [162, 170]}, {"name": "support", "type": "application", "pos": [224, 231]}]}, {"sentence": "In the present work , electromagnetically confined weld-based Additive Manufacturing is develop ed to solve this problem .", "entities": [{"name": "electromagnetically", "type": "concept or principle", "pos": [22, 41]}, {"name": "weld-based Additive Manufacturing", "type": "manufacturing process", "pos": [51, 84]}, {"name": "ed", "type": "process characterization", "pos": [96, 98]}]}, {"sentence": "In the process , liquid metal is confined and semi-levitated by the Lorentz force exerted by magnetic field and thus the flow of liquid metal is restricted .", "entities": [{"name": "process", "type": "concept or principle", "pos": [7, 14]}, {"name": "liquid metal", "type": "material", "pos": [17, 29]}, {"name": "Lorentz force", "type": "concept or principle", "pos": [68, 81]}, {"name": "magnetic field", "type": "concept or principle", "pos": [93, 107]}, {"name": "liquid metal", "type": "material", "pos": [129, 141]}]}, {"sentence": "Experiments and numerical simulations are performed to investigate the effect mechanism of electromagnetic confinement .", "entities": [{"name": "numerical simulations", "type": "enabling technology", "pos": [16, 37]}, {"name": "mechanism", "type": "concept or principle", "pos": [78, 87]}, {"name": "electromagnetic confinement", "type": "concept or principle", "pos": [91, 118]}]}, {"sentence": "Experimental results verify that the flow-down or collapse of liquid metal is impeded by electromagnetic confinement .", "entities": [{"name": "Experimental", "type": "concept or principle", "pos": [0, 12]}, {"name": "liquid metal", "type": "material", "pos": [62, 74]}, {"name": "electromagnetic confinement", "type": "concept or principle", "pos": [89, 116]}]}, {"sentence": "With specific welding parameters , the maximum tilt angle of successful building increases from 50° to 60° when imposing electromagnetic confinement .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [14, 21]}, {"name": "parameters", "type": "concept or principle", "pos": [22, 32]}, {"name": "tilt angle", "type": "engineering feature", "pos": [47, 57]}, {"name": "electromagnetic confinement", "type": "concept or principle", "pos": [121, 148]}]}, {"sentence": "New technologies can be justified with the advent of the additive manufacturing , excels by its flexibility in manufacturing parts of various geometries , good accuracy and material waste reduction savings .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [4, 16]}, {"name": "be", "type": "material", "pos": [21, 23]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [57, 79]}, {"name": "flexibility in manufacturing", "type": "concept or principle", "pos": [96, 124]}, {"name": "geometries", "type": "concept or principle", "pos": [142, 152]}, {"name": "accuracy", "type": "process characterization", "pos": [160, 168]}, {"name": "material", "type": "material", "pos": [173, 181]}, {"name": "reduction", "type": "concept or principle", "pos": [188, 197]}]}, {"sentence": "This circumstance requires the application of techniques to determine the reliability of the results in the deposition of layers in order to have a good accuracy .", "entities": [{"name": "reliability", "type": "process characterization", "pos": [74, 85]}, {"name": "deposition", "type": "concept or principle", "pos": [108, 118]}, {"name": "accuracy", "type": "process characterization", "pos": [153, 161]}]}, {"sentence": "This work aims to present a new technology applied to additive manufacturing , focusing on accuracy in the deposition of layers , lower cost and user friendliness man-machine .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [32, 42]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [54, 76]}, {"name": "accuracy", "type": "process characterization", "pos": [91, 99]}, {"name": "deposition", "type": "concept or principle", "pos": [107, 117]}]}, {"sentence": "New method was proposed in order to obtain advantages regarding the use of Plasma welding process .", "entities": [{"name": "Plasma welding", "type": "manufacturing process", "pos": [75, 89]}]}, {"sentence": "An apparatus for generating plasma was used to obtain the arc .", "entities": [{"name": "plasma", "type": "concept or principle", "pos": [28, 34]}, {"name": "arc", "type": "concept or principle", "pos": [58, 61]}]}, {"sentence": "Correlated magnitudes helped in determining Efficient Model of Deposition for use in offsetting the geometric and thermal errors .", "entities": [{"name": "Correlated", "type": "concept or principle", "pos": [0, 10]}, {"name": "Model", "type": "concept or principle", "pos": [54, 59]}, {"name": "Deposition", "type": "concept or principle", "pos": [63, 73]}, {"name": "errors", "type": "concept or principle", "pos": [122, 128]}]}, {"sentence": "Computer simulations were applied to the new concept of deposition and the efficiency of the presented system was performed , but no experimental results are provided herein .", "entities": [{"name": "Computer simulations", "type": "concept or principle", "pos": [0, 20]}, {"name": "deposition", "type": "concept or principle", "pos": [56, 66]}, {"name": "experimental", "type": "concept or principle", "pos": [133, 145]}]}, {"sentence": "Ultrasonic additive manufacturing ( UAM ) is a solid-state hybrid manufacturing technique .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "solid-state", "type": "concept or principle", "pos": [47, 58]}, {"name": "hybrid manufacturing", "type": "concept or principle", "pos": [59, 79]}]}, {"sentence": "In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system .", "entities": [{"name": "electron back scatter diffraction", "type": "enabling technology", "pos": [36, 69]}, {"name": "metal", "type": "material", "pos": [116, 121]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [146, 179]}]}, {"sentence": "The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys .", "entities": [{"name": "aluminum", "type": "material", "pos": [28, 36]}, {"name": "interface", "type": "concept or principle", "pos": [52, 61]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [68, 101]}, {"name": "aluminum", "type": "material", "pos": [116, 124]}, {"name": "roll bonding", "type": "manufacturing process", "pos": [162, 174]}, {"name": "aluminum alloys", "type": "material", "pos": [178, 193]}]}, {"sentence": "It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [44, 53]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [75, 108]}, {"name": "deformation", "type": "concept or principle", "pos": [142, 153]}, {"name": "interface", "type": "concept or principle", "pos": [161, 170]}]}, {"sentence": "The wire arc additive manufacturing ( WAAM ) 2Cr13 thin-wall part was deposited using robotic cold metal transfer ( CMT ) technology , and the location-related thermal history , densification , phase identification , microstructure , and mechanical properties of the part were explored .", "entities": [{"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [4, 35]}, {"name": "WAAM", "type": "manufacturing process", "pos": [38, 42]}, {"name": "cold metal transfer", "type": "manufacturing process", "pos": [94, 113]}, {"name": "CMT", "type": "manufacturing process", "pos": [116, 119]}, {"name": "technology", "type": "concept or principle", "pos": [122, 132]}, {"name": "densification", "type": "manufacturing process", "pos": [178, 191]}, {"name": "phase", "type": "concept or principle", "pos": [194, 199]}, {"name": "microstructure", "type": "concept or principle", "pos": [217, 231]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [238, 259]}]}, {"sentence": "The results show that pre-heating effect from previously built layers can be effectively used to reduce residual stresses ; cooling rate firstly decreased rapidly and then kept stable in the 15th–25th layers .", "entities": [{"name": "be", "type": "material", "pos": [74, 76]}, {"name": "residual stresses", "type": "machanical property", "pos": [104, 121]}, {"name": "cooling rate", "type": "process parameter", "pos": [124, 136]}]}, {"sentence": "The peaks of the α-Fe phase of the AM part drifted slightly toward a relatively smaller Bragg 's angle as a result of solute atoms incorporation when compared with that of the base metal .", "entities": [{"name": "phase", "type": "concept or principle", "pos": [22, 27]}, {"name": "AM part", "type": "machine or equipment", "pos": [35, 42]}, {"name": "as", "type": "material", "pos": [103, 105]}, {"name": "solute atoms", "type": "material", "pos": [118, 130]}, {"name": "base metal", "type": "material", "pos": [176, 186]}]}, {"sentence": "AB-deposited microstructure consisted of martensite and ferrite , along with ( Fe , Cr ) 23C6 phase precipitated at α-Fe grain boundaries .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [13, 27]}, {"name": "martensite", "type": "material", "pos": [41, 51]}, {"name": "ferrite", "type": "material", "pos": [56, 63]}, {"name": "Fe", "type": "material", "pos": [79, 81]}, {"name": "Cr", "type": "material", "pos": [84, 86]}, {"name": "phase", "type": "concept or principle", "pos": [94, 99]}, {"name": "grain boundaries", "type": "concept or principle", "pos": [121, 137]}]}, {"sentence": "Martensite content increased gradually from the 5th layer to the 25th layers , indicating that metastable martensite partly decomposed into stable ferrite due to the carbon atoms diffusion .", "entities": [{"name": "Martensite", "type": "material", "pos": [0, 10]}, {"name": "layer", "type": "process parameter", "pos": [52, 57]}, {"name": "metastable", "type": "machanical property", "pos": [95, 105]}, {"name": "martensite", "type": "material", "pos": [106, 116]}, {"name": "ferrite", "type": "material", "pos": [147, 154]}, {"name": "carbon atoms", "type": "material", "pos": [166, 178]}]}, {"sentence": "The hardness and UTS changed slightly in the 05th–15th layers and then increased quickly from the 20th layer to the 25th layers at the expense of ductility ; the fracture process transformed from ductile ( 01st–10th layers ) to mixed-mode ( 15th–20th layers ) , and finally to brittle fracture ( 25th layer ) .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [4, 12]}, {"name": "UTS", "type": "machanical property", "pos": [17, 20]}, {"name": "layer", "type": "process parameter", "pos": [55, 60]}, {"name": "ductility", "type": "machanical property", "pos": [146, 155]}, {"name": "fracture", "type": "concept or principle", "pos": [162, 170]}, {"name": "ductile", "type": "machanical property", "pos": [196, 203]}, {"name": "brittle fracture", "type": "concept or principle", "pos": [277, 293]}, {"name": "layer", "type": "process parameter", "pos": [301, 306]}]}, {"sentence": "The findings above suggest that , despite the emergency of few pores and slightly inadequate ductility , this robotic CMT technology is a feasible method to obtain desired microstructures and enhanced mechanical properties for the WAAM 2Cr13 part in comparison with its aB-solutioned counterpart .", "entities": [{"name": "pores", "type": "machanical property", "pos": [63, 68]}, {"name": "ductility", "type": "machanical property", "pos": [93, 102]}, {"name": "CMT", "type": "manufacturing process", "pos": [118, 121]}, {"name": "microstructures", "type": "material", "pos": [172, 187]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [201, 222]}, {"name": "WAAM", "type": "manufacturing process", "pos": [231, 235]}]}, {"sentence": "An innovative and low cost additive layer manufacturing ( ALM ) process is used to produce γ-TiAl based alloy wall components .", "entities": [{"name": "additive layer manufacturing", "type": "manufacturing process", "pos": [27, 55]}, {"name": "ALM", "type": "manufacturing process", "pos": [58, 61]}, {"name": "process", "type": "concept or principle", "pos": [64, 71]}, {"name": "alloy", "type": "material", "pos": [104, 109]}, {"name": "components", "type": "machine or equipment", "pos": [115, 125]}]}, {"sentence": "Gas tungsten arc welding ( GTAW ) provides the heat source for this new approach , combined with in-situ alloying through separate feeding of commercially pure Ti and Al wires into the weld pool .", "entities": [{"name": "Gas tungsten arc welding", "type": "manufacturing process", "pos": [0, 24]}, {"name": "GTAW", "type": "manufacturing process", "pos": [27, 31]}, {"name": "heat source", "type": "concept or principle", "pos": [47, 58]}, {"name": "in-situ", "type": "concept or principle", "pos": [97, 104]}, {"name": "alloying", "type": "engineering feature", "pos": [105, 113]}, {"name": "Ti", "type": "material", "pos": [160, 162]}, {"name": "Al", "type": "material", "pos": [167, 169]}, {"name": "weld pool", "type": "concept or principle", "pos": [185, 194]}]}, {"sentence": "This paper investigates the morphology , microstructure and mechanical properties of the additively manufactured TiAl material , and how these are affected by the location within the manufactured component .", "entities": [{"name": "investigates", "type": "concept or principle", "pos": [11, 23]}, {"name": "morphology", "type": "concept or principle", "pos": [28, 38]}, {"name": "microstructure", "type": "concept or principle", "pos": [41, 55]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [60, 81]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [89, 112]}, {"name": "material", "type": "material", "pos": [118, 126]}, {"name": "manufactured", "type": "concept or principle", "pos": [183, 195]}, {"name": "component", "type": "machine or equipment", "pos": [196, 205]}]}, {"sentence": "The typical additively layer manufactured morphology exhibits epitaxial growth of columnar grains and several layer bands .", "entities": [{"name": "layer", "type": "process parameter", "pos": [23, 28]}, {"name": "morphology", "type": "concept or principle", "pos": [42, 52]}, {"name": "epitaxial", "type": "machanical property", "pos": [62, 71]}, {"name": "columnar grains", "type": "machanical property", "pos": [82, 97]}, {"name": "layer", "type": "process parameter", "pos": [110, 115]}]}, {"sentence": "The fabricated γ-TiAl based alloy consists of comparatively large α2 grains in the near-substrate region , fully lamellar colonies with various sizes and interdendritic γ structure in the intermediate layer bands , followed by fine dendrites and interdendritic γ phases in the top region .", "entities": [{"name": "fabricated", "type": "concept or principle", "pos": [4, 14]}, {"name": "alloy", "type": "material", "pos": [28, 33]}, {"name": "grains", "type": "concept or principle", "pos": [69, 75]}, {"name": "lamellar", "type": "concept or principle", "pos": [113, 121]}, {"name": "structure", "type": "concept or principle", "pos": [171, 180]}, {"name": "layer", "type": "process parameter", "pos": [201, 206]}, {"name": "dendrites", "type": "biomedical", "pos": [232, 241]}]}, {"sentence": "Microhardness measurements and tensile testing results indicated relatively homogeneous mechanical characteristics throughout the deposited material .", "entities": [{"name": "Microhardness", "type": "concept or principle", "pos": [0, 13]}, {"name": "tensile testing", "type": "process characterization", "pos": [31, 46]}, {"name": "homogeneous", "type": "concept or principle", "pos": [76, 87]}, {"name": "material", "type": "material", "pos": [140, 148]}]}, {"sentence": "The exception to this homogeneity occurs in the near-substrate region immediately adjacent to the pure Ti substrate used in these experiments , where the alloying process is not as well controlled as in the higher regions .", "entities": [{"name": "Ti substrate", "type": "material", "pos": [103, 115]}, {"name": "alloying", "type": "engineering feature", "pos": [154, 162]}, {"name": "as", "type": "material", "pos": [178, 180]}, {"name": "as", "type": "material", "pos": [197, 199]}]}, {"sentence": "The tensile properties are also different for the vertical ( build ) direction and horizontal ( travel ) direction because of the differing microstructure in each direction .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [4, 22]}, {"name": "vertical", "type": "concept or principle", "pos": [50, 58]}, {"name": "build", "type": "process parameter", "pos": [61, 66]}, {"name": "microstructure", "type": "concept or principle", "pos": [140, 154]}]}, {"sentence": "The microstructure variation and strengthening mechanisms resulting from the new manufacturing approach are analysed in detail .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "strengthening mechanisms", "type": "concept or principle", "pos": [33, 57]}, {"name": "manufacturing approach", "type": "manufacturing process", "pos": [81, 103]}]}, {"sentence": "The results demonstrate the potential to produce full density titanium aluminide components directly using the new additive layer manufacturing method .", "entities": [{"name": "density", "type": "machanical property", "pos": [54, 61]}, {"name": "components", "type": "machine or equipment", "pos": [81, 91]}, {"name": "additive layer manufacturing", "type": "manufacturing process", "pos": [115, 143]}]}, {"sentence": "Amorphous polymer melt is extruded and deposited filament-by-filament .", "entities": [{"name": "polymer melt", "type": "material", "pos": [10, 22]}, {"name": "extruded", "type": "manufacturing process", "pos": [26, 34]}]}, {"sentence": "Non-isothermal inter-diffusion from an anisotropic configuration is modelled .", "entities": [{"name": "anisotropic", "type": "machanical property", "pos": [39, 50]}]}, {"sentence": "Weld thickness ( ∼Rg ) is sufficient to achieve bulk mechanical strength at weld .", "entities": [{"name": "Weld thickness", "type": "process parameter", "pos": [0, 14]}, {"name": "mechanical strength", "type": "machanical property", "pos": [53, 72]}, {"name": "weld", "type": "engineering feature", "pos": [76, 80]}]}, {"sentence": "Reduced weld strength is attributed to a partially entangled structure .", "entities": [{"name": "weld strength", "type": "machanical property", "pos": [8, 21]}, {"name": "structure", "type": "concept or principle", "pos": [61, 70]}]}, {"sentence": "Although 3D printing has the potential to transform manufacturing processes , the strength of printed parts often does not rival that of traditionally-manufactured parts .", "entities": [{"name": "3D printing", "type": "manufacturing process", "pos": [9, 20]}, {"name": "manufacturing processes", "type": "manufacturing process", "pos": [52, 75]}, {"name": "strength", "type": "machanical property", "pos": [82, 90]}]}, {"sentence": "The fused-filament fabrication method involves melting a thermoplastic , followed by layer-by-layer extrusion of the molten viscoelastic material to fabricate a three-dimensional object .", "entities": [{"name": "fused-filament fabrication", "type": "manufacturing process", "pos": [4, 30]}, {"name": "melting", "type": "manufacturing process", "pos": [47, 54]}, {"name": "thermoplastic", "type": "material", "pos": [57, 70]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [85, 99]}, {"name": "extrusion", "type": "manufacturing process", "pos": [100, 109]}, {"name": "viscoelastic", "type": "machanical property", "pos": [124, 136]}, {"name": "material", "type": "material", "pos": [137, 145]}, {"name": "fabricate", "type": "manufacturing process", "pos": [149, 158]}, {"name": "three-dimensional", "type": "concept or principle", "pos": [161, 178]}]}, {"sentence": "The strength of the welds between layers is controlled by interdiffusion and entanglement of the melt across the interface .", "entities": [{"name": "strength", "type": "machanical property", "pos": [4, 12]}, {"name": "welds", "type": "engineering feature", "pos": [20, 25]}, {"name": "melt", "type": "concept or principle", "pos": [97, 101]}, {"name": "interface", "type": "concept or principle", "pos": [113, 122]}]}, {"sentence": "However , diffusion slows down as the printed layer cools towards the glass transition temperature .", "entities": [{"name": "diffusion", "type": "concept or principle", "pos": [10, 19]}, {"name": "as", "type": "material", "pos": [31, 33]}, {"name": "layer", "type": "process parameter", "pos": [46, 51]}, {"name": "glass transition temperature", "type": "concept or principle", "pos": [70, 98]}]}, {"sentence": "Diffusion is also affected by high shear rates in the nozzle , which significantly deform and disentangle the polymer microstructure prior to welding .", "entities": [{"name": "Diffusion", "type": "concept or principle", "pos": [0, 9]}, {"name": "nozzle", "type": "machine or equipment", "pos": [54, 60]}, {"name": "polymer", "type": "material", "pos": [110, 117]}, {"name": "microstructure", "type": "concept or principle", "pos": [118, 132]}, {"name": "welding", "type": "manufacturing process", "pos": [142, 149]}]}, {"sentence": "In this paper , we model non-isothermal polymer relaxation , entanglement recovery , and diffusion processes that occur post-extrusion to investigate the effects that typical printing conditions and amorphous ( non-crystalline ) polymer rheology have on the ultimate weld structure .", "entities": [{"name": "model", "type": "concept or principle", "pos": [19, 24]}, {"name": "polymer", "type": "material", "pos": [40, 47]}, {"name": "diffusion", "type": "concept or principle", "pos": [89, 98]}, {"name": "polymer", "type": "material", "pos": [229, 236]}, {"name": "weld", "type": "engineering feature", "pos": [267, 271]}, {"name": "structure", "type": "concept or principle", "pos": [272, 281]}]}, {"sentence": "Although we find the weld thickness to be of the order of the polymer size , the structure of the weld is anisotropic and relatively disentangled ; reduced mechanical strength at the weld is attributed to this lower degree of entanglement .", "entities": [{"name": "weld thickness", "type": "process parameter", "pos": [21, 35]}, {"name": "be", "type": "material", "pos": [39, 41]}, {"name": "polymer", "type": "material", "pos": [62, 69]}, {"name": "structure", "type": "concept or principle", "pos": [81, 90]}, {"name": "weld", "type": "engineering feature", "pos": [98, 102]}, {"name": "anisotropic", "type": "machanical property", "pos": [106, 117]}, {"name": "mechanical strength", "type": "machanical property", "pos": [156, 175]}, {"name": "weld", "type": "engineering feature", "pos": [183, 187]}]}, {"sentence": "The microstructures of Al alloy 6061 subjected to very-high-power ultrasonic additive manufacturing were systematically examined to understand the underlying ultrasonic welding mechanism .", "entities": [{"name": "microstructures", "type": "material", "pos": [4, 19]}, {"name": "Al alloy", "type": "material", "pos": [23, 31]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [66, 99]}, {"name": "ultrasonic welding", "type": "manufacturing process", "pos": [158, 176]}, {"name": "mechanism", "type": "concept or principle", "pos": [177, 186]}]}, {"sentence": "The microstructure of the weld interface between the metal tapes consisted of fine , equiaxed grains resulting from recrystallization , which is driven by simple shear deformation along the ultrasonically vibrating direction of the tape surface .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "weld", "type": "engineering feature", "pos": [26, 30]}, {"name": "interface", "type": "concept or principle", "pos": [31, 40]}, {"name": "metal", "type": "material", "pos": [53, 58]}, {"name": "equiaxed grains", "type": "concept or principle", "pos": [85, 100]}, {"name": "recrystallization", "type": "concept or principle", "pos": [116, 133]}, {"name": "simple", "type": "manufacturing process", "pos": [155, 161]}, {"name": "deformation", "type": "concept or principle", "pos": [168, 179]}, {"name": "surface", "type": "concept or principle", "pos": [237, 244]}]}, {"sentence": "Void formation at the weld interface is attributed to surface asperities resulting from pressure induced by the sonotrode at the initial tape deposition .", "entities": [{"name": "Void", "type": "concept or principle", "pos": [0, 4]}, {"name": "weld", "type": "engineering feature", "pos": [22, 26]}, {"name": "interface", "type": "concept or principle", "pos": [27, 36]}, {"name": "surface asperities", "type": "concept or principle", "pos": [54, 72]}, {"name": "pressure", "type": "concept or principle", "pos": [88, 96]}, {"name": "sonotrode", "type": "machine or equipment", "pos": [112, 121]}, {"name": "deposition", "type": "concept or principle", "pos": [142, 152]}]}, {"sentence": "Transmission electron microscopy revealed that Al–Al metallic bonding without surface oxide layers was mainly achieved , although some oxide clusters were locally observed at the original interface .", "entities": [{"name": "Transmission electron microscopy", "type": "process characterization", "pos": [0, 32]}, {"name": "metallic bonding", "type": "concept or principle", "pos": [53, 69]}, {"name": "surface", "type": "concept or principle", "pos": [78, 85]}, {"name": "oxide", "type": "material", "pos": [86, 91]}, {"name": "oxide", "type": "material", "pos": [135, 140]}, {"name": "interface", "type": "concept or principle", "pos": [188, 197]}]}, {"sentence": "The results suggest that the oxide layers were broken up and then locally clustered on the interface by ultrasonic vibration .", "entities": [{"name": "oxide", "type": "material", "pos": [29, 34]}, {"name": "interface", "type": "concept or principle", "pos": [91, 100]}, {"name": "ultrasonic vibration", "type": "process parameter", "pos": [104, 124]}]}, {"sentence": "A theoretical analysis of the metal transfer behaviour and bead shape formation using positional GMAW are provided .", "entities": [{"name": "theoretical", "type": "concept or principle", "pos": [2, 13]}, {"name": "metal", "type": "material", "pos": [30, 35]}, {"name": "bead", "type": "process characterization", "pos": [59, 63]}, {"name": "GMAW", "type": "manufacturing process", "pos": [97, 101]}]}, {"sentence": "The effects of various process parameters on the stability of positional deposition are investigated .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [23, 41]}, {"name": "stability", "type": "machanical property", "pos": [49, 58]}, {"name": "deposition", "type": "concept or principle", "pos": [73, 83]}]}, {"sentence": "The effectiveness of the proposed strategy is verified by three complex samples using a positional GMAW-WAAM process .", "entities": [{"name": "effectiveness", "type": "concept or principle", "pos": [4, 17]}, {"name": "samples", "type": "concept or principle", "pos": [72, 79]}, {"name": "process", "type": "concept or principle", "pos": [109, 116]}]}, {"sentence": "Robotic wire arc additive manufacturing ( WAAM ) technology has been widely employed to fabricate medium to large scale metallic components .", "entities": [{"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [8, 39]}, {"name": "WAAM", "type": "manufacturing process", "pos": [42, 46]}, {"name": "technology", "type": "concept or principle", "pos": [49, 59]}, {"name": "fabricate", "type": "manufacturing process", "pos": [88, 97]}, {"name": "metallic", "type": "material", "pos": [120, 128]}, {"name": "components", "type": "machine or equipment", "pos": [129, 139]}]}, {"sentence": "It has the advantages of high deposition rates and low cost .", "entities": [{"name": "high deposition rates", "type": "process parameter", "pos": [25, 46]}]}, {"sentence": "Ideally , the deposition process is carried out in a flat position .", "entities": [{"name": "deposition process", "type": "manufacturing process", "pos": [14, 32]}]}, {"sentence": "The build direction is vertically upward and perpendicular to a horizontal worktable .", "entities": [{"name": "build direction", "type": "process parameter", "pos": [4, 19]}]}, {"sentence": "However , it would be difficult to directly deposit complex parts with near horizontal ‘ overhangs ’ , and temporary supports may be required .", "entities": [{"name": "be", "type": "material", "pos": [19, 21]}, {"name": "overhangs", "type": "process parameter", "pos": [89, 98]}, {"name": "supports", "type": "application", "pos": [117, 125]}, {"name": "be", "type": "material", "pos": [130, 132]}]}, {"sentence": "Thus , it is necessary to find an alternative approach for the deposition of ‘ overhangs ’ without extra support in order to simplify the deposition set-up .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [63, 73]}, {"name": "overhangs", "type": "process parameter", "pos": [79, 88]}, {"name": "support", "type": "application", "pos": [105, 112]}, {"name": "deposition", "type": "concept or principle", "pos": [138, 148]}]}, {"sentence": "This paper proposed a fabrication method of producing metallic parts with overhanging structures using the multi-directional wire arc additive manufacturing .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [22, 33]}, {"name": "metallic parts", "type": "machine or equipment", "pos": [54, 68]}, {"name": "overhanging structures", "type": "concept or principle", "pos": [74, 96]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [125, 156]}]}, {"sentence": "Firstly , based on the metal droplet kinetics and weld bead geometry , two different Gas Metal Arc Welding ( GMAW ) metal transfer modes , namely short circuit transfer and free flight transfer , were evaluated for the multi-directional wire arc additive manufacturing .", "entities": [{"name": "metal", "type": "material", "pos": [23, 28]}, {"name": "droplet", "type": "concept or principle", "pos": [29, 36]}, {"name": "weld bead geometry", "type": "process parameter", "pos": [50, 68]}, {"name": "Gas Metal Arc Welding", "type": "manufacturing process", "pos": [85, 106]}, {"name": "GMAW", "type": "manufacturing process", "pos": [109, 113]}, {"name": "metal", "type": "material", "pos": [116, 121]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [237, 268]}]}, {"sentence": "Subsequently , the effects of process parameters , including wire feed speed ( WFS ) , torch travel speed ( TS ) , nozzle to work distance ( NTWD ) and torch angle , on the stability of positional deposition were investigated .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [30, 48]}, {"name": "feed", "type": "process parameter", "pos": [66, 70]}, {"name": "nozzle", "type": "machine or equipment", "pos": [115, 121]}, {"name": "stability", "type": "machanical property", "pos": [173, 182]}, {"name": "deposition", "type": "concept or principle", "pos": [197, 207]}]}, {"sentence": "Finally , the effectiveness of the proposed strategy was verified by fabricating three complex samples with overhangs .", "entities": [{"name": "effectiveness", "type": "concept or principle", "pos": [14, 27]}, {"name": "fabricating", "type": "manufacturing process", "pos": [69, 80]}, {"name": "samples", "type": "concept or principle", "pos": [95, 102]}, {"name": "overhangs", "type": "process parameter", "pos": [108, 117]}]}, {"sentence": "Wire Arc Additive Manufacturing underwent remarkable development in the past decade .", "entities": [{"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [0, 31]}]}, {"sentence": "In the present work effect of welding parameters on additively deposited layer width is investigated .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [30, 37]}, {"name": "parameters", "type": "concept or principle", "pos": [38, 48]}, {"name": "deposited layer", "type": "process characterization", "pos": [63, 78]}]}, {"sentence": "MIG welding is chosen for the present study and Inconel 825 having high industrial application is selected as wire spool .", "entities": [{"name": "MIG welding", "type": "manufacturing process", "pos": [0, 11]}, {"name": "Inconel", "type": "material", "pos": [48, 55]}, {"name": "industrial", "type": "application", "pos": [72, 82]}, {"name": "as", "type": "material", "pos": [107, 109]}, {"name": "spool", "type": "machine or equipment", "pos": [115, 120]}]}, {"sentence": "This paper is concentrating on the effect of weld parameters on additively deposited layer width using the Taguchi method .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [45, 49]}, {"name": "parameters", "type": "concept or principle", "pos": [50, 60]}, {"name": "deposited layer", "type": "process characterization", "pos": [75, 90]}, {"name": "Taguchi method", "type": "concept or principle", "pos": [107, 121]}]}, {"sentence": "Waviness , weld cracks , porosity , and discontinuity of weld bead of a surface can be reduced by selection and optimising the parameters ; otherwise , irregular shapes will come during the manufacturing of thin or thick wall construction by Wire Arc Additive Manufacturing .", "entities": [{"name": "Waviness", "type": "engineering feature", "pos": [0, 8]}, {"name": "weld", "type": "engineering feature", "pos": [11, 15]}, {"name": "porosity", "type": "machanical property", "pos": [25, 33]}, {"name": "weld bead", "type": "concept or principle", "pos": [57, 66]}, {"name": "surface", "type": "concept or principle", "pos": [72, 79]}, {"name": "be", "type": "material", "pos": [84, 86]}, {"name": "parameters", "type": "concept or principle", "pos": [127, 137]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [190, 203]}, {"name": "construction", "type": "application", "pos": [226, 238]}, {"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [242, 273]}]}, {"sentence": "L9 Orthogonal array is used in Taguchi for the experimentation to analyze input parameters , namely , Welding speed , Wire feed speed and Voltage .", "entities": [{"name": "parameters", "type": "concept or principle", "pos": [80, 90]}, {"name": "Welding", "type": "manufacturing process", "pos": [102, 109]}, {"name": "feed", "type": "process parameter", "pos": [123, 127]}]}, {"sentence": "Best parameter combination and significant parameters are obtained from the main effect plot and analysis of variance respectively .", "entities": [{"name": "parameter", "type": "concept or principle", "pos": [5, 14]}, {"name": "parameters", "type": "concept or principle", "pos": [43, 53]}]}, {"sentence": "A mathematical model on the response variable is generated using a linear regression model .", "entities": [{"name": "mathematical", "type": "concept or principle", "pos": [2, 14]}, {"name": "regression model", "type": "concept or principle", "pos": [74, 90]}]}, {"sentence": "At 0.55 m/min welding velocity , 4 m/min Wire feed speed and 18 V Voltage is having least bead Width of 3.07 mm length .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [14, 21]}, {"name": "feed", "type": "process parameter", "pos": [46, 50]}, {"name": "V", "type": "material", "pos": [64, 65]}, {"name": "bead Width", "type": "process characterization", "pos": [90, 100]}, {"name": "mm", "type": "manufacturing process", "pos": [109, 111]}]}, {"sentence": "0.25 m/min welding velocity , 8 m/min Wire feed speed and 28 V Voltage is having highest bead Width of 15.83 mm length .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [11, 18]}, {"name": "feed", "type": "process parameter", "pos": [43, 47]}, {"name": "V", "type": "material", "pos": [61, 62]}, {"name": "bead Width", "type": "process characterization", "pos": [89, 99]}, {"name": "mm", "type": "manufacturing process", "pos": [109, 111]}]}, {"sentence": "Confirmation tests are carried out after obtaining optimized parameters and results are correlated with obtained results .", "entities": [{"name": "parameters", "type": "concept or principle", "pos": [61, 71]}, {"name": "correlated", "type": "concept or principle", "pos": [88, 98]}]}, {"sentence": "Wire based Additive Manufacturing provides an attractive option to powder-based processes due to their high deposition rates .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [11, 33]}, {"name": "processes", "type": "concept or principle", "pos": [80, 89]}, {"name": "high deposition rates", "type": "process parameter", "pos": [103, 124]}]}, {"sentence": "In the present work effect of welding parameters on pre-positioned wire Electron Beam additively deposited layer width is investigated .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [30, 37]}, {"name": "parameters", "type": "concept or principle", "pos": [38, 48]}, {"name": "Electron Beam", "type": "concept or principle", "pos": [72, 85]}, {"name": "deposited layer", "type": "process characterization", "pos": [97, 112]}]}, {"sentence": "Electron Beam welding is chosen for the present study and Ti6Al4V having high aerospace application is selected as filler wire .", "entities": [{"name": "Electron Beam welding", "type": "manufacturing process", "pos": [0, 21]}, {"name": "Ti6Al4V", "type": "material", "pos": [58, 65]}, {"name": "aerospace", "type": "application", "pos": [78, 87]}, {"name": "as", "type": "material", "pos": [112, 114]}]}, {"sentence": "This paper concentrates on the effect of weld parameters on additively deposited layer width using the Taguchi method .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [41, 45]}, {"name": "parameters", "type": "concept or principle", "pos": [46, 56]}, {"name": "deposited layer", "type": "process characterization", "pos": [71, 86]}, {"name": "Taguchi method", "type": "concept or principle", "pos": [103, 117]}]}, {"sentence": "Unacceptable weld cracks , porosity , and discontinuity of weld bead of a surface can be reduced by selection and optimizing the parameters ; otherwise , irregular shapes will come during the manufacturing of thin or thick wall construction by Wire Electron Beam Additive Manufacturing .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [13, 17]}, {"name": "porosity", "type": "machanical property", "pos": [27, 35]}, {"name": "weld bead", "type": "concept or principle", "pos": [59, 68]}, {"name": "surface", "type": "concept or principle", "pos": [74, 81]}, {"name": "be", "type": "material", "pos": [86, 88]}, {"name": "parameters", "type": "concept or principle", "pos": [129, 139]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [192, 205]}, {"name": "construction", "type": "application", "pos": [228, 240]}, {"name": "Electron Beam Additive Manufacturing", "type": "manufacturing process", "pos": [249, 285]}]}, {"sentence": "L9 Orthogonal array is used in Taguchi for the experimentation to analyze input parameters , namely , Welding speed , Accelerating voltage and Beam current .", "entities": [{"name": "parameters", "type": "concept or principle", "pos": [80, 90]}, {"name": "Welding", "type": "manufacturing process", "pos": [102, 109]}, {"name": "Beam", "type": "machine or equipment", "pos": [143, 147]}]}, {"sentence": "Best parameter combination and significant parameters are obtained from the main effect plot and analysis of variance respectively .", "entities": [{"name": "parameter", "type": "concept or principle", "pos": [5, 14]}, {"name": "parameters", "type": "concept or principle", "pos": [43, 53]}]}, {"sentence": "A mathematical model on the response variable is generated using a linear regression model .", "entities": [{"name": "mathematical", "type": "concept or principle", "pos": [2, 14]}, {"name": "regression model", "type": "concept or principle", "pos": [74, 90]}]}, {"sentence": "At 700 mm/min welding speed , 138 kV accelerating voltage and 05 mA beam current is having least bead Width of 2.30222 mm length .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [14, 21]}, {"name": "beam", "type": "machine or equipment", "pos": [68, 72]}, {"name": "bead Width", "type": "process characterization", "pos": [97, 107]}, {"name": "mm", "type": "manufacturing process", "pos": [119, 121]}]}, {"sentence": "500 mm/min welding speed , 142 kV accelerating voltage and 09 mA beam current is having highest bead Width of 4.09 mm length .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [11, 18]}, {"name": "beam", "type": "machine or equipment", "pos": [65, 69]}, {"name": "bead Width", "type": "process characterization", "pos": [96, 106]}, {"name": "mm", "type": "manufacturing process", "pos": [115, 117]}]}, {"sentence": "Confirmation tests are carried out after obtaining optimized parameters and results are correlated with obtained results .", "entities": [{"name": "parameters", "type": "concept or principle", "pos": [61, 71]}, {"name": "correlated", "type": "concept or principle", "pos": [88, 98]}]}, {"sentence": "Comparison between laser welding and laser-based additive manufacturing parameters is established .", "entities": [{"name": "laser welding", "type": "manufacturing process", "pos": [19, 32]}, {"name": "laser-based additive manufacturing", "type": "manufacturing process", "pos": [37, 71]}]}, {"sentence": "Major process parameters during laser-based additive manufacturing and their influence are discussed .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [6, 24]}, {"name": "laser-based additive manufacturing", "type": "manufacturing process", "pos": [32, 66]}]}, {"sentence": "Remedies for avoid several problems found during additive manufacturing are proposed .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [49, 71]}]}, {"sentence": "As metallic additive manufacturing grew in sophistication , users have requested greater control over the systems , namely the ability to fully change the process parameters .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [12, 34]}, {"name": "process parameters", "type": "concept or principle", "pos": [155, 173]}]}, {"sentence": "The goal of this manuscript is to review the effects of major process parameters on build quality ( porosity , residual stress , and composition changes ) and materials properties ( microstructure and microsegregation ) , and to serve as a guide on how these parameters may be modified to achieve specific design goals for a given part .", "entities": [{"name": "manuscript", "type": "concept or principle", "pos": [17, 27]}, {"name": "process parameters", "type": "concept or principle", "pos": [62, 80]}, {"name": "build", "type": "process parameter", "pos": [84, 89]}, {"name": "porosity", "type": "machanical property", "pos": [100, 108]}, {"name": "residual stress", "type": "machanical property", "pos": [111, 126]}, {"name": "composition", "type": "concept or principle", "pos": [133, 144]}, {"name": "materials", "type": "concept or principle", "pos": [159, 168]}, {"name": "microstructure", "type": "concept or principle", "pos": [182, 196]}, {"name": "microsegregation", "type": "concept or principle", "pos": [201, 217]}, {"name": "as", "type": "material", "pos": [235, 237]}, {"name": "parameters", "type": "concept or principle", "pos": [259, 269]}, {"name": "be", "type": "material", "pos": [274, 276]}, {"name": "design", "type": "engineering feature", "pos": [306, 312]}]}, {"sentence": "The focus of this paper is on laser powder bed fusion , but elements can be applied to electron beam powder bed fusion or direct energy deposition techniques .", "entities": [{"name": "laser powder bed fusion", "type": "manufacturing process", "pos": [30, 53]}, {"name": "elements", "type": "material", "pos": [60, 68]}, {"name": "be", "type": "material", "pos": [73, 75]}, {"name": "electron beam", "type": "concept or principle", "pos": [87, 100]}, {"name": "bed fusion", "type": "manufacturing process", "pos": [108, 118]}, {"name": "direct energy deposition", "type": "manufacturing process", "pos": [122, 146]}]}, {"sentence": "Stellite-6 FSW tools were developed on H13 steel by additive manufacturing ( AM ) .", "entities": [{"name": "FSW", "type": "manufacturing process", "pos": [11, 14]}, {"name": "H13 steel", "type": "material", "pos": [39, 48]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [52, 74]}, {"name": "AM", "type": "manufacturing process", "pos": [77, 79]}]}, {"sentence": "Tool performance was evaluated in friction stir welding/ processing of CuCrZr .", "entities": [{"name": "Tool", "type": "machine or equipment", "pos": [0, 4]}, {"name": "performance", "type": "concept or principle", "pos": [5, 16]}, {"name": "friction", "type": "concept or principle", "pos": [34, 42]}]}, {"sentence": "No tool wear or plastic deformation was observed on Stellite-6 tool .", "entities": [{"name": "tool wear", "type": "concept or principle", "pos": [3, 12]}, {"name": "plastic deformation", "type": "machanical property", "pos": [16, 35]}, {"name": "tool", "type": "machine or equipment", "pos": [63, 67]}]}, {"sentence": "This performed better than H13 aB-received , heat treated and laser remelted tools .", "entities": [{"name": "H13", "type": "material", "pos": [27, 30]}, {"name": "heat", "type": "concept or principle", "pos": [45, 49]}, {"name": "laser", "type": "enabling technology", "pos": [62, 67]}, {"name": "tools", "type": "machine or equipment", "pos": [77, 82]}]}, {"sentence": "Tool wear and failure mechanism investigated in conventional and AM tools .", "entities": [{"name": "Tool wear", "type": "concept or principle", "pos": [0, 9]}, {"name": "failure mechanism", "type": "machanical property", "pos": [14, 31]}, {"name": "AM", "type": "manufacturing process", "pos": [65, 67]}]}, {"sentence": "In the recent time friction stir welding ( FSW ) , a solid state welding process has rapidly gained attention for joining high melting point materials like Cu , Fe , Ti and their alloys apart from Al alloys due to its several advantages over fusion welding techniques .", "entities": [{"name": "friction stir welding", "type": "manufacturing process", "pos": [19, 40]}, {"name": "FSW", "type": "manufacturing process", "pos": [43, 46]}, {"name": "solid state welding", "type": "manufacturing process", "pos": [53, 72]}, {"name": "process", "type": "concept or principle", "pos": [73, 80]}, {"name": "joining", "type": "manufacturing process", "pos": [114, 121]}, {"name": "melting point", "type": "machanical property", "pos": [127, 140]}, {"name": "materials", "type": "concept or principle", "pos": [141, 150]}, {"name": "Cu", "type": "material", "pos": [156, 158]}, {"name": "Fe", "type": "material", "pos": [161, 163]}, {"name": "Ti", "type": "material", "pos": [166, 168]}, {"name": "alloys", "type": "material", "pos": [179, 185]}, {"name": "Al alloys", "type": "material", "pos": [197, 206]}, {"name": "fusion welding", "type": "manufacturing process", "pos": [242, 256]}]}, {"sentence": "AISI H13 , a versatile chromium–molybdenum hot work hardened steel , has been the most commonly used as a tool material for aluminium alloys .", "entities": [{"name": "H13", "type": "material", "pos": [5, 8]}, {"name": "hardened", "type": "manufacturing process", "pos": [52, 60]}, {"name": "as", "type": "material", "pos": [70, 72]}, {"name": "tool", "type": "machine or equipment", "pos": [106, 110]}, {"name": "material", "type": "material", "pos": [111, 119]}, {"name": "aluminium alloys", "type": "material", "pos": [124, 140]}]}, {"sentence": "However , low tool life due to plastic deformation and wear at elevated temperatures is limiting its application in welding of high melting point materials .", "entities": [{"name": "tool life", "type": "concept or principle", "pos": [14, 23]}, {"name": "plastic deformation", "type": "machanical property", "pos": [31, 50]}, {"name": "wear", "type": "concept or principle", "pos": [55, 59]}, {"name": "temperatures", "type": "process parameter", "pos": [72, 84]}, {"name": "welding", "type": "manufacturing process", "pos": [116, 123]}, {"name": "melting point", "type": "machanical property", "pos": [132, 145]}, {"name": "materials", "type": "concept or principle", "pos": [146, 155]}]}, {"sentence": "In the present work the performances of aB-received , heat treated , laser remelted and Stellite 6 hardfaced H13 steel tools in friction stir processing ( FSP ) of CuCrZr have been investigated .", "entities": [{"name": "heat", "type": "concept or principle", "pos": [54, 58]}, {"name": "laser", "type": "enabling technology", "pos": [69, 74]}, {"name": "Stellite", "type": "material", "pos": [88, 96]}, {"name": "H13 steel", "type": "material", "pos": [109, 118]}, {"name": "friction", "type": "concept or principle", "pos": [128, 136]}]}, {"sentence": "Stellite 6 hardfaced FSW tools are developed by additive manufacturing ( AM ) process on H13 steel as a base material .", "entities": [{"name": "Stellite", "type": "material", "pos": [0, 8]}, {"name": "FSW", "type": "manufacturing process", "pos": [21, 24]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [48, 70]}, {"name": "AM", "type": "manufacturing process", "pos": [73, 75]}, {"name": "process", "type": "concept or principle", "pos": [78, 85]}, {"name": "H13 steel", "type": "material", "pos": [89, 98]}, {"name": "as", "type": "material", "pos": [99, 101]}, {"name": "material", "type": "material", "pos": [109, 117]}]}, {"sentence": "In all these cases except the Stellite 6 hardfaced tool , the shoulder and pin are found to deform plastically with significant wear of shoulder along with the diffusion of CuCrZr into tool from tool pin-shoulder interface .", "entities": [{"name": "Stellite", "type": "material", "pos": [30, 38]}, {"name": "tool", "type": "machine or equipment", "pos": [51, 55]}, {"name": "wear", "type": "concept or principle", "pos": [128, 132]}, {"name": "diffusion", "type": "concept or principle", "pos": [160, 169]}, {"name": "tool", "type": "machine or equipment", "pos": [185, 189]}, {"name": "tool", "type": "machine or equipment", "pos": [195, 199]}, {"name": "interface", "type": "concept or principle", "pos": [213, 222]}]}, {"sentence": "However , tools developed by AM process are found to remain intact without any significant deformation or wear .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [10, 15]}, {"name": "AM process", "type": "manufacturing process", "pos": [29, 39]}, {"name": "deformation", "type": "concept or principle", "pos": [91, 102]}, {"name": "wear", "type": "concept or principle", "pos": [106, 110]}]}, {"sentence": "GMAW ( Gas Metal Arc Welding ) of titanium is not currently used in industry due to the high levels of spatter generation , the wandering of the welding arc and the consequent waviness of the weld bead .", "entities": [{"name": "GMAW", "type": "manufacturing process", "pos": [0, 4]}, {"name": "Gas Metal Arc Welding", "type": "manufacturing process", "pos": [7, 28]}, {"name": "titanium", "type": "material", "pos": [34, 42]}, {"name": "industry", "type": "application", "pos": [68, 76]}, {"name": "spatter", "type": "process characterization", "pos": [103, 110]}, {"name": "welding", "type": "manufacturing process", "pos": [145, 152]}, {"name": "arc", "type": "concept or principle", "pos": [153, 156]}, {"name": "waviness", "type": "engineering feature", "pos": [176, 184]}, {"name": "weld bead", "type": "concept or principle", "pos": [192, 201]}]}, {"sentence": "This paper reports on the use of laser welding in conduction mode to stabilize the CMT ( Cold Metal Transfer ) , a low heat input GMAW process .", "entities": [{"name": "laser welding", "type": "manufacturing process", "pos": [33, 46]}, {"name": "CMT", "type": "manufacturing process", "pos": [83, 86]}, {"name": "Cold Metal Transfer", "type": "manufacturing process", "pos": [89, 108]}, {"name": "heat", "type": "concept or principle", "pos": [119, 123]}, {"name": "GMAW", "type": "manufacturing process", "pos": [130, 134]}]}, {"sentence": "The stabilization and reshaping of Ti-6Al-4 V weld beads was verified for laser hybrid GMAW bead on plate deposition .", "entities": [{"name": "stabilization", "type": "concept or principle", "pos": [4, 17]}, {"name": "Ti-6Al-4 V", "type": "material", "pos": [35, 45]}, {"name": "beads", "type": "process characterization", "pos": [51, 56]}, {"name": "laser", "type": "enabling technology", "pos": [74, 79]}, {"name": "GMAW", "type": "manufacturing process", "pos": [87, 91]}, {"name": "bead", "type": "process characterization", "pos": [92, 96]}, {"name": "deposition", "type": "concept or principle", "pos": [106, 116]}]}, {"sentence": "The laser beam was defocused , used in conduction mode , and was positioned concentric with the welding wire and the welding arc ( CMT ) .Finally , the results obtained for bead-on-plate welding were applied to an additively manufactured structure , in which a laser-hybrid stabilized sample was built and then evaluated against CMT-only sample .", "entities": [{"name": "laser beam", "type": "concept or principle", "pos": [4, 14]}, {"name": "welding", "type": "manufacturing process", "pos": [96, 103]}, {"name": "welding", "type": "manufacturing process", "pos": [117, 124]}, {"name": "arc", "type": "concept or principle", "pos": [125, 128]}, {"name": "CMT", "type": "manufacturing process", "pos": [131, 134]}, {"name": "welding", "type": "manufacturing process", "pos": [187, 194]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [214, 237]}, {"name": "sample", "type": "concept or principle", "pos": [285, 291]}, {"name": "sample", "type": "concept or principle", "pos": [338, 344]}]}, {"sentence": "This work reveals that laser can be used to stabilize the welding process , improve the weld-bead shape of single and multiple layer depositions and increase the deposition rate of additive manufacture of Ti-6Al-4 V from1.7 kg/h to 2.0 kg/h .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [23, 28]}, {"name": "be", "type": "material", "pos": [33, 35]}, {"name": "welding", "type": "manufacturing process", "pos": [58, 65]}, {"name": "process", "type": "concept or principle", "pos": [66, 73]}, {"name": "weld-bead", "type": "engineering feature", "pos": [88, 97]}, {"name": "layer", "type": "process parameter", "pos": [127, 132]}, {"name": "deposition rate", "type": "process parameter", "pos": [162, 177]}, {"name": "additive manufacture", "type": "manufacturing process", "pos": [181, 201]}, {"name": "Ti-6Al-4 V", "type": "material", "pos": [205, 215]}]}, {"sentence": "Additive Manufacturing is an established process group that includes various technologies .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "process", "type": "concept or principle", "pos": [41, 48]}, {"name": "technologies", "type": "concept or principle", "pos": [77, 89]}]}, {"sentence": "In contrast to subtractive methods , complex components can be produced by applying layers of construction materials .", "entities": [{"name": "subtractive", "type": "manufacturing process", "pos": [15, 26]}, {"name": "components", "type": "machine or equipment", "pos": [45, 55]}, {"name": "be", "type": "material", "pos": [60, 62]}, {"name": "construction", "type": "application", "pos": [94, 106]}]}, {"sentence": "In accordance with the standard VDI Guideline 3405 , additive manufacturing technologies can be differentiated into wire- and powder-based technologies .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [23, 31]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [53, 75]}, {"name": "be", "type": "material", "pos": [93, 95]}, {"name": "technologies", "type": "concept or principle", "pos": [139, 151]}]}, {"sentence": "The basis for these experimental investigations is a Wire Arc Additive Manufacturing ( WAAM ) process with a high build-up rate ( Cold Metal Transfer - CMT ) to produce a rectangular thin-walled component made of G4Si1 ( 1.5130 ) .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [20, 32]}, {"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [53, 84]}, {"name": "WAAM", "type": "manufacturing process", "pos": [87, 91]}, {"name": "process", "type": "concept or principle", "pos": [94, 101]}, {"name": "Cold Metal Transfer", "type": "manufacturing process", "pos": [130, 149]}, {"name": "CMT", "type": "manufacturing process", "pos": [152, 155]}, {"name": "thin-walled component", "type": "application", "pos": [183, 204]}]}, {"sentence": "In order to analyze the influence of a subsequent forming process on the microstructural properties and the forming behavior of the components , compression tests were carried out .", "entities": [{"name": "forming process", "type": "manufacturing process", "pos": [50, 65]}, {"name": "microstructural", "type": "concept or principle", "pos": [73, 88]}, {"name": "forming", "type": "manufacturing process", "pos": [108, 115]}, {"name": "components", "type": "machine or equipment", "pos": [132, 142]}, {"name": "compression tests", "type": "process characterization", "pos": [145, 162]}]}, {"sentence": "Therefore , cylindrical specimens were made out of the additively manufactured components by machining .", "entities": [{"name": "cylindrical", "type": "concept or principle", "pos": [12, 23]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [55, 78]}, {"name": "machining", "type": "manufacturing process", "pos": [93, 102]}]}, {"sentence": "To be able to take a possible anisotropy in the workpiece caused by the multi-layer welding into account , the samples were taken both along and across the welding direction .", "entities": [{"name": "be", "type": "material", "pos": [3, 5]}, {"name": "anisotropy", "type": "machanical property", "pos": [30, 40]}, {"name": "workpiece", "type": "concept or principle", "pos": [48, 57]}, {"name": "welding", "type": "manufacturing process", "pos": [84, 91]}, {"name": "samples", "type": "concept or principle", "pos": [111, 118]}, {"name": "welding", "type": "manufacturing process", "pos": [156, 163]}]}, {"sentence": "To evaluate the inhomogeneous component properties , cast specimens with a representative microstructure were produced by inductive melting of the filler material and subsequent a solidification with an appropriate cooling rate .", "entities": [{"name": "component", "type": "machine or equipment", "pos": [30, 39]}, {"name": "cast", "type": "manufacturing process", "pos": [53, 57]}, {"name": "microstructure", "type": "concept or principle", "pos": [90, 104]}, {"name": "melting", "type": "manufacturing process", "pos": [132, 139]}, {"name": "material", "type": "material", "pos": [154, 162]}, {"name": "solidification", "type": "concept or principle", "pos": [180, 194]}, {"name": "cooling rate", "type": "process parameter", "pos": [215, 227]}]}, {"sentence": "In addition to the cold forming of the additively manufactured components , the investigation also includes hot forming and the influence of a corresponding heat treatment .", "entities": [{"name": "cold forming", "type": "manufacturing process", "pos": [19, 31]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [39, 62]}, {"name": "hot forming", "type": "manufacturing process", "pos": [108, 119]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [157, 171]}]}, {"sentence": "The experimental examination was completed by the analysis of the microstructure of each material state.The aim of the research work was to prove the homogenization and optimization of the mechanical properties of additive manufactured components due to a subsequent forming process .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "microstructure", "type": "concept or principle", "pos": [66, 80]}, {"name": "material", "type": "material", "pos": [89, 97]}, {"name": "research", "type": "concept or principle", "pos": [119, 127]}, {"name": "homogenization", "type": "manufacturing process", "pos": [150, 164]}, {"name": "optimization", "type": "concept or principle", "pos": [169, 181]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [189, 210]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [214, 235]}, {"name": "forming process", "type": "manufacturing process", "pos": [267, 282]}]}, {"sentence": "Highlight An experimental work to investigate the formation of the humping phenomena in the positional deposition using WAAM .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [13, 25]}, {"name": "deposition", "type": "concept or principle", "pos": [103, 113]}, {"name": "WAAM", "type": "manufacturing process", "pos": [120, 124]}]}, {"sentence": "Mechanism of humping formation is analysed to explain humping occurrence for positional deposition .", "entities": [{"name": "Mechanism", "type": "concept or principle", "pos": [0, 9]}, {"name": "deposition", "type": "concept or principle", "pos": [88, 98]}]}, {"sentence": "The impacts of welding parameters and positions on humping formation are investigated through a series of tests .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [15, 22]}, {"name": "parameters", "type": "concept or principle", "pos": [23, 33]}]}, {"sentence": "A series of guidelines are summarised to assist the path planning and process parameter selection processes in multi-directional WAAM .", "entities": [{"name": "path planning", "type": "enabling technology", "pos": [52, 65]}, {"name": "process parameter", "type": "concept or principle", "pos": [70, 87]}, {"name": "processes", "type": "concept or principle", "pos": [98, 107]}, {"name": "WAAM", "type": "manufacturing process", "pos": [129, 133]}]}, {"sentence": "Wire Arc Additive Manufacturing ( WAAM ) is a promising technology for fabricating medium to large scale metallic parts with excellent productivity and flexibility .", "entities": [{"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "WAAM", "type": "manufacturing process", "pos": [34, 38]}, {"name": "technology", "type": "concept or principle", "pos": [56, 66]}, {"name": "fabricating", "type": "manufacturing process", "pos": [71, 82]}, {"name": "metallic parts", "type": "machine or equipment", "pos": [105, 119]}, {"name": "productivity", "type": "concept or principle", "pos": [135, 147]}, {"name": "flexibility", "type": "machanical property", "pos": [152, 163]}]}, {"sentence": "Due to the positional capability of some welding processes , WAAM is able to deposit parts with overhanging features in an arbitrary direction without additional support structures .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [41, 48]}, {"name": "processes", "type": "concept or principle", "pos": [49, 58]}, {"name": "WAAM", "type": "manufacturing process", "pos": [61, 65]}, {"name": "overhanging features", "type": "engineering feature", "pos": [96, 116]}, {"name": "support structures", "type": "engineering feature", "pos": [162, 180]}]}, {"sentence": "There has been significant research on the humping phenomenon in the downhand welding , but it is doubtful whether the existing theories of humping formation can be applied in the positional deposition during WAAM process .", "entities": [{"name": "research", "type": "concept or principle", "pos": [27, 35]}, {"name": "welding", "type": "manufacturing process", "pos": [78, 85]}, {"name": "be", "type": "material", "pos": [162, 164]}, {"name": "deposition", "type": "concept or principle", "pos": [191, 201]}, {"name": "WAAM", "type": "manufacturing process", "pos": [209, 213]}, {"name": "process", "type": "concept or principle", "pos": [214, 221]}]}, {"sentence": "This study has therefore provided an experimental work to investigate the formation of the humping phenomena in the positional deposition during additive manufacturing with the gas metal arc welding .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [37, 49]}, {"name": "deposition", "type": "concept or principle", "pos": [127, 137]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [145, 167]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [177, 198]}]}, {"sentence": "Firstly , the mechanism of humping formation was analysed to explain humping occurrence for positional deposition .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [14, 23]}, {"name": "deposition", "type": "concept or principle", "pos": [103, 113]}]}, {"sentence": "Then , the mechanism was validated through experiments with different welding parameters and positions .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [11, 20]}, {"name": "welding", "type": "manufacturing process", "pos": [70, 77]}, {"name": "parameters", "type": "concept or principle", "pos": [78, 88]}]}, {"sentence": "Finally , a series of guidelines are summarised to assist the path planning and process parameter selection processes in multi-directional WAAM .", "entities": [{"name": "path planning", "type": "enabling technology", "pos": [62, 75]}, {"name": "process parameter", "type": "concept or principle", "pos": [80, 97]}, {"name": "processes", "type": "concept or principle", "pos": [108, 117]}, {"name": "WAAM", "type": "manufacturing process", "pos": [139, 143]}]}, {"sentence": "Automated weld deposition coupled with the real-time robotic NDT is discussed .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [10, 14]}, {"name": "deposition", "type": "concept or principle", "pos": [15, 25]}, {"name": "NDT", "type": "concept or principle", "pos": [61, 64]}]}, {"sentence": "An intentionally embedded defect , a tungsten rod , is introduced for verification .", "entities": [{"name": "defect", "type": "concept or principle", "pos": [26, 32]}, {"name": "tungsten", "type": "material", "pos": [37, 45]}, {"name": "rod", "type": "machine or equipment", "pos": [46, 49]}, {"name": "verification", "type": "concept or principle", "pos": [70, 82]}]}, {"sentence": "A partially-filled groove sample is also manufactured and ultrasonically tested .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [26, 32]}, {"name": "manufactured", "type": "concept or principle", "pos": [41, 53]}]}, {"sentence": "For performance verification of the in-process inspection system , an intentionally embedded defect , a tungsten rod , is introduced into the multi-pass weld .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [4, 15]}, {"name": "inspection", "type": "process characterization", "pos": [47, 57]}, {"name": "defect", "type": "concept or principle", "pos": [93, 99]}, {"name": "tungsten", "type": "material", "pos": [104, 112]}, {"name": "rod", "type": "machine or equipment", "pos": [113, 116]}, {"name": "weld", "type": "engineering feature", "pos": [153, 157]}]}, {"sentence": "A partially-filled groove ( staircase ) sample is also manufactured and ultrasonically tested to calibrate the real-time inspection implemented on all seven layers of the weld which are deposited progressively .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [40, 46]}, {"name": "manufactured", "type": "concept or principle", "pos": [55, 67]}, {"name": "inspection", "type": "process characterization", "pos": [121, 131]}, {"name": "weld", "type": "engineering feature", "pos": [171, 175]}]}, {"sentence": "The tungsten rod is successfully detected in the real-time NDE of the deposited position .", "entities": [{"name": "tungsten", "type": "material", "pos": [4, 12]}, {"name": "rod", "type": "machine or equipment", "pos": [13, 16]}]}, {"sentence": "Non-weldable Ni-based superalloy Alloy713ELC could be fabricated by electron beam melting .", "entities": [{"name": "be", "type": "material", "pos": [51, 53]}, {"name": "electron beam melting", "type": "manufacturing process", "pos": [68, 89]}]}, {"sentence": "Process condition could be efficiently optimized by using support vector machine .", "entities": [{"name": "Process", "type": "concept or principle", "pos": [0, 7]}, {"name": "be", "type": "material", "pos": [24, 26]}, {"name": "support", "type": "application", "pos": [58, 65]}, {"name": "machine", "type": "machine or equipment", "pos": [73, 80]}]}, {"sentence": "Additive manufactured Alloy713ELC showed columnar grain along building direction .", "entities": [{"name": "Additive manufactured", "type": "manufacturing process", "pos": [0, 21]}, {"name": "columnar grain", "type": "machanical property", "pos": [41, 55]}, {"name": "building direction", "type": "process parameter", "pos": [62, 80]}]}, {"sentence": "Additive manufactured Alloy713ELC showed good ductility along building direction .", "entities": [{"name": "Additive manufactured", "type": "manufacturing process", "pos": [0, 21]}, {"name": "ductility", "type": "machanical property", "pos": [46, 55]}, {"name": "building direction", "type": "process parameter", "pos": [62, 80]}]}, {"sentence": "Additive manufactured Alloy713ELC showed good creep properties along building direction .", "entities": [{"name": "Additive manufactured", "type": "manufacturing process", "pos": [0, 21]}, {"name": "creep", "type": "machanical property", "pos": [46, 51]}, {"name": "building direction", "type": "process parameter", "pos": [69, 87]}]}, {"sentence": "An efficient optimization method based on a support vector machine ( SVM ) is used to optimize multiple process parameters of selective electron beam melting ( SEBM ) for a non-weldable nickel-base superalloy Alloy713ELC .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [13, 25]}, {"name": "support", "type": "application", "pos": [44, 51]}, {"name": "machine", "type": "machine or equipment", "pos": [59, 66]}, {"name": "process parameters", "type": "concept or principle", "pos": [104, 122]}, {"name": "selective electron beam melting", "type": "manufacturing process", "pos": [126, 157]}, {"name": "SEBM", "type": "manufacturing process", "pos": [160, 164]}, {"name": "nickel-base superalloy", "type": "material", "pos": [186, 208]}]}, {"sentence": "The global optimum condition and the near optimum conditions are extracted to fabricate SEBM samples .", "entities": [{"name": "extracted", "type": "concept or principle", "pos": [65, 74]}, {"name": "fabricate", "type": "manufacturing process", "pos": [78, 87]}, {"name": "samples", "type": "concept or principle", "pos": [93, 100]}]}, {"sentence": "All the SVM optimized conditions lead to near net shaped samples with even top surfaces .", "entities": [{"name": "lead", "type": "material", "pos": [33, 37]}, {"name": "samples", "type": "concept or principle", "pos": [57, 64]}, {"name": "surfaces", "type": "concept or principle", "pos": [79, 87]}]}, {"sentence": "The sample fabricated under the global optimum condition for sample dimension of 10 mm exhibits pore-less crosB-sections , columnar grains with fine γ′ precipitates and fine substructure , a small amount of grain boundary crack and excellent room temperature tensile properties .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [4, 10]}, {"name": "fabricated", "type": "concept or principle", "pos": [11, 21]}, {"name": "sample", "type": "concept or principle", "pos": [61, 67]}, {"name": "dimension", "type": "engineering feature", "pos": [68, 77]}, {"name": "mm", "type": "manufacturing process", "pos": [84, 86]}, {"name": "crosB-sections", "type": "concept or principle", "pos": [106, 120]}, {"name": "columnar grains", "type": "machanical property", "pos": [123, 138]}, {"name": "precipitates", "type": "material", "pos": [152, 164]}, {"name": "grain boundary crack", "type": "machanical property", "pos": [207, 227]}, {"name": "temperature", "type": "process parameter", "pos": [247, 258]}, {"name": "properties", "type": "concept or principle", "pos": [267, 277]}]}, {"sentence": "The samples fabricated under the global optimum condition and a near optimum condition with increased beam current for sample dimension of 15 mm exhibit excellent creep properties under 980 °C .", "entities": [{"name": "samples fabricated", "type": "concept or principle", "pos": [4, 22]}, {"name": "beam", "type": "machine or equipment", "pos": [102, 106]}, {"name": "sample", "type": "concept or principle", "pos": [119, 125]}, {"name": "dimension", "type": "engineering feature", "pos": [126, 135]}, {"name": "mm", "type": "manufacturing process", "pos": [142, 144]}, {"name": "creep", "type": "machanical property", "pos": [163, 168]}]}, {"sentence": "In both the two situations for sample dimensions of 10 mm and 15 mm , SEBM samples with mechanical properties superior to conventional cast alloys can be achieved by testing only 1–3 SVM optimized conditions .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [31, 37]}, {"name": "dimensions", "type": "engineering feature", "pos": [38, 48]}, {"name": "mm", "type": "manufacturing process", "pos": [55, 57]}, {"name": "mm", "type": "manufacturing process", "pos": [65, 67]}, {"name": "SEBM", "type": "manufacturing process", "pos": [70, 74]}, {"name": "samples", "type": "concept or principle", "pos": [75, 82]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [88, 109]}, {"name": "cast", "type": "manufacturing process", "pos": [135, 139]}, {"name": "alloys", "type": "material", "pos": [140, 146]}, {"name": "be", "type": "material", "pos": [151, 153]}, {"name": "testing", "type": "process characterization", "pos": [166, 173]}]}, {"sentence": "We demonstrate the current method is effective for optimizing SEBM process , especially when multiple parameters need to be considered simultaneously .", "entities": [{"name": "SEBM", "type": "manufacturing process", "pos": [62, 66]}, {"name": "process", "type": "concept or principle", "pos": [67, 74]}, {"name": "parameters", "type": "concept or principle", "pos": [102, 112]}, {"name": "be", "type": "material", "pos": [121, 123]}]}, {"sentence": "Besides , this method can rapidly provide not only a batch of conditions leading to samples with good top surfaces but also the optimum conditions leading to good building quality and superior mechanical properties .", "entities": [{"name": "samples", "type": "concept or principle", "pos": [84, 91]}, {"name": "surfaces", "type": "concept or principle", "pos": [106, 114]}, {"name": "quality", "type": "concept or principle", "pos": [172, 179]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [193, 214]}]}, {"sentence": "In gas tungsten arc welding ( GTAW ) based additive manufacturing ( AM ) , omni-directional deposition with side feeding is common when depositing complex parts , which is different from the gas metal arc welding ( GMAW ) .", "entities": [{"name": "gas tungsten arc welding", "type": "manufacturing process", "pos": [3, 27]}, {"name": "GTAW", "type": "manufacturing process", "pos": [30, 34]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [43, 65]}, {"name": "AM", "type": "manufacturing process", "pos": [68, 70]}, {"name": "deposition", "type": "concept or principle", "pos": [92, 102]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [191, 212]}, {"name": "GMAW", "type": "manufacturing process", "pos": [215, 219]}]}, {"sentence": "While side feeding may lead to unstable deposition process and deposition deviation .", "entities": [{"name": "lead", "type": "material", "pos": [23, 27]}, {"name": "deposition process", "type": "manufacturing process", "pos": [40, 58]}, {"name": "deposition", "type": "concept or principle", "pos": [63, 73]}]}, {"sentence": "In this paper , a wire melting simulation model was established to analyse the behaviour of the wire in the arc column .", "entities": [{"name": "melting", "type": "manufacturing process", "pos": [23, 30]}, {"name": "model", "type": "concept or principle", "pos": [42, 47]}, {"name": "arc", "type": "concept or principle", "pos": [108, 111]}]}, {"sentence": "An index of weld bead offset tolerance capacity is proposed to quantitatively analyse the sensitivity of the weld bead offset to the wire feed speed .", "entities": [{"name": "weld bead offset", "type": "process parameter", "pos": [12, 28]}, {"name": "tolerance capacity", "type": "process parameter", "pos": [29, 47]}, {"name": "quantitatively", "type": "concept or principle", "pos": [63, 77]}, {"name": "sensitivity", "type": "process parameter", "pos": [90, 101]}, {"name": "weld bead offset", "type": "process parameter", "pos": [109, 125]}, {"name": "feed", "type": "process parameter", "pos": [138, 142]}]}, {"sentence": "Single-layer experiments were conducted to analyse the relationships between the deposition parameters and the weld melting/bead offset .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [81, 91]}, {"name": "weld", "type": "engineering feature", "pos": [111, 115]}, {"name": "offset", "type": "concept or principle", "pos": [129, 135]}]}, {"sentence": "A multi-layer sample with an actual usable area ratio of 95.11 % was deposited by using the proposed model and the optimized deposition parameters .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [14, 20]}, {"name": "area", "type": "process parameter", "pos": [43, 47]}, {"name": "model", "type": "concept or principle", "pos": [101, 106]}, {"name": "deposition", "type": "concept or principle", "pos": [125, 135]}]}, {"sentence": "The experimental results show that the control of the weld melting offset is the key factor in realizing the stability and accuracy of omni-directional GTAW-based AM .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "weld", "type": "engineering feature", "pos": [54, 58]}, {"name": "melting", "type": "manufacturing process", "pos": [59, 66]}, {"name": "stability", "type": "machanical property", "pos": [109, 118]}, {"name": "accuracy", "type": "process characterization", "pos": [123, 131]}, {"name": "AM", "type": "manufacturing process", "pos": [163, 165]}]}, {"sentence": "Advancement in manufacturing technology , prototyping , machining etc .", "entities": [{"name": "manufacturing technology", "type": "manufacturing process", "pos": [15, 39]}, {"name": "prototyping", "type": "concept or principle", "pos": [42, 53]}, {"name": "machining", "type": "manufacturing process", "pos": [56, 65]}]}, {"sentence": "are concerned with material optimization , process optimization , financial optimization and sustainable development .", "entities": [{"name": "material", "type": "material", "pos": [19, 27]}, {"name": "process optimization", "type": "concept or principle", "pos": [43, 63]}, {"name": "optimization", "type": "concept or principle", "pos": [76, 88]}, {"name": "sustainable", "type": "concept or principle", "pos": [93, 104]}]}, {"sentence": "The current review on characterization , applications and process study of various additive manufacturing ( AM ) processes deals with the systematic use of resources in product development .", "entities": [{"name": "process", "type": "concept or principle", "pos": [58, 65]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [83, 105]}, {"name": "AM", "type": "manufacturing process", "pos": [108, 110]}, {"name": "processes", "type": "concept or principle", "pos": [113, 122]}, {"name": "product development", "type": "concept or principle", "pos": [169, 188]}]}, {"sentence": "The comprehensive description on additive manufacturing techniques , its applications and needs are illustrated .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [33, 55]}]}, {"sentence": "The attempt is to diagnose the research gap in the process study and to forecast the new methodology and applications in the all the field like automobile , aerospace , biomedical etc .", "entities": [{"name": "research", "type": "concept or principle", "pos": [31, 39]}, {"name": "process", "type": "concept or principle", "pos": [51, 58]}, {"name": "methodology", "type": "concept or principle", "pos": [89, 100]}, {"name": "automobile", "type": "application", "pos": [144, 154]}, {"name": "aerospace", "type": "application", "pos": [157, 166]}, {"name": "biomedical", "type": "application", "pos": [169, 179]}]}, {"sentence": "through AM .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [8, 10]}]}, {"sentence": "The tool making for friction stir welding purpose , complex geometries , etc .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [4, 8]}, {"name": "friction stir welding", "type": "manufacturing process", "pos": [20, 41]}, {"name": "complex geometries", "type": "concept or principle", "pos": [52, 70]}]}, {"sentence": "were fabricated without increasing the overall cost through AM techniques .", "entities": [{"name": "fabricated", "type": "concept or principle", "pos": [5, 15]}, {"name": "AM techniques", "type": "manufacturing process", "pos": [60, 73]}]}, {"sentence": "The applications of AM techniques in composite based materials are also characterized .", "entities": [{"name": "AM techniques", "type": "manufacturing process", "pos": [20, 33]}, {"name": "composite", "type": "material", "pos": [37, 46]}, {"name": "materials", "type": "concept or principle", "pos": [53, 62]}]}, {"sentence": "The comparative analysis between subtractive and additive manufacturing are highlighted and future scope is tried to identify .", "entities": [{"name": "subtractive", "type": "manufacturing process", "pos": [33, 44]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [49, 71]}]}, {"sentence": "Internal defects in additive manufactured Mo are analyzed .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [9, 16]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [20, 41]}]}, {"sentence": "3D Computed Tomography is used to analyze the 3D information .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [0, 2]}, {"name": "3D", "type": "concept or principle", "pos": [46, 48]}]}, {"sentence": "Volume and sphericity distribution of defects are studied .", "entities": [{"name": "Volume", "type": "concept or principle", "pos": [0, 6]}, {"name": "distribution", "type": "concept or principle", "pos": [22, 34]}, {"name": "defects", "type": "concept or principle", "pos": [38, 45]}]}, {"sentence": "Formation mechanisms of different internal defects are proposed .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [43, 50]}]}, {"sentence": "Relationship between defects and process parameters is disclosed .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [21, 28]}, {"name": "process parameters", "type": "concept or principle", "pos": [33, 51]}]}, {"sentence": "Molybdenum ( Mo ) is an important high-temperature structural material but has poor processability .", "entities": [{"name": "Molybdenum", "type": "material", "pos": [0, 10]}, {"name": "Mo", "type": "material", "pos": [13, 15]}, {"name": "material", "type": "material", "pos": [62, 70]}]}, {"sentence": "Additive manufacturing ( AM ) leads to a new possibility of fabricating Mo structural parts .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "fabricating", "type": "manufacturing process", "pos": [60, 71]}]}, {"sentence": "However , a large number of internal defects appear during welding and AM processes in Mo and its alloys , which is far from well understood and has greatly limited their application .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [37, 44]}, {"name": "welding", "type": "manufacturing process", "pos": [59, 66]}, {"name": "AM processes", "type": "manufacturing process", "pos": [71, 83]}, {"name": "Mo", "type": "material", "pos": [87, 89]}, {"name": "alloys", "type": "material", "pos": [98, 104]}]}, {"sentence": "In this paper , the formation and evolution mechanisms of internal defects in Mo are systematically studied , based on the state-of-the-art high-resolution computed tomography .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [34, 43]}, {"name": "defects", "type": "concept or principle", "pos": [67, 74]}, {"name": "Mo", "type": "material", "pos": [78, 80]}, {"name": "state-of-the-art", "type": "concept or principle", "pos": [123, 139]}, {"name": "high-resolution", "type": "process parameter", "pos": [140, 155]}, {"name": "computed tomography", "type": "process characterization", "pos": [156, 175]}]}, {"sentence": "This study demonstrates three main types of defects in Mo : ( 1 ) small spherical pores ; ( 2 ) inverted pear-shaped pores ; and ( 3 ) cavities .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [44, 51]}, {"name": "Mo", "type": "material", "pos": [55, 57]}, {"name": "spherical", "type": "concept or principle", "pos": [72, 81]}, {"name": "pores", "type": "machanical property", "pos": [82, 87]}, {"name": "pores", "type": "machanical property", "pos": [117, 122]}]}, {"sentence": "The first type is similar to the observation in welded Mo , while the last two types are not reported before , which are associated with the heat cycling process during AM .", "entities": [{"name": "welded", "type": "manufacturing process", "pos": [48, 54]}, {"name": "Mo", "type": "material", "pos": [55, 57]}, {"name": "heat", "type": "concept or principle", "pos": [141, 145]}, {"name": "process", "type": "concept or principle", "pos": [154, 161]}, {"name": "AM", "type": "manufacturing process", "pos": [169, 171]}]}, {"sentence": "The formation mechanism of different types of internal defects is proposed based on the experimental observations .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [14, 23]}, {"name": "defects", "type": "concept or principle", "pos": [55, 62]}, {"name": "experimental", "type": "concept or principle", "pos": [88, 100]}]}, {"sentence": "Material extrusion ( MatEx ) additive manufacturing ranges in size from the desktop scale fused filament fabrication ( FFF ) to the room scale big area additive manufacturing ( BAAM ) .", "entities": [{"name": "Material extrusion", "type": "manufacturing process", "pos": [0, 18]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [29, 51]}, {"name": "fused filament fabrication", "type": "manufacturing process", "pos": [90, 116]}, {"name": "FFF", "type": "manufacturing process", "pos": [119, 122]}, {"name": "area", "type": "process parameter", "pos": [147, 151]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [152, 174]}]}, {"sentence": "The principles of how FFF and BAAM operate are similar – polymer feedstocks are heated until molten and then extruded to form three-dimensional parts through layer-by-layer additive manufacturing .", "entities": [{"name": "FFF", "type": "manufacturing process", "pos": [22, 25]}, {"name": "polymer feedstocks", "type": "material", "pos": [57, 75]}, {"name": "extruded", "type": "manufacturing process", "pos": [109, 117]}, {"name": "three-dimensional", "type": "concept or principle", "pos": [126, 143]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [158, 172]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [173, 195]}]}, {"sentence": "This study compares heat transfer in FFF and BAAM using finite element thermal modeling .", "entities": [{"name": "heat transfer", "type": "concept or principle", "pos": [20, 33]}, {"name": "FFF", "type": "manufacturing process", "pos": [37, 40]}, {"name": "finite element", "type": "concept or principle", "pos": [56, 70]}, {"name": "modeling", "type": "enabling technology", "pos": [79, 87]}]}, {"sentence": "Parameterization is performed across material properties , layer number , and print speed at the desktop and room scale for MatEx .", "entities": [{"name": "material properties", "type": "concept or principle", "pos": [37, 56]}, {"name": "layer", "type": "process parameter", "pos": [59, 64]}, {"name": "print", "type": "manufacturing process", "pos": [78, 83]}]}, {"sentence": "BAAM stays hotter than FFF for a longer period of time , which facilitates interlayer diffusion and weld formation , but can also lead to slumping or sagging .", "entities": [{"name": "FFF", "type": "manufacturing process", "pos": [23, 26]}, {"name": "diffusion", "type": "concept or principle", "pos": [86, 95]}, {"name": "weld", "type": "engineering feature", "pos": [100, 104]}, {"name": "lead", "type": "material", "pos": [130, 134]}]}, {"sentence": "Changes in thermal diffusivity affect FFF more than BAAM , with FFF exhibiting a local maximum in weld time at the thermal diffusivity of ABS .", "entities": [{"name": "thermal diffusivity", "type": "concept or principle", "pos": [11, 30]}, {"name": "FFF", "type": "manufacturing process", "pos": [38, 41]}, {"name": "FFF", "type": "manufacturing process", "pos": [64, 67]}, {"name": "weld", "type": "engineering feature", "pos": [98, 102]}, {"name": "thermal diffusivity", "type": "concept or principle", "pos": [115, 134]}, {"name": "ABS", "type": "material", "pos": [138, 141]}]}, {"sentence": "For BAAM , the temperature and thermal history of the center of an extruded bead differs greatly from the surface of the bead , which has important implications for process monitoring , property prediction , and part performance .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [15, 26]}, {"name": "extruded", "type": "manufacturing process", "pos": [67, 75]}, {"name": "bead", "type": "process characterization", "pos": [76, 80]}, {"name": "surface", "type": "concept or principle", "pos": [106, 113]}, {"name": "bead", "type": "process characterization", "pos": [121, 125]}, {"name": "process monitoring", "type": "concept or principle", "pos": [165, 183]}, {"name": "property", "type": "concept or principle", "pos": [186, 194]}, {"name": "prediction", "type": "concept or principle", "pos": [195, 205]}, {"name": "performance", "type": "concept or principle", "pos": [217, 228]}]}, {"sentence": "Wire arc additive manufacturing , WAAM , is a popular wire-feed additive manufacturing technology that creates components through the deposition of material layer-by-layer .", "entities": [{"name": "Wire arc additive manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "WAAM", "type": "manufacturing process", "pos": [34, 38]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [64, 86]}, {"name": "components", "type": "machine or equipment", "pos": [111, 121]}, {"name": "deposition", "type": "concept or principle", "pos": [134, 144]}, {"name": "material", "type": "material", "pos": [148, 156]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [157, 171]}]}, {"sentence": "WAAM has become a promising alternative to conventional machining due to its high deposition rate , environmental friendliness and cost competitiveness .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [0, 4]}, {"name": "conventional machining", "type": "manufacturing process", "pos": [43, 65]}, {"name": "high deposition rate", "type": "process parameter", "pos": [77, 97]}]}, {"sentence": "In this research work , a comparison is made between two different WAAM technologies , GMAW ( gas metal arc welding ) and PAW ( plasma arc welding ) .", "entities": [{"name": "research", "type": "concept or principle", "pos": [8, 16]}, {"name": "WAAM", "type": "manufacturing process", "pos": [67, 71]}, {"name": "technologies", "type": "concept or principle", "pos": [72, 84]}, {"name": "GMAW", "type": "manufacturing process", "pos": [87, 91]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [94, 115]}, {"name": "PAW", "type": "manufacturing process", "pos": [122, 125]}, {"name": "plasma arc welding", "type": "manufacturing process", "pos": [128, 146]}]}, {"sentence": "Comparative between processes is centered in the main variations while manufacturing Mn4Ni2CrMo steel walls concerning geometry and process parameters maintaining the same deposition ratio as well as the mechanical and metallographic properties obtained in the walls with both processes , in which the applied energy is significantly different .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [20, 29]}, {"name": "variations", "type": "concept or principle", "pos": [54, 64]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [71, 84]}, {"name": "steel", "type": "material", "pos": [96, 101]}, {"name": "geometry", "type": "concept or principle", "pos": [119, 127]}, {"name": "process parameters", "type": "concept or principle", "pos": [132, 150]}, {"name": "deposition", "type": "concept or principle", "pos": [172, 182]}, {"name": "as", "type": "material", "pos": [189, 191]}, {"name": "as", "type": "material", "pos": [197, 199]}, {"name": "mechanical", "type": "application", "pos": [204, 214]}, {"name": "properties", "type": "concept or principle", "pos": [234, 244]}, {"name": "processes", "type": "concept or principle", "pos": [277, 286]}]}, {"sentence": "This study shows that acceptable mechanical characteristics are obtained in both processes compared to the corresponding forging standard for the tested material , values are 23 % higher for UTS and 56 % for elongation in vertical direction in the PAW process compared to GMAW ( no differences in UTS and elongation results for horizontal direction and in Charpy for both directions ) and without significant directional effects of the additive manufacturing technology used .", "entities": [{"name": "mechanical", "type": "application", "pos": [33, 43]}, {"name": "processes", "type": "concept or principle", "pos": [81, 90]}, {"name": "forging", "type": "manufacturing process", "pos": [121, 128]}, {"name": "material", "type": "material", "pos": [153, 161]}, {"name": "UTS", "type": "machanical property", "pos": [191, 194]}, {"name": "elongation", "type": "machanical property", "pos": [208, 218]}, {"name": "vertical", "type": "concept or principle", "pos": [222, 230]}, {"name": "PAW", "type": "manufacturing process", "pos": [248, 251]}, {"name": "GMAW", "type": "manufacturing process", "pos": [272, 276]}, {"name": "UTS", "type": "machanical property", "pos": [297, 300]}, {"name": "elongation", "type": "machanical property", "pos": [305, 315]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [436, 458]}]}, {"sentence": "Based on cold metal transfer welding , wire and arc additive manufacturing is used to manufacture 9Cr ferritic/martensitic nuclear grade steel component for the first time .", "entities": [{"name": "cold metal transfer", "type": "manufacturing process", "pos": [9, 28]}, {"name": "wire and arc additive manufacturing", "type": "manufacturing process", "pos": [39, 74]}, {"name": "manufacture", "type": "concept or principle", "pos": [86, 97]}, {"name": "steel", "type": "material", "pos": [137, 142]}, {"name": "component", "type": "machine or equipment", "pos": [143, 152]}]}, {"sentence": "The microstructure mainly consists of untempered martensite laths showing columnar laths and equiaxed laths .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "martensite", "type": "material", "pos": [49, 59]}]}, {"sentence": "Positions at different heights along the deposition direction have no significant influence on micro hardness and tensile properties .", "entities": [{"name": "deposition direction", "type": "process parameter", "pos": [41, 61]}, {"name": "hardness", "type": "machanical property", "pos": [101, 109]}, {"name": "tensile properties", "type": "machanical property", "pos": [114, 132]}]}, {"sentence": "Tensile properties in the horizontal and vertical directions show anisotropy .", "entities": [{"name": "Tensile properties", "type": "machanical property", "pos": [0, 18]}, {"name": "vertical", "type": "concept or principle", "pos": [41, 49]}, {"name": "anisotropy", "type": "machanical property", "pos": [66, 76]}]}, {"sentence": "Fracture surfaces mainly exhibit typical mixed mode fracture .", "entities": [{"name": "Fracture", "type": "concept or principle", "pos": [0, 8]}, {"name": "fracture", "type": "concept or principle", "pos": [52, 60]}]}, {"sentence": "Wire and arc additive manufacturing ( WAAM ) technology was successfully applied to manufacture the 9Cr ferritic/martensitic nuclear grade steel for the first time .", "entities": [{"name": "Wire and arc additive manufacturing", "type": "manufacturing process", "pos": [0, 35]}, {"name": "WAAM", "type": "manufacturing process", "pos": [38, 42]}, {"name": "technology", "type": "concept or principle", "pos": [45, 55]}, {"name": "manufacture", "type": "concept or principle", "pos": [84, 95]}, {"name": "steel", "type": "material", "pos": [139, 144]}]}, {"sentence": "With the purpose of revealing how microstructure and mechanical properties are affected by the different locations within the manufactured wall , cold metal transfer ( CMT ) welding was used as heat source , the microstructure and mechanical properties of the additively manufactured 9Cr ferritic/martensitic wall in the different locations have been investigated .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [34, 48]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [53, 74]}, {"name": "manufactured", "type": "concept or principle", "pos": [126, 138]}, {"name": "cold metal transfer", "type": "manufacturing process", "pos": [146, 165]}, {"name": "CMT", "type": "manufacturing process", "pos": [168, 171]}, {"name": "welding", "type": "manufacturing process", "pos": [174, 181]}, {"name": "as", "type": "material", "pos": [183, 185]}, {"name": "source", "type": "application", "pos": [199, 205]}, {"name": "microstructure", "type": "concept or principle", "pos": [212, 226]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [231, 252]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [260, 283]}]}, {"sentence": "The results show that the differences in the mechanical properties were related to the anisotropy in microstructure .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [45, 66]}, {"name": "anisotropy", "type": "machanical property", "pos": [87, 97]}, {"name": "microstructure", "type": "concept or principle", "pos": [101, 115]}]}, {"sentence": "The microstructure mainly consisted of untempered martensite laths showing columnar laths and equiaxed laths .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "martensite", "type": "material", "pos": [50, 60]}]}, {"sentence": "As the height of the deposited wall increased , the microstructures exhibited differences .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "microstructures", "type": "material", "pos": [52, 67]}]}, {"sentence": "Positions at different heights had no significant influence on micro hardness and room-temperature tensile testing results .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [69, 77]}, {"name": "tensile testing", "type": "process characterization", "pos": [99, 114]}]}, {"sentence": "However , the tensile properties including the ultimate tensile strength , 0.2 % offset yield strength and elongation exhibited anisotropy for the perpendicular to and parallel to the deposition direction .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [14, 32]}, {"name": "ultimate tensile strength", "type": "machanical property", "pos": [47, 72]}, {"name": "offset", "type": "concept or principle", "pos": [81, 87]}, {"name": "strength", "type": "machanical property", "pos": [94, 102]}, {"name": "elongation", "type": "machanical property", "pos": [107, 117]}, {"name": "anisotropy", "type": "machanical property", "pos": [128, 138]}, {"name": "deposition direction", "type": "process parameter", "pos": [184, 204]}]}, {"sentence": "The defects and tensile fracture behavior were also analyzed carefully .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [4, 11]}, {"name": "tensile", "type": "machanical property", "pos": [16, 23]}, {"name": "fracture", "type": "concept or principle", "pos": [24, 32]}]}, {"sentence": "The findings suggest that , despite the emergency of a few shortcomings , the WAAM technology is a feasible method to obtain 9Cr ferritic/martensitic nuclear grade steel parts .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [78, 82]}, {"name": "technology", "type": "concept or principle", "pos": [83, 93]}, {"name": "steel", "type": "material", "pos": [164, 169]}]}, {"sentence": "Wire arc additive manufacturing ( WAAM ) is a metal additive manufacturing process based on gas metal arc welding and it is known to be economically convenient for large metal parts with low complexity .", "entities": [{"name": "Wire arc additive manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "WAAM", "type": "manufacturing process", "pos": [34, 38]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [46, 74]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [92, 113]}, {"name": "be", "type": "material", "pos": [133, 135]}, {"name": "metal", "type": "material", "pos": [170, 175]}, {"name": "complexity", "type": "concept or principle", "pos": [191, 201]}]}, {"sentence": "The main issue WAAM is the sensibility to heat accumulation , i.e. , a progressive increase in the internal energy of the workpiece due to the high heat input of the deposition process , that is responsible of excessive remelting of the lower layers and the related change in bead geometry .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [15, 19]}, {"name": "heat accumulation", "type": "machanical property", "pos": [42, 59]}, {"name": "workpiece", "type": "concept or principle", "pos": [122, 131]}, {"name": "heat", "type": "concept or principle", "pos": [148, 152]}, {"name": "deposition process", "type": "manufacturing process", "pos": [166, 184]}, {"name": "bead geometry", "type": "process characterization", "pos": [276, 289]}]}, {"sentence": "A promising technique to mitigate such issue is to use an air jet impinging on the deposited material to increase the rate of convective heat transfer .", "entities": [{"name": "material", "type": "material", "pos": [93, 101]}, {"name": "heat transfer", "type": "concept or principle", "pos": [137, 150]}]}, {"sentence": "Different samples are manufactured using AWS ER70B-6 as filler material , using as cooling approaches free convection and air jet impingement , with different interlayer idle times .", "entities": [{"name": "samples", "type": "concept or principle", "pos": [10, 17]}, {"name": "manufactured", "type": "concept or principle", "pos": [22, 34]}, {"name": "ER70B-6", "type": "material", "pos": [45, 52]}, {"name": "as", "type": "material", "pos": [53, 55]}, {"name": "material", "type": "material", "pos": [63, 71]}, {"name": "as", "type": "material", "pos": [80, 82]}]}, {"sentence": "The measurement of substrate temperatures has been used to validate the process simulation , used for obtaining the temperature field of the whole part .", "entities": [{"name": "measurement", "type": "process characterization", "pos": [4, 15]}, {"name": "substrate", "type": "material", "pos": [19, 28]}, {"name": "process simulation", "type": "enabling technology", "pos": [72, 90]}, {"name": "temperature", "type": "process parameter", "pos": [116, 127]}]}, {"sentence": "The results indicate that air jet impingement has a significant impact on the process , limiting the progressive increase in the interlayer temperature as compared to free convection cooling .", "entities": [{"name": "impact", "type": "concept or principle", "pos": [64, 70]}, {"name": "process", "type": "concept or principle", "pos": [78, 85]}, {"name": "temperature", "type": "process parameter", "pos": [140, 151]}, {"name": "as", "type": "material", "pos": [152, 154]}, {"name": "cooling", "type": "manufacturing process", "pos": [183, 190]}]}, {"sentence": "From the results arise that the optimal idle time is 30 s , as a compromise between productivity and reduction of heat accumulation , independently from the cooling strategy .", "entities": [{"name": "s", "type": "material", "pos": [11, 12]}, {"name": "as", "type": "material", "pos": [60, 62]}, {"name": "productivity", "type": "concept or principle", "pos": [84, 96]}, {"name": "reduction", "type": "concept or principle", "pos": [101, 110]}, {"name": "heat accumulation", "type": "machanical property", "pos": [114, 131]}, {"name": "cooling", "type": "manufacturing process", "pos": [157, 164]}]}, {"sentence": "Friction stir additive manufacturing ( FSAM ) was performed successfully using 2 mm thick sheets of 2195-T8 aluminum-lithium alloy .", "entities": [{"name": "Friction", "type": "concept or principle", "pos": [0, 8]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [14, 36]}, {"name": "mm", "type": "manufacturing process", "pos": [81, 83]}, {"name": "sheets", "type": "material", "pos": [90, 96]}, {"name": "alloy", "type": "material", "pos": [125, 130]}]}, {"sentence": "The influence of the tool pin shape and process parameters on the interfacial bonding features among the additive manufactured layers was discussed , and the effects of interfacial defects on the performances of the additive build were analyzed based on microstructures , hardness profiles , and mechanical property evaluations .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [21, 25]}, {"name": "process parameters", "type": "concept or principle", "pos": [40, 58]}, {"name": "interfacial bonding", "type": "concept or principle", "pos": [66, 85]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [105, 126]}, {"name": "defects", "type": "concept or principle", "pos": [181, 188]}, {"name": "additive", "type": "material", "pos": [216, 224]}, {"name": "microstructures", "type": "material", "pos": [254, 269]}, {"name": "hardness", "type": "machanical property", "pos": [272, 280]}, {"name": "mechanical property", "type": "concept or principle", "pos": [296, 315]}]}, {"sentence": "It is shown that the shape of the tool pin is one of the key factors in influencing the bonding interface between two manufactured layers .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [34, 38]}, {"name": "bonding", "type": "concept or principle", "pos": [88, 95]}, {"name": "manufactured", "type": "concept or principle", "pos": [118, 130]}]}, {"sentence": "The cylindrical pin and the conical pin with three flats are not suitable for the FSAM process since very poor material mixing features are produced along the bonding interface .", "entities": [{"name": "cylindrical", "type": "concept or principle", "pos": [4, 15]}, {"name": "process", "type": "concept or principle", "pos": [87, 94]}, {"name": "material", "type": "material", "pos": [111, 119]}, {"name": "bonding", "type": "concept or principle", "pos": [159, 166]}]}, {"sentence": "Although the material mixing degree of bonding interface is obviously improved at the advancing side ( AS ) interface of the nugget zone ( NZ ) by using the convex featured pin or the pin with three concave arc grooves , the material mixing degree at the retreating side ( RS ) interface of the NZ is always insufficient .", "entities": [{"name": "material", "type": "material", "pos": [13, 21]}, {"name": "bonding", "type": "concept or principle", "pos": [39, 46]}, {"name": "AS", "type": "material", "pos": [103, 105]}, {"name": "interface", "type": "concept or principle", "pos": [108, 117]}, {"name": "arc", "type": "concept or principle", "pos": [207, 210]}, {"name": "material", "type": "material", "pos": [225, 233]}, {"name": "interface", "type": "concept or principle", "pos": [278, 287]}]}, {"sentence": "Meanwhile , the weak-bonding defects along the bonding interfaces could be formed , which are originated from the hooking defects on the RS .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [29, 36]}, {"name": "bonding", "type": "concept or principle", "pos": [47, 54]}, {"name": "be", "type": "material", "pos": [72, 74]}, {"name": "defects", "type": "concept or principle", "pos": [122, 129]}]}, {"sentence": "The weak-bonding defects are related to the oxides and impurities existing at the original bonding interfaces as well as the insufficient stirring action of the tool pin .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [17, 24]}, {"name": "oxides", "type": "material", "pos": [44, 50]}, {"name": "impurities", "type": "machanical property", "pos": [55, 65]}, {"name": "bonding", "type": "concept or principle", "pos": [91, 98]}, {"name": "as", "type": "material", "pos": [110, 112]}, {"name": "as", "type": "material", "pos": [118, 120]}, {"name": "tool", "type": "machine or equipment", "pos": [161, 165]}]}, {"sentence": "The welding rotation speeds of 800 , 900 and 1000 rpm for giving welding speed of 100 mm/min were used in the additive manufacturing processes of 2195-T8 aluminum-lithium alloy , in which the optimum microstructure is obtained with the rotation speed of 800 rpm .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [4, 11]}, {"name": "welding", "type": "manufacturing process", "pos": [65, 72]}, {"name": "additive manufacturing processes", "type": "manufacturing process", "pos": [110, 142]}, {"name": "alloy", "type": "material", "pos": [171, 176]}, {"name": "microstructure", "type": "concept or principle", "pos": [200, 214]}]}, {"sentence": "The soften degree for the multilayered build is obvious , and the hardness profiles across the different bonding interfaces are always uneven .", "entities": [{"name": "build", "type": "process parameter", "pos": [39, 44]}, {"name": "hardness", "type": "machanical property", "pos": [66, 74]}, {"name": "bonding", "type": "concept or principle", "pos": [105, 112]}]}, {"sentence": "Meanwhile , compared with the AS interface , the fluctuation of the hardness value at the RS interface is greater .", "entities": [{"name": "AS", "type": "material", "pos": [30, 32]}, {"name": "hardness", "type": "machanical property", "pos": [68, 76]}, {"name": "interface", "type": "concept or principle", "pos": [93, 102]}]}, {"sentence": "The mechanical properties of the multilayered build are inhomogeneous , and the maximum tensile strength of the multilayered build is only reached the 56.6 % of the base metal .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [4, 25]}, {"name": "build", "type": "process parameter", "pos": [46, 51]}, {"name": "tensile strength", "type": "machanical property", "pos": [88, 104]}, {"name": "build", "type": "process parameter", "pos": [125, 130]}, {"name": "base metal", "type": "material", "pos": [165, 175]}]}, {"sentence": "The mechanical properties are closely associated with the soften tendency of the material and the degree of the amelioration of weak-bonding defect along the bonding interface .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [4, 25]}, {"name": "material", "type": "material", "pos": [81, 89]}, {"name": "defect", "type": "concept or principle", "pos": [141, 147]}, {"name": "bonding", "type": "concept or principle", "pos": [158, 165]}]}, {"sentence": "The influence of the addition of filler powder on the microstructure and properties of laser-welded Ti2AlNb joints was comparatively investigated using scanning electron microscopy , transmission electron microscopy , electron back scattered diffraction , and tensile tests .", "entities": [{"name": "powder", "type": "material", "pos": [40, 46]}, {"name": "microstructure", "type": "concept or principle", "pos": [54, 68]}, {"name": "properties", "type": "concept or principle", "pos": [73, 83]}, {"name": "scanning electron microscopy", "type": "process characterization", "pos": [152, 180]}, {"name": "transmission electron microscopy", "type": "process characterization", "pos": [183, 215]}, {"name": "diffraction", "type": "process characterization", "pos": [242, 253]}, {"name": "tensile tests", "type": "process characterization", "pos": [260, 273]}]}, {"sentence": "The heat affected zone ( HAZ ) of laser-additive-welded joints was divided into B2 , B2 + α2 , and B2 + α2 + O — three regions with increasing distance from the fusion line .", "entities": [{"name": "heat affected zone", "type": "concept or principle", "pos": [4, 22]}, {"name": "HAZ", "type": "concept or principle", "pos": [25, 28]}, {"name": "O", "type": "material", "pos": [109, 110]}, {"name": "fusion", "type": "concept or principle", "pos": [161, 167]}]}, {"sentence": "The HAZ of laser-welded joints could only be divided into two regions , viz. , B2 + α2 and B2 + α2 + O .", "entities": [{"name": "HAZ", "type": "concept or principle", "pos": [4, 7]}, {"name": "be", "type": "material", "pos": [42, 44]}, {"name": "O", "type": "material", "pos": [101, 102]}]}, {"sentence": "The microstructure of the fusion zone was composed of a single B2 phase for both laser welding and laser-additive welding .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "fusion zone", "type": "concept or principle", "pos": [26, 37]}, {"name": "phase", "type": "concept or principle", "pos": [66, 71]}, {"name": "laser welding", "type": "manufacturing process", "pos": [81, 94]}, {"name": "welding", "type": "manufacturing process", "pos": [114, 121]}]}, {"sentence": "Columnar grains were observed in the fusion zone of laser-welded joints , while the B2 grains in the fusion zone of laser-additive-welded joints were basically equiaxed .", "entities": [{"name": "Columnar grains", "type": "machanical property", "pos": [0, 15]}, {"name": "fusion zone", "type": "concept or principle", "pos": [37, 48]}, {"name": "grains", "type": "concept or principle", "pos": [87, 93]}, {"name": "fusion zone", "type": "concept or principle", "pos": [101, 112]}]}, {"sentence": "A misorientation angle distribution analysis showed that the fraction of high-angle grain boundaries of laser-additive-welded joints was higher than that of laser-welded joints .", "entities": [{"name": "distribution", "type": "concept or principle", "pos": [23, 35]}, {"name": "fraction", "type": "concept or principle", "pos": [61, 69]}, {"name": "grain boundaries", "type": "concept or principle", "pos": [84, 100]}]}, {"sentence": "The addition of filler powder promoted heterogeneous nucleation during solidification in laser-additive welding .", "entities": [{"name": "powder", "type": "material", "pos": [23, 29]}, {"name": "heterogeneous nucleation", "type": "concept or principle", "pos": [39, 63]}, {"name": "solidification", "type": "concept or principle", "pos": [71, 85]}, {"name": "welding", "type": "manufacturing process", "pos": [104, 111]}]}, {"sentence": "Following tensile tests at room temperature , failure tended to occur in the fusion zone of the laser-welded joints and in the HAZ of the laser-additive-welded joints .", "entities": [{"name": "tensile tests", "type": "process characterization", "pos": [10, 23]}, {"name": "temperature", "type": "process parameter", "pos": [32, 43]}, {"name": "failure", "type": "concept or principle", "pos": [46, 53]}, {"name": "fusion zone", "type": "concept or principle", "pos": [77, 88]}, {"name": "HAZ", "type": "concept or principle", "pos": [127, 130]}]}, {"sentence": "The laser-additive-welded joints exhibited better tensile properties because of the higher Mo content as well as the equiaxed microstructure of the fusion zone .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [50, 68]}, {"name": "Mo", "type": "material", "pos": [91, 93]}, {"name": "as", "type": "material", "pos": [102, 104]}, {"name": "as", "type": "material", "pos": [110, 112]}, {"name": "microstructure", "type": "concept or principle", "pos": [126, 140]}, {"name": "fusion zone", "type": "concept or principle", "pos": [148, 159]}]}, {"sentence": "A flat specimen and a curved specimen with a thickness of 50 mm were excavated from a large circular wire+arc additive manufacturing ( WAAM ) mockup .", "entities": [{"name": "mm", "type": "manufacturing process", "pos": [61, 63]}, {"name": "wire+arc additive manufacturing", "type": "manufacturing process", "pos": [101, 132]}, {"name": "WAAM", "type": "manufacturing process", "pos": [135, 139]}]}, {"sentence": "The biaxial internal residual stress distributions in the specimens were measured using the two-cut contour method .", "entities": [{"name": "internal residual stress", "type": "machanical property", "pos": [12, 36]}, {"name": "distributions", "type": "concept or principle", "pos": [37, 50]}, {"name": "contour", "type": "engineering feature", "pos": [100, 107]}]}, {"sentence": "The stress distributions in the large circular WAAM mockup were deduced , and the effects of specimen shape and dimension on the remnant stress distributions in the specimens were discussed .", "entities": [{"name": "stress distributions", "type": "machanical property", "pos": [4, 24]}, {"name": "WAAM", "type": "manufacturing process", "pos": [47, 51]}, {"name": "dimension", "type": "engineering feature", "pos": [112, 121]}, {"name": "stress distributions", "type": "machanical property", "pos": [137, 157]}]}, {"sentence": "The investigated results show that the stress in the circular WAAM mockup has a similar distribution as that in thick multipass joints at the weld centerline , the stress in the curved specimen extracted from a large circular WAAM mockup can reflect the stress distribution trend in the mockup .", "entities": [{"name": "stress", "type": "machanical property", "pos": [39, 45]}, {"name": "WAAM", "type": "manufacturing process", "pos": [62, 66]}, {"name": "distribution", "type": "concept or principle", "pos": [88, 100]}, {"name": "as", "type": "material", "pos": [101, 103]}, {"name": "weld", "type": "engineering feature", "pos": [142, 146]}, {"name": "stress", "type": "machanical property", "pos": [164, 170]}, {"name": "extracted", "type": "concept or principle", "pos": [194, 203]}, {"name": "WAAM", "type": "manufacturing process", "pos": [226, 230]}, {"name": "stress distribution", "type": "machanical property", "pos": [254, 273]}]}, {"sentence": "For specimens excavated from a large circular mockup , the specimen shape has no significant effect on the through-thickness axial stress distribution , while it has a significant effect on the hoop stress distribution .", "entities": [{"name": "stress distribution", "type": "machanical property", "pos": [131, 150]}, {"name": "stress distribution", "type": "machanical property", "pos": [199, 218]}]}, {"sentence": "Carbon fiber reinforced plastic ( CFRP ) is an extremely beneficial composite material in the aerospace and automobile industries owing to its high-strength-to-weight ratio , high stiffness , lightweight , and corrosion resistance .", "entities": [{"name": "Carbon fiber", "type": "material", "pos": [0, 12]}, {"name": "plastic", "type": "material", "pos": [24, 31]}, {"name": "composite material", "type": "material", "pos": [68, 86]}, {"name": "aerospace", "type": "application", "pos": [94, 103]}, {"name": "automobile", "type": "application", "pos": [108, 118]}, {"name": "stiffness", "type": "machanical property", "pos": [180, 189]}, {"name": "lightweight", "type": "concept or principle", "pos": [192, 203]}, {"name": "corrosion resistance", "type": "concept or principle", "pos": [210, 230]}]}, {"sentence": "A thin layer material such as Titanium ( Ti ) is often used along with CFRP laminates to address these issues .", "entities": [{"name": "layer", "type": "process parameter", "pos": [7, 12]}, {"name": "as", "type": "material", "pos": [27, 29]}, {"name": "Ti", "type": "material", "pos": [30, 32]}, {"name": "laminates", "type": "concept or principle", "pos": [76, 85]}]}, {"sentence": "These techniques have several limitations including weight addition , stress cracking , delamination , and limited operating temperatures .", "entities": [{"name": "weight", "type": "process parameter", "pos": [52, 58]}, {"name": "stress cracking", "type": "concept or principle", "pos": [70, 85]}, {"name": "delamination", "type": "concept or principle", "pos": [88, 100]}, {"name": "temperatures", "type": "process parameter", "pos": [125, 137]}]}, {"sentence": "These limitations can be readily addressed by the use of solid-state welding techniques based on ultrasonic energy .", "entities": [{"name": "be", "type": "material", "pos": [22, 24]}, {"name": "solid-state welding", "type": "manufacturing process", "pos": [57, 76]}]}, {"sentence": "One such technique is the Ultrasonic Additive Manufacturing ( UAM ) process , which is capable of fabricating 3D structures of CFRP/Ti laminar composites .", "entities": [{"name": "Ultrasonic Additive Manufacturing", "type": "manufacturing process", "pos": [26, 59]}, {"name": "UAM", "type": "manufacturing process", "pos": [62, 65]}, {"name": "process", "type": "concept or principle", "pos": [68, 75]}, {"name": "fabricating", "type": "manufacturing process", "pos": [98, 109]}, {"name": "3D structures", "type": "concept or principle", "pos": [110, 123]}, {"name": "composites", "type": "material", "pos": [143, 153]}]}, {"sentence": "Preliminary experimental studies proved the feasibility of using the UAM process to join CFRP/Ti stacks .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [12, 24]}, {"name": "feasibility", "type": "concept or principle", "pos": [44, 55]}, {"name": "UAM", "type": "manufacturing process", "pos": [69, 72]}, {"name": "process", "type": "concept or principle", "pos": [73, 80]}]}, {"sentence": "Further development of this process needs a detailed investigation of the process parameters .", "entities": [{"name": "process", "type": "concept or principle", "pos": [28, 35]}, {"name": "process parameters", "type": "concept or principle", "pos": [74, 92]}]}, {"sentence": "This study aims to study the effect of critical process parameters including the ultrasonic energy and pre-surface roughness on the shear strength of the fabricated CFRP/Ti stacks using the UAM process .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [48, 66]}, {"name": "roughness", "type": "machanical property", "pos": [115, 124]}, {"name": "shear strength", "type": "machanical property", "pos": [132, 146]}, {"name": "fabricated", "type": "concept or principle", "pos": [154, 164]}, {"name": "UAM", "type": "manufacturing process", "pos": [190, 193]}, {"name": "process", "type": "concept or principle", "pos": [194, 201]}]}, {"sentence": "The study found that both ultrasonic energy and surface roughness have a positive impact on the resulting shear strengths of the UAM fabricated structures .", "entities": [{"name": "surface roughness", "type": "machanical property", "pos": [48, 65]}, {"name": "impact", "type": "concept or principle", "pos": [82, 88]}, {"name": "shear strengths", "type": "machanical property", "pos": [106, 121]}, {"name": "UAM", "type": "manufacturing process", "pos": [129, 132]}, {"name": "fabricated", "type": "concept or principle", "pos": [133, 143]}]}, {"sentence": "Magnetic Arc Oscillation was applied during the construction of single-pass multi-layer walls of low carbon steel and Ti6Al4V by the Gas Tungsten Arc Welding-based Wire and Arc Additive Manufacturing process , and the influence on the geometry and the process stability was evaluated .", "entities": [{"name": "Arc", "type": "concept or principle", "pos": [9, 12]}, {"name": "construction", "type": "application", "pos": [48, 60]}, {"name": "low carbon steel", "type": "material", "pos": [97, 113]}, {"name": "Ti6Al4V", "type": "material", "pos": [118, 125]}, {"name": "Gas", "type": "concept or principle", "pos": [133, 136]}, {"name": "Arc", "type": "concept or principle", "pos": [146, 149]}, {"name": "Wire and Arc Additive Manufacturing", "type": "manufacturing process", "pos": [164, 199]}, {"name": "process", "type": "concept or principle", "pos": [200, 207]}, {"name": "geometry", "type": "concept or principle", "pos": [235, 243]}, {"name": "process", "type": "concept or principle", "pos": [252, 259]}]}, {"sentence": "The geometric features were assessed using transverse section macrographs and the effects of different patterns and frequencies of oscillation on the arc characteristics , metal transfer and weld pool behavior during the layer deposition were investigated using high speed and welding cameras .", "entities": [{"name": "arc", "type": "concept or principle", "pos": [150, 153]}, {"name": "metal", "type": "material", "pos": [172, 177]}, {"name": "weld pool", "type": "concept or principle", "pos": [191, 200]}, {"name": "layer", "type": "process parameter", "pos": [221, 226]}, {"name": "deposition", "type": "concept or principle", "pos": [227, 237]}, {"name": "welding", "type": "manufacturing process", "pos": [277, 284]}]}, {"sentence": "Furthermore , the distribution of material along the wall length becomes more homogeneous .", "entities": [{"name": "distribution", "type": "concept or principle", "pos": [18, 30]}, {"name": "material", "type": "material", "pos": [34, 42]}, {"name": "homogeneous", "type": "concept or principle", "pos": [78, 89]}]}, {"sentence": "An explanation of the effects of Magnetic Arc Oscillation on the wall geometry based on forces that act on the molten metal during layer deposition was made .", "entities": [{"name": "Arc", "type": "concept or principle", "pos": [42, 45]}, {"name": "geometry", "type": "concept or principle", "pos": [70, 78]}, {"name": "forces", "type": "concept or principle", "pos": [88, 94]}, {"name": "molten metal", "type": "material", "pos": [111, 123]}, {"name": "layer", "type": "process parameter", "pos": [131, 136]}, {"name": "deposition", "type": "concept or principle", "pos": [137, 147]}]}, {"sentence": "Because of the swinging movement of the welding arc , the heat is distributed over a larger area , and the power density decreases .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [40, 47]}, {"name": "arc", "type": "concept or principle", "pos": [48, 51]}, {"name": "heat", "type": "concept or principle", "pos": [58, 62]}, {"name": "area", "type": "process parameter", "pos": [92, 96]}, {"name": "power", "type": "process parameter", "pos": [107, 112]}, {"name": "density", "type": "machanical property", "pos": [113, 120]}]}, {"sentence": "Thus , fewer previous layers are remelted , and the volume and the weight of the weld pool reduce .", "entities": [{"name": "volume", "type": "concept or principle", "pos": [52, 58]}, {"name": "weight", "type": "process parameter", "pos": [67, 73]}, {"name": "weld pool", "type": "concept or principle", "pos": [81, 90]}]}, {"sentence": "The weld pool temperature drops , and the surface tension force and the viscous friction increase .", "entities": [{"name": "weld pool", "type": "concept or principle", "pos": [4, 13]}, {"name": "temperature", "type": "process parameter", "pos": [14, 25]}, {"name": "surface tension", "type": "machanical property", "pos": [42, 57]}, {"name": "force", "type": "concept or principle", "pos": [58, 63]}, {"name": "friction", "type": "concept or principle", "pos": [80, 88]}]}, {"sentence": "The distribution of arc pressure also becomes less concentrated , and the arc force on the molten metal decreases .", "entities": [{"name": "distribution", "type": "concept or principle", "pos": [4, 16]}, {"name": "arc pressure", "type": "process parameter", "pos": [20, 32]}, {"name": "arc", "type": "concept or principle", "pos": [74, 77]}, {"name": "molten metal", "type": "material", "pos": [91, 103]}]}, {"sentence": "Additionally , a magnetic force appears on the molten metal , which contributes to a change in the direction of the resultant force on the weld pool .", "entities": [{"name": "force", "type": "concept or principle", "pos": [26, 31]}, {"name": "molten metal", "type": "material", "pos": [47, 59]}, {"name": "resultant force", "type": "process parameter", "pos": [116, 131]}, {"name": "weld pool", "type": "concept or principle", "pos": [139, 148]}]}, {"sentence": "The article presents new findings on arc stability in twin-wire robotic arc welding corresponding to the torch orientation and electrodes ' position .", "entities": [{"name": "arc", "type": "concept or principle", "pos": [37, 40]}, {"name": "arc welding", "type": "manufacturing process", "pos": [72, 83]}, {"name": "orientation", "type": "concept or principle", "pos": [111, 122]}, {"name": "electrodes", "type": "machine or equipment", "pos": [127, 137]}]}, {"sentence": "The two mutually influencing co-existing arcs affect the stability of counterpart arc , and thereby alter the weld bead properties .", "entities": [{"name": "stability", "type": "machanical property", "pos": [57, 66]}, {"name": "arc", "type": "concept or principle", "pos": [82, 85]}, {"name": "weld bead", "type": "concept or principle", "pos": [110, 119]}, {"name": "properties", "type": "concept or principle", "pos": [120, 130]}]}, {"sentence": "The investigation divulges that electrode positions and torch orientation significantly impact arc stability which in turn impacts the heat input and weld bead geometry .", "entities": [{"name": "electrode", "type": "machine or equipment", "pos": [32, 41]}, {"name": "orientation", "type": "concept or principle", "pos": [62, 73]}, {"name": "impact arc", "type": "concept or principle", "pos": [88, 98]}, {"name": "heat", "type": "concept or principle", "pos": [135, 139]}, {"name": "weld bead geometry", "type": "process parameter", "pos": [150, 168]}]}, {"sentence": "The arc penetration in tandem orientation is augmented by the secondary arc that operates in the same weld pool .", "entities": [{"name": "arc", "type": "concept or principle", "pos": [4, 7]}, {"name": "orientation", "type": "concept or principle", "pos": [30, 41]}, {"name": "arc", "type": "concept or principle", "pos": [72, 75]}, {"name": "weld pool", "type": "concept or principle", "pos": [102, 111]}]}, {"sentence": "While the transverse orientation improves the arc stability and facilitates a wider weld bead with reasonable weld penetration suitable for applications such as wire additive manufacturing and cladding .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [21, 32]}, {"name": "arc", "type": "concept or principle", "pos": [46, 49]}, {"name": "weld bead", "type": "concept or principle", "pos": [84, 93]}, {"name": "weld", "type": "engineering feature", "pos": [110, 114]}, {"name": "penetration", "type": "concept or principle", "pos": [115, 126]}, {"name": "as", "type": "material", "pos": [158, 160]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [166, 188]}, {"name": "cladding", "type": "manufacturing process", "pos": [193, 201]}]}, {"sentence": "An approach for predicting arc stability as a function of process parameters is a significant contribution from this investigation .", "entities": [{"name": "arc", "type": "concept or principle", "pos": [27, 30]}, {"name": "as", "type": "material", "pos": [41, 43]}, {"name": "process parameters", "type": "concept or principle", "pos": [58, 76]}]}, {"sentence": "The insight into the arching phenomenon in twin-wire gas metal arc welding due to the investigation is expected to help the machine builders to design an appropriate controller that minimizes arc interference .", "entities": [{"name": "gas metal arc welding", "type": "manufacturing process", "pos": [53, 74]}, {"name": "machine", "type": "machine or equipment", "pos": [124, 131]}, {"name": "design", "type": "engineering feature", "pos": [144, 150]}, {"name": "controller", "type": "machine or equipment", "pos": [166, 176]}, {"name": "arc", "type": "concept or principle", "pos": [192, 195]}]}, {"sentence": "This study presents investigations on the additive manufacturing of hot work steel with the energy-reduced gas metal arc welding ( GMAW ) process , which is a cold metal transfer ( CMT ) process .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [42, 64]}, {"name": "hot work steel", "type": "material", "pos": [68, 82]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [107, 128]}, {"name": "GMAW", "type": "manufacturing process", "pos": [131, 135]}, {"name": "process", "type": "concept or principle", "pos": [138, 145]}, {"name": "cold metal transfer", "type": "manufacturing process", "pos": [159, 178]}, {"name": "CMT", "type": "manufacturing process", "pos": [181, 184]}, {"name": "process", "type": "concept or principle", "pos": [187, 194]}]}, {"sentence": "The paper analyses the influence of arc energy and the thermal field on the resulting mechanical properties and microstructure of the material .", "entities": [{"name": "arc", "type": "concept or principle", "pos": [36, 39]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [86, 107]}, {"name": "microstructure", "type": "concept or principle", "pos": [112, 126]}, {"name": "material", "type": "material", "pos": [134, 142]}]}, {"sentence": "The investigations were carried out with hot work tool steel X37CrMoV 5-1 , which is used for the manufacturing of plastic moulds , hot extrusion dies , and forging dies .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [50, 54]}, {"name": "steel", "type": "material", "pos": [55, 60]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [98, 111]}, {"name": "plastic", "type": "material", "pos": [115, 122]}, {"name": "moulds", "type": "machine or equipment", "pos": [123, 129]}, {"name": "hot extrusion", "type": "manufacturing process", "pos": [132, 145]}, {"name": "dies", "type": "machine or equipment", "pos": [146, 150]}, {"name": "forging", "type": "manufacturing process", "pos": [157, 164]}, {"name": "dies", "type": "machine or equipment", "pos": [165, 169]}]}, {"sentence": "The results show that this steel can be used to generate 3D metal components or structures with high reproducibility , near-net-shaped geometry , absence of cracks , and a deposition rate of up to 3.6 kg/h .", "entities": [{"name": "steel", "type": "material", "pos": [27, 32]}, {"name": "be", "type": "material", "pos": [37, 39]}, {"name": "3D", "type": "concept or principle", "pos": [57, 59]}, {"name": "components", "type": "machine or equipment", "pos": [66, 76]}, {"name": "reproducibility", "type": "concept or principle", "pos": [101, 116]}, {"name": "geometry", "type": "concept or principle", "pos": [135, 143]}, {"name": "deposition rate", "type": "process parameter", "pos": [172, 187]}]}, {"sentence": "The variation of the wire feed speed and the welding speed enables the production of weld beads of width up to 9.4 mm .", "entities": [{"name": "variation", "type": "concept or principle", "pos": [4, 13]}, {"name": "feed", "type": "process parameter", "pos": [26, 30]}, {"name": "welding", "type": "manufacturing process", "pos": [45, 52]}, {"name": "production", "type": "manufacturing process", "pos": [71, 81]}, {"name": "weld beads", "type": "concept or principle", "pos": [85, 95]}, {"name": "mm", "type": "manufacturing process", "pos": [115, 117]}]}, {"sentence": "The mechanical properties of the generated structures can be adapted by the dominant thermal field , which in turn is influenced by the bypass temperature and the electric arc energy .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [4, 25]}, {"name": "be", "type": "material", "pos": [58, 60]}, {"name": "temperature", "type": "process parameter", "pos": [143, 154]}, {"name": "electric arc", "type": "process parameter", "pos": [163, 175]}]}, {"sentence": "If the bypass temperature is above the martensite start temperature ( Ms ) , there is a homogeneous hardness level along the height of the additively manufactured structure height as long as the energy produced by the welding arc is enough to keep the temperature of all layers above Ms. Wire-arc additive manufacturing has become an alternative way to produce industrial parts .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [14, 25]}, {"name": "martensite", "type": "material", "pos": [39, 49]}, {"name": "temperature", "type": "process parameter", "pos": [56, 67]}, {"name": "homogeneous", "type": "concept or principle", "pos": [88, 99]}, {"name": "hardness", "type": "machanical property", "pos": [100, 108]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [139, 162]}, {"name": "as", "type": "material", "pos": [180, 182]}, {"name": "as", "type": "material", "pos": [188, 190]}, {"name": "welding", "type": "manufacturing process", "pos": [218, 225]}, {"name": "arc", "type": "concept or principle", "pos": [226, 229]}, {"name": "temperature", "type": "process parameter", "pos": [252, 263]}, {"name": "Wire-arc additive manufacturing", "type": "manufacturing process", "pos": [288, 319]}, {"name": "industrial", "type": "application", "pos": [361, 371]}]}, {"sentence": "In this work 15 kg walls are built with an effective building rate of 4.85 kg/h using an ER100 wire providing good tensile properties and toughness under welding conditions .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [115, 133]}, {"name": "toughness", "type": "machanical property", "pos": [138, 147]}, {"name": "welding", "type": "manufacturing process", "pos": [154, 161]}]}, {"sentence": "The thermal evolution of the walls during manufacturing is measured by thermocouples and an IR camera : it depends on process parameters , deposit strategy and the size of the part .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [12, 21]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [42, 55]}, {"name": "thermocouples", "type": "machine or equipment", "pos": [71, 84]}, {"name": "IR", "type": "process characterization", "pos": [92, 94]}, {"name": "camera", "type": "machine or equipment", "pos": [95, 101]}, {"name": "process parameters", "type": "concept or principle", "pos": [118, 136]}]}, {"sentence": "The walls are then characterised as deposit and after heat treatment through hardness , tensile and Charpy-V notch tests .", "entities": [{"name": "as", "type": "material", "pos": [33, 35]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [54, 68]}, {"name": "hardness", "type": "machanical property", "pos": [77, 85]}, {"name": "tensile", "type": "machanical property", "pos": [88, 95]}, {"name": "notch", "type": "engineering feature", "pos": [109, 114]}]}, {"sentence": "The results show a fine microstructure with unexpected retained austenite and coarse allotriomorphic ferrite in the as deposited walls .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [24, 38]}, {"name": "retained austenite", "type": "material", "pos": [55, 73]}, {"name": "ferrite", "type": "material", "pos": [101, 108]}, {"name": "as", "type": "material", "pos": [116, 118]}]}, {"sentence": "The final hardness values vary from about 220 to 280 HV2 ; the yield stress and tensile strength are 520 and 790 MPa , respectively , and a toughness of about 50 J is obtained at room temperature .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [10, 18]}, {"name": "yield stress", "type": "machanical property", "pos": [63, 75]}, {"name": "tensile strength", "type": "machanical property", "pos": [80, 96]}, {"name": "MPa", "type": "concept or principle", "pos": [113, 116]}, {"name": "toughness", "type": "machanical property", "pos": [140, 149]}, {"name": "temperature", "type": "process parameter", "pos": [184, 195]}]}, {"sentence": "The heat treatment transforms the retained austenite , leading to an improvement of the yield stress to 600 MPa .", "entities": [{"name": "heat treatment", "type": "manufacturing process", "pos": [4, 18]}, {"name": "retained austenite", "type": "material", "pos": [34, 52]}, {"name": "yield stress", "type": "machanical property", "pos": [88, 100]}, {"name": "MPa", "type": "concept or principle", "pos": [108, 111]}]}, {"sentence": "Ultrasonic additive manufacturing is a promising approach for making net-shaped multi-material laminates from material combinations difficult to process with fusion-based additive manufacturing techniques .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "multi-material laminates", "type": "concept or principle", "pos": [80, 104]}, {"name": "material", "type": "material", "pos": [110, 118]}, {"name": "process", "type": "concept or principle", "pos": [145, 152]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [171, 193]}]}, {"sentence": "The properties of these multi-material laminates depend sensitively on the interface between the constituents , which can be decorated with pores as well as thin intermetallic layers .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [4, 14]}, {"name": "multi-material laminates", "type": "concept or principle", "pos": [24, 48]}, {"name": "interface", "type": "concept or principle", "pos": [75, 84]}, {"name": "be", "type": "material", "pos": [85, 87]}, {"name": "pores", "type": "machanical property", "pos": [140, 145]}, {"name": "as", "type": "material", "pos": [146, 148]}, {"name": "as", "type": "material", "pos": [154, 156]}, {"name": "intermetallic", "type": "material", "pos": [162, 175]}]}, {"sentence": "Here , we develop process models for junction growth and interdiffusion during ultrasonic additive manufacturing of dissimilar metals .", "entities": [{"name": "process models", "type": "concept or principle", "pos": [18, 32]}, {"name": "junction", "type": "application", "pos": [37, 45]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [79, 112]}, {"name": "metals", "type": "material", "pos": [127, 133]}]}, {"sentence": "These process models are validated against published experimental data , then used to generate process diagrams which reveal that high normal loads and high sonotrode velocities can reduce intermetallic growth while maintaining strong interlayer bonding .", "entities": [{"name": "process models", "type": "concept or principle", "pos": [6, 20]}, {"name": "experimental data", "type": "concept or principle", "pos": [53, 70]}, {"name": "process", "type": "concept or principle", "pos": [95, 102]}, {"name": "sonotrode", "type": "machine or equipment", "pos": [157, 166]}, {"name": "intermetallic", "type": "material", "pos": [189, 202]}, {"name": "bonding", "type": "concept or principle", "pos": [246, 253]}]}, {"sentence": "Ultrasonic additive manufacturing ( UAM ) is a solid-state manufacturing technology for producing near-net shape metallic parts combining additive ultrasonic metal welding and subtractive machining .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "solid-state", "type": "concept or principle", "pos": [47, 58]}, {"name": "manufacturing technology", "type": "manufacturing process", "pos": [59, 83]}, {"name": "metallic parts", "type": "machine or equipment", "pos": [113, 127]}, {"name": "additive", "type": "material", "pos": [138, 146]}, {"name": "metal", "type": "material", "pos": [158, 163]}, {"name": "subtractive machining", "type": "manufacturing process", "pos": [176, 197]}]}, {"sentence": "Even though UAM has been demonstrated to produce robust metal builds in Al–Al , Al–Ti , Al-steel , Cu–Cu , Al–Cu , and other material systems , UAM welding of high strength steels has proven challenging .", "entities": [{"name": "UAM", "type": "manufacturing process", "pos": [12, 15]}, {"name": "metal", "type": "material", "pos": [56, 61]}, {"name": "builds", "type": "process characterization", "pos": [62, 68]}, {"name": "material", "type": "material", "pos": [125, 133]}, {"name": "UAM", "type": "manufacturing process", "pos": [144, 147]}, {"name": "strength", "type": "machanical property", "pos": [164, 172]}, {"name": "steels", "type": "material", "pos": [173, 179]}]}, {"sentence": "This study investigates process and post-processing methods to improve UAM steel weld quality and demonstrates the UAM fabrication of stainless steel 410 ( SS 410 ) builds which possess , after post-processing , mechanical properties comparable with bulk material .", "entities": [{"name": "investigates", "type": "concept or principle", "pos": [11, 23]}, {"name": "post-processing", "type": "concept or principle", "pos": [36, 51]}, {"name": "UAM", "type": "manufacturing process", "pos": [71, 74]}, {"name": "steel", "type": "material", "pos": [75, 80]}, {"name": "quality", "type": "concept or principle", "pos": [86, 93]}, {"name": "UAM fabrication", "type": "manufacturing process", "pos": [115, 130]}, {"name": "stainless steel", "type": "material", "pos": [134, 149]}, {"name": "SS", "type": "material", "pos": [156, 158]}, {"name": "builds", "type": "process characterization", "pos": [165, 171]}, {"name": "post-processing", "type": "concept or principle", "pos": [194, 209]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [212, 233]}, {"name": "material", "type": "material", "pos": [255, 263]}]}, {"sentence": "Unlike UAM fabrication of softer metals , this study shows that increasing the baseplate temperature from 38∘C ( 100∘F ) to 204∘C ( 400∘F ) improves interfacial strength and structural homogeneity of the UAM steel samples .", "entities": [{"name": "UAM fabrication", "type": "manufacturing process", "pos": [7, 22]}, {"name": "metals", "type": "material", "pos": [33, 39]}, {"name": "temperature", "type": "process parameter", "pos": [89, 100]}, {"name": "strength", "type": "machanical property", "pos": [161, 169]}, {"name": "UAM", "type": "manufacturing process", "pos": [204, 207]}, {"name": "steel", "type": "material", "pos": [208, 213]}, {"name": "samples", "type": "concept or principle", "pos": [214, 221]}]}, {"sentence": "Further improvement in strength is achieved through post-processing .", "entities": [{"name": "strength", "type": "machanical property", "pos": [23, 31]}, {"name": "post-processing", "type": "concept or principle", "pos": [52, 67]}]}, {"sentence": "The hot isostatic pressing ( HIP ) post treatment improves the shear strength of UAM samples to 344 MPa from 154 MPa for aB-welded samples .", "entities": [{"name": "hot isostatic pressing", "type": "manufacturing process", "pos": [4, 26]}, {"name": "HIP", "type": "manufacturing process", "pos": [29, 32]}, {"name": "shear strength", "type": "machanical property", "pos": [63, 77]}, {"name": "UAM", "type": "manufacturing process", "pos": [81, 84]}, {"name": "samples", "type": "concept or principle", "pos": [85, 92]}, {"name": "MPa", "type": "concept or principle", "pos": [100, 103]}, {"name": "MPa", "type": "concept or principle", "pos": [113, 116]}, {"name": "samples", "type": "concept or principle", "pos": [131, 138]}]}, {"sentence": "Microstructural analyses with SEM and EBSD show no evidence of body centered cubic ( BCC ) ferrite to face centered cubic ( FCC ) austenite transformation taking place during UAM welding of SS 410 .", "entities": [{"name": "Microstructural analyses", "type": "process characterization", "pos": [0, 24]}, {"name": "SEM", "type": "process characterization", "pos": [30, 33]}, {"name": "EBSD", "type": "process characterization", "pos": [38, 42]}, {"name": "body centered cubic", "type": "concept or principle", "pos": [63, 82]}, {"name": "BCC", "type": "concept or principle", "pos": [85, 88]}, {"name": "ferrite", "type": "material", "pos": [91, 98]}, {"name": "face centered cubic", "type": "concept or principle", "pos": [102, 121]}, {"name": "FCC", "type": "concept or principle", "pos": [124, 127]}, {"name": "austenite", "type": "material", "pos": [130, 139]}, {"name": "UAM", "type": "manufacturing process", "pos": [175, 178]}, {"name": "SS", "type": "material", "pos": [190, 192]}]}, {"sentence": "The weld quality improvement of UAM steel at higher baseplate temperatures is believed to be caused by the reduction of the yield strength of SS 410 at elevated temperature .", "entities": [{"name": "weld quality", "type": "process parameter", "pos": [4, 16]}, {"name": "UAM", "type": "manufacturing process", "pos": [32, 35]}, {"name": "steel", "type": "material", "pos": [36, 41]}, {"name": "temperatures", "type": "process parameter", "pos": [62, 74]}, {"name": "be", "type": "material", "pos": [78, 80]}, {"name": "reduction", "type": "concept or principle", "pos": [107, 116]}, {"name": "yield strength", "type": "machanical property", "pos": [124, 138]}, {"name": "SS", "type": "material", "pos": [142, 144]}, {"name": "temperature", "type": "process parameter", "pos": [161, 172]}]}, {"sentence": "HIP treatment is shown to increase the overall hardness of UAM SS 410 from 204 ± 7 HV to 240 ± 16 HV due to the formation of local pockets of martensite .", "entities": [{"name": "HIP", "type": "manufacturing process", "pos": [0, 3]}, {"name": "hardness", "type": "machanical property", "pos": [47, 55]}, {"name": "UAM", "type": "manufacturing process", "pos": [59, 62]}, {"name": "SS", "type": "material", "pos": [63, 65]}, {"name": "martensite", "type": "material", "pos": [142, 152]}]}, {"sentence": "Nanohardness tests show that the top of layer n is harder than the bottom of layer n+1 due to grain boundary strengthening .", "entities": [{"name": "layer", "type": "process parameter", "pos": [40, 45]}, {"name": "layer", "type": "process parameter", "pos": [77, 82]}, {"name": "grain boundary", "type": "concept or principle", "pos": [94, 108]}]}, {"sentence": "The locked in residual stresses in a monopile structure have a great impact on its fatigue life .", "entities": [{"name": "residual stresses", "type": "machanical property", "pos": [14, 31]}, {"name": "structure", "type": "concept or principle", "pos": [46, 55]}, {"name": "impact", "type": "concept or principle", "pos": [69, 75]}, {"name": "fatigue life", "type": "machanical property", "pos": [83, 95]}]}, {"sentence": "The new emerged technology of additive manufacturing ( AM ) , which is widely used in other industries such as aerospace and automotive , has the potential to significantly improve a lifespan of the structure by managing the residual stress fields and microstructure in the future monopiles , and moreover reduce the manufacturing cost .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [16, 26]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [30, 52]}, {"name": "AM", "type": "manufacturing process", "pos": [55, 57]}, {"name": "industries", "type": "application", "pos": [92, 102]}, {"name": "as", "type": "material", "pos": [108, 110]}, {"name": "aerospace", "type": "application", "pos": [111, 120]}, {"name": "automotive", "type": "application", "pos": [125, 135]}, {"name": "structure", "type": "concept or principle", "pos": [199, 208]}, {"name": "residual stress", "type": "machanical property", "pos": [225, 240]}, {"name": "microstructure", "type": "concept or principle", "pos": [252, 266]}, {"name": "manufacturing cost", "type": "concept or principle", "pos": [317, 335]}]}, {"sentence": "In order to achieve this goal , new materials that are used for additive manufacturing parts fabrication and their behaviour in the harsh marine environment and under operational loading conditions need to be understood .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [36, 45]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [64, 86]}, {"name": "fabrication", "type": "manufacturing process", "pos": [93, 104]}, {"name": "be", "type": "material", "pos": [115, 117]}]}, {"sentence": "Also purely welding fabrication technique employed during AM process is likely to significantly affect crack growth behaviour in air as well as in seawater .", "entities": [{"name": "welding fabrication", "type": "manufacturing process", "pos": [12, 31]}, {"name": "AM process", "type": "manufacturing process", "pos": [58, 68]}, {"name": "crack growth", "type": "concept or principle", "pos": [103, 115]}, {"name": "as", "type": "material", "pos": [133, 135]}, {"name": "as", "type": "material", "pos": [141, 143]}]}, {"sentence": "This paper presents a review of additive manufacturing technology and suitable techniques for offshore structures .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [32, 54]}]}, {"sentence": "Existing literature that reports current data on fracture toughness and fatigue crack growth tests conducted on AM parts is summarised and analysed , highlighting different steel grades and applications , with the view to illustrating the requirements for the new optimised functionally graded structures in offshore wind structures by means of AM technique .", "entities": [{"name": "data", "type": "concept or principle", "pos": [41, 45]}, {"name": "fracture", "type": "concept or principle", "pos": [49, 57]}, {"name": "fatigue crack growth", "type": "concept or principle", "pos": [72, 92]}, {"name": "AM parts", "type": "machine or equipment", "pos": [112, 120]}, {"name": "steel", "type": "material", "pos": [173, 178]}, {"name": "functionally graded structures", "type": "engineering feature", "pos": [274, 304]}, {"name": "AM technique", "type": "manufacturing process", "pos": [345, 357]}]}, {"sentence": "In this paper , the results of two different wire based additive-layer-manufacturing systems are compared : in one system Ti-6Al4V is deposited by a Nd : YAG laser beam , in the other by an arc beam ( tungsten inert gas process ) .", "entities": [{"name": "Nd : YAG", "type": "material", "pos": [149, 157]}, {"name": "laser beam", "type": "concept or principle", "pos": [158, 168]}, {"name": "arc", "type": "concept or principle", "pos": [190, 193]}, {"name": "tungsten inert gas", "type": "manufacturing process", "pos": [201, 219]}, {"name": "process", "type": "concept or principle", "pos": [220, 227]}]}, {"sentence": "Mechanical properties of the deposits and of plate material are presented and evaluated with respect to aerospace material specifications .", "entities": [{"name": "Mechanical properties", "type": "concept or principle", "pos": [0, 21]}, {"name": "material", "type": "material", "pos": [51, 59]}, {"name": "aerospace", "type": "application", "pos": [104, 113]}, {"name": "specifications", "type": "process parameter", "pos": [123, 137]}]}, {"sentence": "The mechanical tests including static tension and high cycle fatigue were performed in aB-built , stresB-relieved and annealed conditions.Generally , the mechanical properties of the components are competitive to cast and even wrought material properties and can attain properties suitable for space or aerospace applications .", "entities": [{"name": "mechanical tests", "type": "process characterization", "pos": [4, 20]}, {"name": "fatigue", "type": "machanical property", "pos": [61, 68]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [154, 175]}, {"name": "components", "type": "machine or equipment", "pos": [183, 193]}, {"name": "cast", "type": "manufacturing process", "pos": [213, 217]}, {"name": "wrought material", "type": "material", "pos": [227, 243]}, {"name": "properties", "type": "concept or principle", "pos": [244, 254]}, {"name": "properties", "type": "concept or principle", "pos": [270, 280]}, {"name": "aerospace", "type": "application", "pos": [303, 312]}]}, {"sentence": "Realizing improved strength in composite metallic materials remains a challenge using conventional welding and joining systems due to the generation and development of brittle intermetallic compounds caused by complex thermal profiles during solidification .", "entities": [{"name": "strength", "type": "machanical property", "pos": [19, 27]}, {"name": "composite", "type": "material", "pos": [31, 40]}, {"name": "materials", "type": "concept or principle", "pos": [50, 59]}, {"name": "conventional welding", "type": "manufacturing process", "pos": [86, 106]}, {"name": "joining", "type": "manufacturing process", "pos": [111, 118]}, {"name": "brittle", "type": "machanical property", "pos": [168, 175]}, {"name": "thermal profiles", "type": "concept or principle", "pos": [218, 234]}, {"name": "solidification", "type": "concept or principle", "pos": [242, 256]}]}, {"sentence": "Here , wire arc additive manufacturing ( WAAM ) process was used to fabricate a steel-nickel structural component , whose average tensile strength of 634 MPa significantly exceeded that of feedstock materials ( steel , 537 MPa and nickel , 455 MPa ) , which has not been reported previously .", "entities": [{"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [7, 38]}, {"name": "WAAM", "type": "manufacturing process", "pos": [41, 45]}, {"name": "process", "type": "concept or principle", "pos": [48, 55]}, {"name": "fabricate", "type": "manufacturing process", "pos": [68, 77]}, {"name": "structural component", "type": "concept or principle", "pos": [93, 113]}, {"name": "average", "type": "concept or principle", "pos": [122, 129]}, {"name": "strength", "type": "machanical property", "pos": [138, 146]}, {"name": "MPa", "type": "concept or principle", "pos": [154, 157]}, {"name": "feedstock materials", "type": "material", "pos": [189, 208]}, {"name": "steel", "type": "material", "pos": [211, 216]}, {"name": "MPa", "type": "concept or principle", "pos": [223, 226]}, {"name": "nickel", "type": "material", "pos": [231, 237]}, {"name": "MPa", "type": "concept or principle", "pos": [244, 247]}]}, {"sentence": "The aB-fabricated sample exhibited hierarchically structural heterogeneity due to the interweaving deposition strategy .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [18, 24]}, {"name": "heterogeneity", "type": "concept or principle", "pos": [61, 74]}, {"name": "deposition", "type": "concept or principle", "pos": [99, 109]}]}, {"sentence": "The improved mechanical response during tensile testing was due to the inter-locking microstructure forming a strong bond at the interface and solid solutions strengthening from the intermixing of the Fe and Ni increased the interface strength , beyond the sum of parts .", "entities": [{"name": "mechanical response", "type": "concept or principle", "pos": [13, 32]}, {"name": "tensile testing", "type": "process characterization", "pos": [40, 55]}, {"name": "microstructure", "type": "concept or principle", "pos": [85, 99]}, {"name": "forming", "type": "manufacturing process", "pos": [100, 107]}, {"name": "interface", "type": "concept or principle", "pos": [129, 138]}, {"name": "solid solutions", "type": "material", "pos": [143, 158]}, {"name": "Fe", "type": "material", "pos": [201, 203]}, {"name": "Ni", "type": "material", "pos": [208, 210]}, {"name": "interface", "type": "concept or principle", "pos": [225, 234]}]}, {"sentence": "The research offers a new route for producing high-quality steel-nickel dissimilar structures and widens the design opportunities of monolithic components , with site-specific properties , for specific structural or functional applications .", "entities": [{"name": "research", "type": "concept or principle", "pos": [4, 12]}, {"name": "design", "type": "engineering feature", "pos": [109, 115]}, {"name": "monolithic", "type": "machanical property", "pos": [133, 143]}, {"name": "components", "type": "machine or equipment", "pos": [144, 154]}, {"name": "properties", "type": "concept or principle", "pos": [176, 186]}]}, {"sentence": "Wire Arc Additive Manufacturing ( WAAM ) is a fusion- and wire-based additive manufacturing technology which has gained industrial interest for the production of medium-to-large components with high material deposition rates .", "entities": [{"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "WAAM", "type": "manufacturing process", "pos": [34, 38]}, {"name": "wire-based additive manufacturing", "type": "manufacturing process", "pos": [58, 91]}, {"name": "technology", "type": "concept or principle", "pos": [92, 102]}, {"name": "industrial", "type": "application", "pos": [120, 130]}, {"name": "production", "type": "manufacturing process", "pos": [148, 158]}, {"name": "components", "type": "machine or equipment", "pos": [178, 188]}, {"name": "material", "type": "material", "pos": [199, 207]}, {"name": "deposition rates", "type": "process parameter", "pos": [208, 224]}]}, {"sentence": "However , in-depth studies on performance indicators that incorporate economic and environmental sustainability still have to be carried out .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [30, 41]}, {"name": "sustainability", "type": "concept or principle", "pos": [97, 111]}, {"name": "be", "type": "material", "pos": [126, 128]}]}, {"sentence": "The first aim of the paper has been to quantify the performance metrics of WAAM-based manufacturing approaches , while varying the size and the deposited material of the component .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [52, 63]}, {"name": "manufacturing approaches", "type": "manufacturing process", "pos": [86, 110]}, {"name": "material", "type": "material", "pos": [154, 162]}, {"name": "component", "type": "machine or equipment", "pos": [170, 179]}]}, {"sentence": "Wire-arc additive manufacturing is an additive manufacturing technology which allows for high deposition rates and is well suited for manufacturing larger parts in a short time compared to other additive manufacturing technologies .", "entities": [{"name": "Wire-arc additive manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [38, 60]}, {"name": "high deposition rates", "type": "process parameter", "pos": [89, 110]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [134, 147]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [195, 217]}]}, {"sentence": "The technology has already received considerable industrial take-up for various materials and applications .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [4, 14]}, {"name": "industrial", "type": "application", "pos": [49, 59]}, {"name": "various materials", "type": "material", "pos": [72, 89]}]}, {"sentence": "The aim of this work is to investigate the alloy EN AW 6016 as wire stock for WAAM .", "entities": [{"name": "alloy", "type": "material", "pos": [43, 48]}, {"name": "as", "type": "material", "pos": [60, 62]}, {"name": "WAAM", "type": "manufacturing process", "pos": [78, 82]}]}, {"sentence": "To establish this , aluminum wire was produced by wire drawing .", "entities": [{"name": "aluminum", "type": "material", "pos": [20, 28]}, {"name": "wire drawing", "type": "manufacturing process", "pos": [50, 62]}]}, {"sentence": "Using this wire , specimens were produced on base plate material using a variety of process parameters .", "entities": [{"name": "material", "type": "material", "pos": [56, 64]}, {"name": "process parameters", "type": "concept or principle", "pos": [84, 102]}]}, {"sentence": "These parts were then used to evaluate the mechanical properties .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [43, 64]}]}, {"sentence": "Further properties such as porosity and hardness were investigated using light optical microscopy .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [8, 18]}, {"name": "as", "type": "material", "pos": [24, 26]}, {"name": "hardness", "type": "machanical property", "pos": [40, 48]}, {"name": "optical microscopy", "type": "process characterization", "pos": [79, 97]}]}, {"sentence": "Based on the results , the potential of the alloy for WAAM of lightweight parts is discussed .", "entities": [{"name": "alloy", "type": "material", "pos": [44, 49]}, {"name": "WAAM", "type": "manufacturing process", "pos": [54, 58]}, {"name": "lightweight", "type": "concept or principle", "pos": [62, 73]}]}, {"sentence": "Cu-Al alloy was in-situ fabricated by twin wire arc additive manufacturing .", "entities": [{"name": "alloy", "type": "material", "pos": [6, 11]}, {"name": "in-situ fabricated", "type": "concept or principle", "pos": [16, 34]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [43, 74]}]}, {"sentence": "Addition of about 2 % silicon to the copper-aluminum alloy helps to increase the hardness by 0.5–1 times .", "entities": [{"name": "silicon", "type": "material", "pos": [22, 29]}, {"name": "alloy", "type": "material", "pos": [53, 58]}, {"name": "hardness", "type": "machanical property", "pos": [81, 89]}]}, {"sentence": "With the aluminum content increases , the yield strength increases 150 MPa .", "entities": [{"name": "aluminum", "type": "material", "pos": [9, 17]}, {"name": "yield strength", "type": "machanical property", "pos": [42, 56]}, {"name": "MPa", "type": "concept or principle", "pos": [71, 74]}]}, {"sentence": "CuAl2 with the different crystal structures were synthetized .", "entities": [{"name": "crystal structures", "type": "machanical property", "pos": [25, 43]}]}, {"sentence": "Present work investigated the use of Cold Metal Transfer ( CMT ) welding for additive manufacturing of copper‑aluminum alloys with addition of silicon in small amount .", "entities": [{"name": "Cold Metal Transfer", "type": "manufacturing process", "pos": [37, 56]}, {"name": "CMT", "type": "manufacturing process", "pos": [59, 62]}, {"name": "welding", "type": "manufacturing process", "pos": [65, 72]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [77, 99]}, {"name": "alloys", "type": "material", "pos": [119, 125]}, {"name": "silicon", "type": "material", "pos": [143, 150]}]}, {"sentence": "The additive manufacturing was successfully demonstrated through two samples with the 4.34 % ( sample-1 ) and 6.58 % ( sample-2 ) aluminum content , which is not much different with the content of the design .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [4, 26]}, {"name": "samples", "type": "concept or principle", "pos": [69, 76]}, {"name": "aluminum", "type": "material", "pos": [130, 138]}, {"name": "design", "type": "engineering feature", "pos": [201, 207]}]}, {"sentence": "The analyses of performance of samples reveal that both samples have good strength and ductility .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [16, 27]}, {"name": "samples", "type": "concept or principle", "pos": [31, 38]}, {"name": "samples", "type": "concept or principle", "pos": [56, 63]}, {"name": "strength", "type": "machanical property", "pos": [74, 82]}, {"name": "ductility", "type": "machanical property", "pos": [87, 96]}]}, {"sentence": "It is also found addition of silicon in small amount ( 2.1 % –2.4 % ) effectively improves hardness , tensile strength and 0.2 % offset Yield Strength in comparison to pure copper‑aluminum alloy .", "entities": [{"name": "silicon", "type": "material", "pos": [29, 36]}, {"name": "hardness", "type": "machanical property", "pos": [91, 99]}, {"name": "tensile strength", "type": "machanical property", "pos": [102, 118]}, {"name": "offset", "type": "concept or principle", "pos": [129, 135]}, {"name": "Strength", "type": "machanical property", "pos": [142, 150]}, {"name": "alloy", "type": "material", "pos": [189, 194]}]}, {"sentence": "The results of X-ray diffraction ( XRD ) , showed that sample-2 possessed CuAl2 with different crystal structure whereas sample-1 did not .", "entities": [{"name": "X-ray diffraction", "type": "process characterization", "pos": [15, 32]}, {"name": "XRD", "type": "process characterization", "pos": [35, 38]}, {"name": "crystal structure", "type": "machanical property", "pos": [95, 112]}]}, {"sentence": "It is found that an increase in aluminum caused both tensile strength and 0.2 % offset Yield Strength to increase , however , increase in yield strength was very significant ( 155 MPa i.e .", "entities": [{"name": "aluminum", "type": "material", "pos": [32, 40]}, {"name": "tensile strength", "type": "machanical property", "pos": [53, 69]}, {"name": "offset", "type": "concept or principle", "pos": [80, 86]}, {"name": "Strength", "type": "machanical property", "pos": [93, 101]}, {"name": "yield strength", "type": "machanical property", "pos": [138, 152]}, {"name": "MPa", "type": "concept or principle", "pos": [180, 183]}]}, {"sentence": "In this study , the 0.2Pct offset Yield Strength of sample-1 is 150 MPa more than that of sample-2 .", "entities": [{"name": "offset", "type": "concept or principle", "pos": [27, 33]}, {"name": "Strength", "type": "machanical property", "pos": [40, 48]}, {"name": "MPa", "type": "concept or principle", "pos": [68, 71]}]}, {"sentence": "Embedding with additive manufacturing ( AM ) is a process of incorporating functional components , such as sensors and actuators , in the printed structure by inserting them into a specially designed cavity .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [15, 37]}, {"name": "AM", "type": "manufacturing process", "pos": [40, 42]}, {"name": "process", "type": "concept or principle", "pos": [50, 57]}, {"name": "functional components", "type": "concept or principle", "pos": [75, 96]}, {"name": "as", "type": "material", "pos": [104, 106]}, {"name": "actuators", "type": "machine or equipment", "pos": [119, 128]}, {"name": "structure", "type": "concept or principle", "pos": [146, 155]}, {"name": "designed", "type": "engineering feature", "pos": [191, 199]}]}, {"sentence": "The print process has to be interrupted after the cavity is printed to insert the component .", "entities": [{"name": "print", "type": "manufacturing process", "pos": [4, 9]}, {"name": "be", "type": "material", "pos": [25, 27]}, {"name": "insert", "type": "machine or equipment", "pos": [71, 77]}, {"name": "component", "type": "machine or equipment", "pos": [82, 91]}]}, {"sentence": "This allows for multifunctional structures to be created directly from the build plate .", "entities": [{"name": "be", "type": "material", "pos": [46, 48]}, {"name": "build plate", "type": "machine or equipment", "pos": [75, 86]}]}, {"sentence": "However , previous research has shown that this process interruption causes failure at the paused layer due to the cooling between the layers .", "entities": [{"name": "research", "type": "concept or principle", "pos": [19, 27]}, {"name": "process", "type": "concept or principle", "pos": [48, 55]}, {"name": "failure", "type": "concept or principle", "pos": [76, 83]}, {"name": "layer", "type": "process parameter", "pos": [98, 103]}, {"name": "cooling", "type": "manufacturing process", "pos": [115, 122]}]}, {"sentence": "The presence of the designed cavity further impacts the strength of the part due to a reduction in the effective crosB-section in contact between the paused and the resumed layers .", "entities": [{"name": "designed", "type": "engineering feature", "pos": [20, 28]}, {"name": "strength", "type": "machanical property", "pos": [56, 64]}, {"name": "reduction", "type": "concept or principle", "pos": [86, 95]}, {"name": "contact", "type": "application", "pos": [130, 137]}]}, {"sentence": "This research presents a methodology to predict the weld strength between the layers of an embedded material extrusion structure by obtaining the thermal history at the layer interface as a result of process interruption .", "entities": [{"name": "research", "type": "concept or principle", "pos": [5, 13]}, {"name": "methodology", "type": "concept or principle", "pos": [25, 36]}, {"name": "weld strength", "type": "machanical property", "pos": [52, 65]}, {"name": "material extrusion", "type": "manufacturing process", "pos": [100, 118]}, {"name": "layer", "type": "process parameter", "pos": [169, 174]}, {"name": "interface", "type": "concept or principle", "pos": [175, 184]}, {"name": "as", "type": "material", "pos": [185, 187]}, {"name": "process", "type": "concept or principle", "pos": [200, 207]}]}, {"sentence": "An infrared camera and an embedded thermocouple are used to obtain the thermal history of the depositing fresh layer and of the layer interface , respectively .", "entities": [{"name": "infrared", "type": "concept or principle", "pos": [3, 11]}, {"name": "camera", "type": "machine or equipment", "pos": [12, 18]}, {"name": "thermocouple", "type": "machine or equipment", "pos": [35, 47]}, {"name": "layer", "type": "process parameter", "pos": [111, 116]}, {"name": "layer", "type": "process parameter", "pos": [128, 133]}, {"name": "interface", "type": "concept or principle", "pos": [134, 143]}]}, {"sentence": "The impact of toolpath design on the thermal history of the layer interface is considered by dividing the crosB-section area into zones with similar thermal history .", "entities": [{"name": "impact", "type": "concept or principle", "pos": [4, 10]}, {"name": "toolpath", "type": "process parameter", "pos": [14, 22]}, {"name": "design", "type": "engineering feature", "pos": [23, 29]}, {"name": "layer", "type": "process parameter", "pos": [60, 65]}, {"name": "interface", "type": "concept or principle", "pos": [66, 75]}, {"name": "area", "type": "process parameter", "pos": [120, 124]}]}, {"sentence": "Polymer weld theory is utilized to predict the strength at these different zones , where material properties are obtained through rheology measurements .", "entities": [{"name": "Polymer", "type": "material", "pos": [0, 7]}, {"name": "strength", "type": "machanical property", "pos": [47, 55]}, {"name": "material properties", "type": "concept or principle", "pos": [89, 108]}, {"name": "rheology", "type": "machanical property", "pos": [130, 138]}]}, {"sentence": "These strength values for the zones are then used to predict the load at failure for different specimens by treating them as composites .", "entities": [{"name": "strength", "type": "machanical property", "pos": [6, 14]}, {"name": "failure", "type": "concept or principle", "pos": [73, 80]}, {"name": "as", "type": "material", "pos": [122, 124]}]}, {"sentence": "Findings confirm that this approach can be used to more accurately predict tensile loads at failure for embedded structures , with errors ranging from 1 % to 20 % depending on the toolpath geometry .", "entities": [{"name": "be", "type": "material", "pos": [40, 42]}, {"name": "accurately", "type": "process characterization", "pos": [56, 66]}, {"name": "tensile loads", "type": "process characterization", "pos": [75, 88]}, {"name": "failure", "type": "concept or principle", "pos": [92, 99]}, {"name": "errors", "type": "concept or principle", "pos": [131, 137]}, {"name": "toolpath", "type": "process parameter", "pos": [180, 188]}, {"name": "geometry", "type": "concept or principle", "pos": [189, 197]}]}, {"sentence": "Additive manufacturing ( AM ) is the umbrella term that covers a variety of techniques that build up structures layer-by-layer as opposed to machining and other subtracting methods .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "build", "type": "process parameter", "pos": [92, 97]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [112, 126]}, {"name": "as", "type": "material", "pos": [127, 129]}, {"name": "machining", "type": "manufacturing process", "pos": [141, 150]}]}, {"sentence": "It keeps evolving as an important technology in prototyping and the development of new devices .", "entities": [{"name": "as", "type": "material", "pos": [18, 20]}, {"name": "technology", "type": "concept or principle", "pos": [34, 44]}, {"name": "prototyping", "type": "concept or principle", "pos": [48, 59]}]}, {"sentence": "However , using AM on a larger scale is still challenging , as traditional methods require the AM machines to be larger than the manufactured structure .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [16, 18]}, {"name": "as", "type": "material", "pos": [60, 62]}, {"name": "AM machines", "type": "machine or equipment", "pos": [95, 106]}, {"name": "be", "type": "material", "pos": [110, 112]}, {"name": "manufactured", "type": "concept or principle", "pos": [129, 141]}]}, {"sentence": "The focus in this paper is the feasibility of large-scale AM of metallic materials by arc welding .", "entities": [{"name": "feasibility", "type": "concept or principle", "pos": [31, 42]}, {"name": "AM", "type": "manufacturing process", "pos": [58, 60]}, {"name": "metallic materials", "type": "material", "pos": [64, 82]}, {"name": "arc welding", "type": "manufacturing process", "pos": [86, 97]}]}, {"sentence": "A series of experiments with robotic arc welding using an ABB IRB2400/10 robot are presented and discussed .", "entities": [{"name": "arc welding", "type": "manufacturing process", "pos": [37, 48]}, {"name": "robot", "type": "machine or equipment", "pos": [73, 78]}]}, {"sentence": "These experiment will help map some of the challenges that need to be addressed in future work .", "entities": [{"name": "experiment", "type": "concept or principle", "pos": [6, 16]}, {"name": "be", "type": "material", "pos": [67, 69]}]}, {"sentence": "Hydrodynamic flow is used for surface finishing of additive manufactured channels .", "entities": [{"name": "surface finishing", "type": "manufacturing process", "pos": [30, 47]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [51, 72]}]}, {"sentence": "The surface finish quality ( Ra and Rz ) of additive manufactured channels improves by > 90 % .", "entities": [{"name": "surface finish", "type": "engineering feature", "pos": [4, 18]}, {"name": "quality", "type": "concept or principle", "pos": [19, 26]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [44, 65]}]}, {"sentence": "The surface integrity of the channels also improves after surface finishing .", "entities": [{"name": "surface integrity", "type": "engineering feature", "pos": [4, 21]}, {"name": "surface finishing", "type": "manufacturing process", "pos": [58, 75]}]}, {"sentence": "A surface roughness ratio of ≈1.0 is achieved in the additive manufactured channel .", "entities": [{"name": "surface roughness", "type": "machanical property", "pos": [2, 19]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [53, 74]}]}, {"sentence": "The surface finishing of internal channels for components built using additive manufacturing is a challenge .", "entities": [{"name": "surface finishing", "type": "manufacturing process", "pos": [4, 21]}, {"name": "components", "type": "machine or equipment", "pos": [47, 57]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [70, 92]}]}, {"sentence": "The resulting surface finish uniformity of additive manufactured internal channels ( such as fuel transfer lines and cooling passages ) is an issue .", "entities": [{"name": "surface finish", "type": "engineering feature", "pos": [14, 28]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [43, 64]}, {"name": "as", "type": "material", "pos": [90, 92]}, {"name": "transfer lines", "type": "concept or principle", "pos": [98, 112]}, {"name": "cooling", "type": "manufacturing process", "pos": [117, 124]}]}, {"sentence": "Therefore , we propose a novel surface finishing technique using controlled hydrodynamic multiphase flow with abrasion phenomenon to overcome the challenges in the surface finishing of additive manufactured internal channels .", "entities": [{"name": "surface finishing", "type": "manufacturing process", "pos": [31, 48]}, {"name": "surface finishing", "type": "manufacturing process", "pos": [164, 181]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [185, 206]}]}, {"sentence": "In this study , we performed the internal surface finishing on AlSi10Mg components manufactured by direct metal laser sintering .", "entities": [{"name": "surface finishing", "type": "manufacturing process", "pos": [42, 59]}, {"name": "AlSi10Mg", "type": "material", "pos": [63, 71]}, {"name": "manufactured", "type": "concept or principle", "pos": [83, 95]}, {"name": "direct metal laser sintering", "type": "manufacturing process", "pos": [99, 127]}]}, {"sentence": "We investigated the surface finish potential of the proposed hydrodynamic cavitation abrasive finishing ( HCAF ) by varying the process parameters , namely , the hydrodynamic upstream and downstream fluid pressures , fluid temperature , abrasive concentration , and processing time .", "entities": [{"name": "surface finish", "type": "engineering feature", "pos": [20, 34]}, {"name": "cavitation", "type": "concept or principle", "pos": [74, 84]}, {"name": "abrasive", "type": "material", "pos": [85, 93]}, {"name": "process parameters", "type": "concept or principle", "pos": [128, 146]}, {"name": "fluid", "type": "material", "pos": [199, 204]}, {"name": "fluid", "type": "material", "pos": [217, 222]}, {"name": "abrasive", "type": "material", "pos": [237, 245]}]}, {"sentence": "The HCAF process resulted in greater than 90 % ( Ra and Rz ) surface finish improvements with an acceptable thickness loss from the internal channels .", "entities": [{"name": "process", "type": "concept or principle", "pos": [9, 16]}, {"name": "surface finish", "type": "engineering feature", "pos": [61, 75]}]}, {"sentence": "We precisely mapped the surface morphology transformation at the demarcated zones over the processing time and explained the material removal mechanism .", "entities": [{"name": "surface morphology", "type": "process characterization", "pos": [24, 42]}, {"name": "material", "type": "material", "pos": [125, 133]}, {"name": "mechanism", "type": "concept or principle", "pos": [142, 151]}]}, {"sentence": "In addition , we analyzed and discussed the surface integrity of the channels in terms of the microstructure , surface hardness , and residual stress .", "entities": [{"name": "surface integrity", "type": "engineering feature", "pos": [44, 61]}, {"name": "microstructure", "type": "concept or principle", "pos": [94, 108]}, {"name": "surface", "type": "concept or principle", "pos": [111, 118]}, {"name": "hardness", "type": "machanical property", "pos": [119, 127]}, {"name": "residual stress", "type": "machanical property", "pos": [134, 149]}]}, {"sentence": "Furthermore , we performed large-area surface topography measurements .", "entities": [{"name": "surface topography", "type": "concept or principle", "pos": [38, 56]}]}, {"sentence": "Then , we analyzed the resulting areal surface texture parameters to determine the uniformity and flatness of the surface after internal surface finishing .", "entities": [{"name": "surface texture", "type": "engineering feature", "pos": [39, 54]}, {"name": "parameters", "type": "concept or principle", "pos": [55, 65]}, {"name": "flatness", "type": "machanical property", "pos": [98, 106]}, {"name": "surface", "type": "concept or principle", "pos": [114, 121]}, {"name": "surface finishing", "type": "manufacturing process", "pos": [137, 154]}]}, {"sentence": "Finally , we discussed the significance of using the proposed HCAF process for complex additive manufactured internal channels .", "entities": [{"name": "process", "type": "concept or principle", "pos": [67, 74]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [87, 108]}]}, {"sentence": "Additive manufacturing can produce very complex and highly integrated parts that can not be manufactured by traditional methods .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "be", "type": "material", "pos": [89, 91]}]}, {"sentence": "The aim of this study was to find out the laser weldability of the printed AlSi10Mg material without filler material .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [42, 47]}, {"name": "AlSi10Mg", "type": "material", "pos": [75, 83]}, {"name": "material", "type": "material", "pos": [84, 92]}]}, {"sentence": "The laser used in these welding experiments was Yb : YAG disk laser .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [4, 9]}, {"name": "welding", "type": "manufacturing process", "pos": [24, 31]}, {"name": "Yb", "type": "material", "pos": [48, 50]}, {"name": "YAG", "type": "material", "pos": [53, 56]}, {"name": "laser", "type": "enabling technology", "pos": [62, 67]}]}, {"sentence": "The laser wavelength was 1030 nm and the maximum output power on the workpiece surface was 4 kW .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [4, 9]}, {"name": "power", "type": "process parameter", "pos": [56, 61]}, {"name": "workpiece", "type": "concept or principle", "pos": [69, 78]}, {"name": "surface", "type": "concept or principle", "pos": [79, 86]}]}, {"sentence": "AlSi10Mg is a widely used material in parts that are produced utilizing the SLM technique .", "entities": [{"name": "AlSi10Mg", "type": "material", "pos": [0, 8]}, {"name": "material", "type": "material", "pos": [26, 34]}, {"name": "SLM", "type": "manufacturing process", "pos": [76, 79]}]}, {"sentence": "The material has very good corrosion resistance properties , good electrical conductivity and excellent thermal conductivity .", "entities": [{"name": "material", "type": "material", "pos": [4, 12]}, {"name": "corrosion resistance", "type": "concept or principle", "pos": [27, 47]}, {"name": "electrical conductivity", "type": "machanical property", "pos": [66, 89]}, {"name": "thermal conductivity", "type": "machanical property", "pos": [104, 124]}]}, {"sentence": "AlSi10Mg has proven to be much easier to print than steel materials , so it is a popular material also in prototype production .", "entities": [{"name": "AlSi10Mg", "type": "material", "pos": [0, 8]}, {"name": "be", "type": "material", "pos": [23, 25]}, {"name": "print", "type": "manufacturing process", "pos": [41, 46]}, {"name": "steel materials", "type": "material", "pos": [52, 67]}, {"name": "material", "type": "material", "pos": [89, 97]}, {"name": "prototype", "type": "concept or principle", "pos": [106, 115]}, {"name": "production", "type": "manufacturing process", "pos": [116, 126]}]}, {"sentence": "Based on welding tests , laser welding without filler material is suitable for AlSi10Mg material and the static strength of the weld is reasonably good compared to the base material .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [9, 16]}, {"name": "laser welding", "type": "manufacturing process", "pos": [25, 38]}, {"name": "material", "type": "material", "pos": [54, 62]}, {"name": "AlSi10Mg", "type": "material", "pos": [79, 87]}, {"name": "strength", "type": "machanical property", "pos": [112, 120]}, {"name": "weld", "type": "engineering feature", "pos": [128, 132]}, {"name": "material", "type": "material", "pos": [173, 181]}]}, {"sentence": "However , AlSi10Mg can be found to be challenging due to its composition .", "entities": [{"name": "AlSi10Mg", "type": "material", "pos": [10, 18]}, {"name": "be", "type": "material", "pos": [23, 25]}, {"name": "be", "type": "material", "pos": [35, 37]}, {"name": "composition", "type": "concept or principle", "pos": [61, 72]}]}, {"sentence": "Additive manufacturing has experienced a remarkably growth over the last few years , making possible not only to make prototypes , but also to produce final products , so nowadays most of recent works are focused in metal additive manufacturing .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "prototypes", "type": "concept or principle", "pos": [118, 128]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [216, 244]}]}, {"sentence": "The main objective of this work is to show the first experiences in the development of a cost effective metal additive manufacturing system on the basis of gas metal arc welding ( GMAW ) .", "entities": [{"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [104, 132]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [156, 177]}, {"name": "GMAW", "type": "manufacturing process", "pos": [180, 184]}]}, {"sentence": "The proposed system , wire and arc additive manufacturing ( WAAM ) , integrates a cold metal transfer ( CMT ) welding equipment patented by Fronius® , and a CNC milling machine Optimus with three axis and it presents the advantages to reduce the heat accumulation originated using a conventional GMAW equipment and the possibility to implement surface finish operations by milling .", "entities": [{"name": "wire and arc additive manufacturing", "type": "manufacturing process", "pos": [22, 57]}, {"name": "WAAM", "type": "manufacturing process", "pos": [60, 64]}, {"name": "cold metal transfer", "type": "manufacturing process", "pos": [82, 101]}, {"name": "CMT", "type": "manufacturing process", "pos": [104, 107]}, {"name": "welding", "type": "manufacturing process", "pos": [110, 117]}, {"name": "equipment", "type": "machine or equipment", "pos": [118, 127]}, {"name": "CNC milling", "type": "manufacturing process", "pos": [157, 168]}, {"name": "heat accumulation", "type": "machanical property", "pos": [246, 263]}, {"name": "GMAW", "type": "manufacturing process", "pos": [296, 300]}, {"name": "equipment", "type": "machine or equipment", "pos": [301, 310]}, {"name": "surface finish", "type": "engineering feature", "pos": [344, 358]}, {"name": "milling", "type": "manufacturing process", "pos": [373, 380]}]}, {"sentence": "Additive processes show a smaller amount of wasted material .", "entities": [{"name": "Additive", "type": "material", "pos": [0, 8]}, {"name": "material", "type": "material", "pos": [51, 59]}]}, {"sentence": "For material removal ratios over 55 % additive processes show less demand of energy .", "entities": [{"name": "material", "type": "material", "pos": [4, 12]}, {"name": "additive", "type": "material", "pos": [38, 46]}]}, {"sentence": "For material removal ratios over 75 % additive processes show less processing time .", "entities": [{"name": "material", "type": "material", "pos": [4, 12]}, {"name": "additive", "type": "material", "pos": [38, 46]}]}, {"sentence": "This paper aims to analyze and compare the electrical energy and material efficiency of machining , additive and hybrid manufacturing .", "entities": [{"name": "electrical", "type": "application", "pos": [43, 53]}, {"name": "material", "type": "material", "pos": [65, 73]}, {"name": "machining", "type": "manufacturing process", "pos": [88, 97]}, {"name": "additive", "type": "material", "pos": [100, 108]}, {"name": "hybrid manufacturing", "type": "concept or principle", "pos": [113, 133]}]}, {"sentence": "The analysis of the manufacturing processes is based on machine tool data from a sample process .", "entities": [{"name": "manufacturing processes", "type": "manufacturing process", "pos": [20, 43]}, {"name": "machine tool", "type": "machine or equipment", "pos": [56, 68]}, {"name": "data", "type": "concept or principle", "pos": [69, 73]}, {"name": "sample", "type": "concept or principle", "pos": [81, 87]}, {"name": "process", "type": "concept or principle", "pos": [88, 95]}]}, {"sentence": "To get a generalized statement about the energy consumption of the investigated processes the electrical energy demand was extrapolated as a function of the material removal ratio .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [80, 89]}, {"name": "electrical", "type": "application", "pos": [94, 104]}, {"name": "as", "type": "material", "pos": [120, 122]}, {"name": "material", "type": "material", "pos": [157, 165]}]}, {"sentence": "The results indicate that hybrid manufacturing becomes beneficial from an environmental point of view compared to milling , when the material removal ratio exceeds 55 % .", "entities": [{"name": "hybrid manufacturing", "type": "concept or principle", "pos": [26, 46]}, {"name": "milling", "type": "manufacturing process", "pos": [114, 121]}, {"name": "material", "type": "material", "pos": [133, 141]}]}, {"sentence": "The electrical break-even point for selective laser melting is approximated to 82 % material removal ratio from data extrapolation .", "entities": [{"name": "electrical", "type": "application", "pos": [4, 14]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [36, 59]}, {"name": "material", "type": "material", "pos": [84, 92]}, {"name": "data", "type": "concept or principle", "pos": [112, 116]}]}, {"sentence": "Subsequently , opportunities for electrical energy and material efficiency improvements are presented for these technologies to gain an understanding of how each can contribute to a more sustainable manufacturing landscape .", "entities": [{"name": "electrical", "type": "application", "pos": [33, 43]}, {"name": "material", "type": "material", "pos": [55, 63]}, {"name": "technologies", "type": "concept or principle", "pos": [112, 124]}, {"name": "gain", "type": "process parameter", "pos": [128, 132]}, {"name": "sustainable manufacturing", "type": "concept or principle", "pos": [187, 212]}]}, {"sentence": "The chemical composition of the deposited metal could be estimated .", "entities": [{"name": "chemical composition", "type": "concept or principle", "pos": [4, 24]}, {"name": "metal", "type": "material", "pos": [42, 47]}, {"name": "be", "type": "material", "pos": [54, 56]}]}, {"sentence": "The chemical composition could be changed gradually using proposed process .", "entities": [{"name": "chemical composition", "type": "concept or principle", "pos": [4, 24]}, {"name": "be", "type": "material", "pos": [31, 33]}, {"name": "process", "type": "concept or principle", "pos": [67, 74]}]}, {"sentence": "Wire and arc-based additive manufacturing ( AM ) is an additive manufacturing technique applying arc welding technology , where the metal melted by the arc discharge is accumulated and deposited .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [19, 41]}, {"name": "AM", "type": "manufacturing process", "pos": [44, 46]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [55, 77]}, {"name": "arc welding", "type": "manufacturing process", "pos": [97, 108]}, {"name": "metal", "type": "material", "pos": [132, 137]}, {"name": "melted", "type": "concept or principle", "pos": [138, 144]}, {"name": "arc", "type": "concept or principle", "pos": [152, 155]}]}, {"sentence": "High-performance products with an excellent mechanical or chemical properties can be obtained using more than two materials through wire and arc-based AM .", "entities": [{"name": "mechanical", "type": "application", "pos": [44, 54]}, {"name": "properties", "type": "concept or principle", "pos": [67, 77]}, {"name": "be", "type": "material", "pos": [82, 84]}, {"name": "materials", "type": "concept or principle", "pos": [114, 123]}, {"name": "AM", "type": "manufacturing process", "pos": [151, 153]}]}, {"sentence": "However , thermal stress and residual stress can form around the interface between two materials .", "entities": [{"name": "thermal stress", "type": "machanical property", "pos": [10, 24]}, {"name": "residual stress", "type": "machanical property", "pos": [29, 44]}, {"name": "interface", "type": "concept or principle", "pos": [65, 74]}, {"name": "materials", "type": "concept or principle", "pos": [87, 96]}]}, {"sentence": "Therefore , the objective of this study is to control the chemical composition of the deposited metal so that it changes gradually near the interface .", "entities": [{"name": "chemical composition", "type": "concept or principle", "pos": [58, 78]}, {"name": "metal", "type": "material", "pos": [96, 101]}, {"name": "interface", "type": "concept or principle", "pos": [140, 149]}]}, {"sentence": "Intermediate layers , with controlled chemical compositions , were inserted between the materials boundary .", "entities": [{"name": "chemical compositions", "type": "concept or principle", "pos": [38, 59]}, {"name": "materials boundary", "type": "concept or principle", "pos": [88, 106]}]}, {"sentence": "To regulate the chemical composition of the deposited metal , a filler wire was added into the molten pool during the deposition process .", "entities": [{"name": "chemical composition", "type": "concept or principle", "pos": [16, 36]}, {"name": "metal", "type": "material", "pos": [54, 59]}, {"name": "molten pool", "type": "concept or principle", "pos": [95, 106]}, {"name": "deposition process", "type": "manufacturing process", "pos": [118, 136]}]}, {"sentence": "Results revealed that the chemical composition changed gradually near the interface using the proposed method .", "entities": [{"name": "chemical composition", "type": "concept or principle", "pos": [26, 46]}, {"name": "interface", "type": "concept or principle", "pos": [74, 83]}]}, {"sentence": "Selective laser melting ( SLM ) is gaining increasing relevance in industry .", "entities": [{"name": "Selective laser melting", "type": "manufacturing process", "pos": [0, 23]}, {"name": "SLM", "type": "manufacturing process", "pos": [26, 29]}, {"name": "industry", "type": "application", "pos": [67, 75]}]}, {"sentence": "Residual deformations and internal stresses caused by the repeated layerwise melting of the metal powder and transient cooling of the solidified layers still presents a significant challenge to the profitability and quality of the process .", "entities": [{"name": "Residual deformations", "type": "concept or principle", "pos": [0, 21]}, {"name": "internal stresses", "type": "machanical property", "pos": [26, 43]}, {"name": "melting", "type": "manufacturing process", "pos": [77, 84]}, {"name": "metal powder", "type": "material", "pos": [92, 104]}, {"name": "transient", "type": "concept or principle", "pos": [109, 118]}, {"name": "cooling", "type": "manufacturing process", "pos": [119, 126]}, {"name": "quality", "type": "concept or principle", "pos": [216, 223]}, {"name": "process", "type": "concept or principle", "pos": [231, 238]}]}, {"sentence": "Excessive distortions or cracking may lead to expensive rejects .", "entities": [{"name": "cracking", "type": "concept or principle", "pos": [25, 33]}, {"name": "lead", "type": "material", "pos": [38, 42]}]}, {"sentence": "In practice , critical additively manufactured parts are either iteratively pre-compensated or redesigned based on production experience .", "entities": [{"name": "additively manufactured", "type": "manufacturing process", "pos": [23, 46]}, {"name": "production", "type": "manufacturing process", "pos": [115, 125]}]}, {"sentence": "To satisfy the need for improved understanding of this complex manufacturing process , CAE software providers have recently developed solutions to simulate the SLM process .", "entities": [{"name": "manufacturing process", "type": "manufacturing process", "pos": [63, 84]}, {"name": "CAE", "type": "enabling technology", "pos": [87, 90]}, {"name": "SLM", "type": "manufacturing process", "pos": [160, 163]}, {"name": "process", "type": "concept or principle", "pos": [164, 171]}]}, {"sentence": "ANSYS Additive Print and ANSYS Additive Suite.ANSYS Additive Print ( AAP ) , a user-oriented software , and ANSYS Additive Suite ( AAS ) , a software requiring advanced experience with Finite Element Methods ( FEM ) , are investigated and validated with regard to residual deformations .", "entities": [{"name": "ANSYS", "type": "application", "pos": [0, 5]}, {"name": "Additive", "type": "material", "pos": [6, 14]}, {"name": "ANSYS", "type": "application", "pos": [25, 30]}, {"name": "Additive", "type": "material", "pos": [31, 39]}, {"name": "Additive", "type": "material", "pos": [52, 60]}, {"name": "software", "type": "concept or principle", "pos": [93, 101]}, {"name": "ANSYS", "type": "application", "pos": [108, 113]}, {"name": "Additive", "type": "material", "pos": [114, 122]}, {"name": "software", "type": "concept or principle", "pos": [141, 149]}, {"name": "Finite Element Methods", "type": "concept or principle", "pos": [185, 207]}, {"name": "FEM", "type": "concept or principle", "pos": [210, 213]}, {"name": "residual deformations", "type": "concept or principle", "pos": [264, 285]}]}, {"sentence": "For the evaluation of the two programs , calibration and validation geometries were printed by SLM in Ti–6Al–4V and residual deformations have been measured by 3D scanning .", "entities": [{"name": "calibration", "type": "concept or principle", "pos": [41, 52]}, {"name": "validation geometries", "type": "concept or principle", "pos": [57, 78]}, {"name": "SLM", "type": "manufacturing process", "pos": [95, 98]}, {"name": "residual deformations", "type": "concept or principle", "pos": [116, 137]}, {"name": "3D scanning", "type": "process characterization", "pos": [160, 171]}]}, {"sentence": "The results have been used for the calibration of isotropic and anisotropic strain scaling factors in AAP , and for sensitivity analyses on the effect of basic model parameters in AAS .", "entities": [{"name": "calibration", "type": "concept or principle", "pos": [35, 46]}, {"name": "isotropic", "type": "machanical property", "pos": [50, 59]}, {"name": "anisotropic", "type": "machanical property", "pos": [64, 75]}, {"name": "sensitivity analyses", "type": "concept or principle", "pos": [116, 136]}, {"name": "model", "type": "concept or principle", "pos": [160, 165]}]}, {"sentence": "The actual validation of the programs is performed on the basis of different sample geometries with varying wall thickness and deformation characteristic.While both simulation approaches , AAP and AAS , are capable of predicting the qualitative characteristics of the residual deformations sufficiently well , accurate quantitative results are difficult to obtain .", "entities": [{"name": "validation", "type": "concept or principle", "pos": [11, 21]}, {"name": "sample", "type": "concept or principle", "pos": [77, 83]}, {"name": "geometries", "type": "concept or principle", "pos": [84, 94]}, {"name": "wall thickness", "type": "engineering feature", "pos": [108, 122]}, {"name": "deformation", "type": "concept or principle", "pos": [127, 138]}, {"name": "simulation", "type": "enabling technology", "pos": [165, 175]}, {"name": "qualitative", "type": "concept or principle", "pos": [233, 244]}, {"name": "residual deformations", "type": "concept or principle", "pos": [268, 289]}, {"name": "accurate", "type": "process characterization", "pos": [310, 318]}]}, {"sentence": "AAP is more accessible and yields accurate results within the calibrated regime .", "entities": [{"name": "accurate", "type": "process characterization", "pos": [34, 42]}, {"name": "calibrated", "type": "concept or principle", "pos": [62, 72]}]}, {"sentence": "Extrapolation to other geometries introduces uncertainties , however .", "entities": [{"name": "geometries", "type": "concept or principle", "pos": [23, 33]}]}, {"sentence": "Numerical efforts and modelling uncertainties as well as requirements for an extensive set of material parameters reduce its practicality , however .", "entities": [{"name": "modelling", "type": "enabling technology", "pos": [22, 31]}, {"name": "as", "type": "material", "pos": [46, 48]}, {"name": "as", "type": "material", "pos": [54, 56]}, {"name": "set", "type": "application", "pos": [87, 90]}, {"name": "material", "type": "material", "pos": [94, 102]}]}, {"sentence": "More appropriate calibration geometries , continuing extension of a more reliable material database , improved user guidelines and increased numerical efficiency are key in the future establishment of the process simulation approaches in the industrial practice .", "entities": [{"name": "calibration", "type": "concept or principle", "pos": [17, 28]}, {"name": "material", "type": "material", "pos": [82, 90]}, {"name": "database", "type": "enabling technology", "pos": [91, 99]}, {"name": "process simulation", "type": "enabling technology", "pos": [205, 223]}, {"name": "industrial", "type": "application", "pos": [242, 252]}]}, {"sentence": "The loss of elemental Mg was non-negligible during WAAM .", "entities": [{"name": "Mg", "type": "material", "pos": [22, 24]}, {"name": "WAAM", "type": "manufacturing process", "pos": [51, 55]}]}, {"sentence": "With the loss rate of elemental Mg increasing , the tensile strength and hardness of WAAM component decreased .", "entities": [{"name": "Mg", "type": "material", "pos": [32, 34]}, {"name": "tensile strength", "type": "machanical property", "pos": [52, 68]}, {"name": "hardness", "type": "machanical property", "pos": [73, 81]}, {"name": "WAAM", "type": "manufacturing process", "pos": [85, 89]}, {"name": "component", "type": "machine or equipment", "pos": [90, 99]}]}, {"sentence": "In WAAM component of Al-Mg alloy , the lattice parameters decreased with the Mg loss rate increasing .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [3, 7]}, {"name": "component", "type": "machine or equipment", "pos": [8, 17]}, {"name": "Al-Mg alloy", "type": "material", "pos": [21, 32]}, {"name": "lattice", "type": "concept or principle", "pos": [39, 46]}, {"name": "Mg", "type": "material", "pos": [77, 79]}]}, {"sentence": "Elemental Mg is easily evaporated or burnt during welding or wire + arc additive manufacturing ( WAAM ) , and results in a fluctuation of the composition and mechanical performances .", "entities": [{"name": "Mg", "type": "material", "pos": [10, 12]}, {"name": "evaporated", "type": "manufacturing process", "pos": [23, 33]}, {"name": "welding", "type": "manufacturing process", "pos": [50, 57]}, {"name": "wire + arc additive manufacturing", "type": "manufacturing process", "pos": [61, 94]}, {"name": "WAAM", "type": "manufacturing process", "pos": [97, 101]}, {"name": "composition", "type": "concept or principle", "pos": [142, 153]}, {"name": "mechanical", "type": "application", "pos": [158, 168]}]}, {"sentence": "Elemental Mg loss during the WAAM of Al–Mg alloy was investigated and the effect of Mg loss on the mechanical properties was discussed based on results from the chemical composition measurement and mechanical properties test .", "entities": [{"name": "Mg", "type": "material", "pos": [10, 12]}, {"name": "WAAM", "type": "manufacturing process", "pos": [29, 33]}, {"name": "alloy", "type": "material", "pos": [43, 48]}, {"name": "Mg", "type": "material", "pos": [84, 86]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [99, 120]}, {"name": "chemical composition", "type": "concept or principle", "pos": [161, 181]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [198, 219]}]}, {"sentence": "The elemental Mg distribution in the WAAM component was uniform , but obvious element enrichment occurred near the fusion zone of the substrate .", "entities": [{"name": "Mg", "type": "material", "pos": [14, 16]}, {"name": "distribution", "type": "concept or principle", "pos": [17, 29]}, {"name": "WAAM", "type": "manufacturing process", "pos": [37, 41]}, {"name": "component", "type": "machine or equipment", "pos": [42, 51]}, {"name": "element", "type": "material", "pos": [78, 85]}, {"name": "fusion zone", "type": "concept or principle", "pos": [115, 126]}, {"name": "substrate", "type": "material", "pos": [134, 143]}]}, {"sentence": "With an increase in the loss rate of elemental Mg , the tensile strength and average hardness of the WAAM component decreased , whereas the elongation increased .", "entities": [{"name": "Mg", "type": "material", "pos": [47, 49]}, {"name": "tensile strength", "type": "machanical property", "pos": [56, 72]}, {"name": "average", "type": "concept or principle", "pos": [77, 84]}, {"name": "WAAM", "type": "manufacturing process", "pos": [101, 105]}, {"name": "component", "type": "machine or equipment", "pos": [106, 115]}, {"name": "elongation", "type": "machanical property", "pos": [140, 150]}]}, {"sentence": "During the WAAM of the Al–Mg alloy , with an increase in the Mg loss rate , the lattice parameters decreased because the solid solubility decreased in the Al matrix during the WAAM .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [11, 15]}, {"name": "alloy", "type": "material", "pos": [29, 34]}, {"name": "Mg", "type": "material", "pos": [61, 63]}, {"name": "lattice", "type": "concept or principle", "pos": [80, 87]}, {"name": "solubility", "type": "machanical property", "pos": [127, 137]}, {"name": "Al", "type": "material", "pos": [155, 157]}, {"name": "WAAM", "type": "manufacturing process", "pos": [176, 180]}]}, {"sentence": "Ring rolling is a flexible forming process used to produce seamless rings with various dimensions and cross sections .", "entities": [{"name": "Ring rolling", "type": "manufacturing process", "pos": [0, 12]}, {"name": "forming process", "type": "manufacturing process", "pos": [27, 42]}, {"name": "dimensions", "type": "engineering feature", "pos": [87, 97]}, {"name": "cross sections", "type": "concept or principle", "pos": [102, 116]}]}, {"sentence": "For smaller rings of up to 500 mm diameter , mechanical ring rolling machines can be used .", "entities": [{"name": "mm", "type": "manufacturing process", "pos": [31, 33]}, {"name": "diameter", "type": "concept or principle", "pos": [34, 42]}, {"name": "mechanical", "type": "application", "pos": [45, 55]}, {"name": "rolling", "type": "manufacturing process", "pos": [61, 68]}, {"name": "machines", "type": "machine or equipment", "pos": [69, 77]}, {"name": "be", "type": "material", "pos": [82, 84]}]}, {"sentence": "A special design is a 4-mandrel-table rolling mill , which achieves high productivity due to the fact that the precursor rings are continuously conveyed through the roll gap by rotation of the table .", "entities": [{"name": "design", "type": "engineering feature", "pos": [10, 16]}, {"name": "rolling mill", "type": "machine or equipment", "pos": [38, 50]}, {"name": "productivity", "type": "concept or principle", "pos": [73, 85]}, {"name": "precursor", "type": "material", "pos": [111, 120]}]}, {"sentence": "The mechanical machines are usually integrated into a process chain that involves shearing of blocks , forging of blanks and ring rolling as the final process step .", "entities": [{"name": "mechanical", "type": "application", "pos": [4, 14]}, {"name": "machines", "type": "machine or equipment", "pos": [15, 23]}, {"name": "process chain", "type": "enabling technology", "pos": [54, 67]}, {"name": "shearing", "type": "manufacturing process", "pos": [82, 90]}, {"name": "forging", "type": "manufacturing process", "pos": [103, 110]}, {"name": "ring rolling", "type": "manufacturing process", "pos": [125, 137]}, {"name": "as", "type": "material", "pos": [138, 140]}, {"name": "process", "type": "concept or principle", "pos": [151, 158]}]}, {"sentence": "Especially profiled cross sections may require multiple forming steps to reach the final ring geometry .", "entities": [{"name": "cross sections", "type": "concept or principle", "pos": [20, 34]}, {"name": "forming", "type": "manufacturing process", "pos": [56, 63]}, {"name": "geometry", "type": "concept or principle", "pos": [94, 102]}]}, {"sentence": "To increase the flexibility of the process , it seems viable to use highly productive additive manufacturing processes such as wire-arc additive manufacturing ( WAAM ) to produce pre-forms for the ring rolling process .", "entities": [{"name": "flexibility", "type": "machanical property", "pos": [16, 27]}, {"name": "process", "type": "concept or principle", "pos": [35, 42]}, {"name": "additive manufacturing processes", "type": "manufacturing process", "pos": [86, 118]}, {"name": "as", "type": "material", "pos": [124, 126]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [136, 158]}, {"name": "WAAM", "type": "manufacturing process", "pos": [161, 165]}, {"name": "ring rolling", "type": "manufacturing process", "pos": [197, 209]}, {"name": "process", "type": "concept or principle", "pos": [210, 217]}]}, {"sentence": "WAAM is based on arc welding and allows for processing various materials with high deposition rates .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [0, 4]}, {"name": "arc welding", "type": "manufacturing process", "pos": [17, 28]}, {"name": "various materials", "type": "material", "pos": [55, 72]}, {"name": "high deposition rates", "type": "process parameter", "pos": [78, 99]}]}, {"sentence": "In this case , a more complex cross section can be manufactured , so that a single ring rolling stage may be sufficient .", "entities": [{"name": "cross section", "type": "concept or principle", "pos": [30, 43]}, {"name": "be", "type": "material", "pos": [48, 50]}, {"name": "ring rolling", "type": "manufacturing process", "pos": [83, 95]}, {"name": "be", "type": "material", "pos": [106, 108]}]}, {"sentence": "However , no previous research on ring rolling of additively manufactured pre-form is known .", "entities": [{"name": "research", "type": "concept or principle", "pos": [22, 30]}, {"name": "ring rolling", "type": "manufacturing process", "pos": [34, 46]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [50, 73]}]}, {"sentence": "The present contribution aims at analyzing the hot forming behavior of pre-forms made by WAAM during ring rolling .", "entities": [{"name": "hot forming", "type": "manufacturing process", "pos": [47, 58]}, {"name": "WAAM", "type": "manufacturing process", "pos": [89, 93]}, {"name": "ring rolling", "type": "manufacturing process", "pos": [101, 113]}]}, {"sentence": "The microstructure evolution and the achieved mechanical properties will be evaluated .", "entities": [{"name": "microstructure evolution", "type": "concept or principle", "pos": [4, 28]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [46, 67]}, {"name": "be", "type": "material", "pos": [73, 75]}]}, {"sentence": "The goal of this project is to determine the efficiency of 3D printed welding jigs in pre-series body shops .", "entities": [{"name": "3D printed", "type": "manufacturing process", "pos": [59, 69]}, {"name": "jigs", "type": "machine or equipment", "pos": [78, 82]}]}, {"sentence": "The design of these jigs and how they function compared to conventional jig systems is analyzed .", "entities": [{"name": "design", "type": "engineering feature", "pos": [4, 10]}, {"name": "jigs", "type": "machine or equipment", "pos": [20, 24]}, {"name": "jig", "type": "machine or equipment", "pos": [72, 75]}]}, {"sentence": "Additive manufactured parts possess the advantage of easier production of complex parts which would serve the purpose of designing custom jigs for different intricate detailed parts with odd orientations .", "entities": [{"name": "Additive manufactured parts", "type": "application", "pos": [0, 27]}, {"name": "production", "type": "manufacturing process", "pos": [60, 70]}, {"name": "jigs", "type": "machine or equipment", "pos": [138, 142]}, {"name": "orientations", "type": "concept or principle", "pos": [191, 203]}]}, {"sentence": "While machining custom jigs can be costly , 3D printing these jigs provides precision as well as reduces costs and setup time since they are designed for their specific application .", "entities": [{"name": "machining", "type": "manufacturing process", "pos": [6, 15]}, {"name": "jigs", "type": "machine or equipment", "pos": [23, 27]}, {"name": "be", "type": "material", "pos": [32, 34]}, {"name": "3D printing", "type": "manufacturing process", "pos": [44, 55]}, {"name": "jigs", "type": "machine or equipment", "pos": [62, 66]}, {"name": "precision", "type": "process characterization", "pos": [76, 85]}, {"name": "as", "type": "material", "pos": [86, 88]}, {"name": "as", "type": "material", "pos": [94, 96]}, {"name": "designed", "type": "engineering feature", "pos": [141, 149]}]}, {"sentence": "Large components can be made by laser welding EBM-built plates to wrought counterparts .", "entities": [{"name": "components", "type": "machine or equipment", "pos": [6, 16]}, {"name": "be", "type": "material", "pos": [21, 23]}, {"name": "laser welding", "type": "manufacturing process", "pos": [32, 45]}, {"name": "wrought", "type": "concept or principle", "pos": [66, 73]}]}, {"sentence": "Influence of the welding angles between EBM build direction and weld bead was studied .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [17, 24]}, {"name": "EBM", "type": "manufacturing process", "pos": [40, 43]}, {"name": "build direction", "type": "process parameter", "pos": [44, 59]}, {"name": "weld bead", "type": "concept or principle", "pos": [64, 73]}]}, {"sentence": "Microhardness of each zone is determined by the local microstructure .", "entities": [{"name": "Microhardness", "type": "concept or principle", "pos": [0, 13]}, {"name": "microstructure", "type": "concept or principle", "pos": [54, 68]}]}, {"sentence": "Tensile properties depend on the EBM base metal due to the internal defects .", "entities": [{"name": "Tensile properties", "type": "machanical property", "pos": [0, 18]}, {"name": "EBM", "type": "manufacturing process", "pos": [33, 36]}, {"name": "base metal", "type": "material", "pos": [37, 47]}, {"name": "defects", "type": "concept or principle", "pos": [68, 75]}]}, {"sentence": "The mechanism of stress during uniaxial tension is discussed based on columnar grains and the internal defects .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [4, 13]}, {"name": "stress", "type": "machanical property", "pos": [17, 23]}, {"name": "columnar grains", "type": "machanical property", "pos": [70, 85]}, {"name": "defects", "type": "concept or principle", "pos": [103, 110]}]}, {"sentence": "Electron beam melting ( EBM ) is an established powder-bed additive manufacturing process for small-to-medium-sized components of Ti-6Al-4V .", "entities": [{"name": "Electron beam melting", "type": "manufacturing process", "pos": [0, 21]}, {"name": "EBM", "type": "manufacturing process", "pos": [24, 27]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [59, 89]}, {"name": "components", "type": "machine or equipment", "pos": [116, 126]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [130, 139]}]}, {"sentence": "For further employing EBM on fabricating large-scale components , an effort has been made by joining EBM-built Ti-6Al-4V plates to wrought counterparts using laser welding , and the welding angles between EBM build direction and weld bead have been chosen as 0° , 30° and 45° .", "entities": [{"name": "EBM", "type": "manufacturing process", "pos": [22, 25]}, {"name": "fabricating", "type": "manufacturing process", "pos": [29, 40]}, {"name": "components", "type": "machine or equipment", "pos": [53, 63]}, {"name": "joining", "type": "manufacturing process", "pos": [93, 100]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [111, 120]}, {"name": "wrought", "type": "concept or principle", "pos": [131, 138]}, {"name": "laser welding", "type": "manufacturing process", "pos": [158, 171]}, {"name": "welding", "type": "manufacturing process", "pos": [182, 189]}, {"name": "EBM", "type": "manufacturing process", "pos": [205, 208]}, {"name": "build direction", "type": "process parameter", "pos": [209, 224]}, {"name": "weld bead", "type": "concept or principle", "pos": [229, 238]}, {"name": "as", "type": "material", "pos": [256, 258]}]}, {"sentence": "The influence of the welding angles on the microstructure , microhardness of base metals , fusion zone , and heat-affected zones , as well as the macro tensile test have been characterized .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [21, 28]}, {"name": "microstructure", "type": "concept or principle", "pos": [43, 57]}, {"name": "microhardness", "type": "concept or principle", "pos": [60, 73]}, {"name": "base metals", "type": "material", "pos": [77, 88]}, {"name": "fusion zone", "type": "concept or principle", "pos": [91, 102]}, {"name": "as", "type": "material", "pos": [131, 133]}, {"name": "as", "type": "material", "pos": [139, 141]}, {"name": "macro", "type": "engineering feature", "pos": [146, 151]}]}, {"sentence": "The microhardness of each zone is determined by the local microstructure , and the macro tensile properties largely depend on the EBM base metal due to the internal defects generated during the EBM process .", "entities": [{"name": "microhardness", "type": "concept or principle", "pos": [4, 17]}, {"name": "microstructure", "type": "concept or principle", "pos": [58, 72]}, {"name": "macro", "type": "engineering feature", "pos": [83, 88]}, {"name": "properties", "type": "concept or principle", "pos": [97, 107]}, {"name": "EBM", "type": "manufacturing process", "pos": [130, 133]}, {"name": "base metal", "type": "material", "pos": [134, 144]}, {"name": "defects", "type": "concept or principle", "pos": [165, 172]}, {"name": "EBM", "type": "manufacturing process", "pos": [194, 197]}]}, {"sentence": "The effect of welding angles on tensile strengths is not significant , while the elongation drops from 9.4 % to 5.8 % as the welding angle increases from 0° to 45° .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [14, 21]}, {"name": "tensile strengths", "type": "machanical property", "pos": [32, 49]}, {"name": "elongation", "type": "machanical property", "pos": [81, 91]}, {"name": "as", "type": "material", "pos": [118, 120]}, {"name": "welding", "type": "manufacturing process", "pos": [125, 132]}]}, {"sentence": "The mechanism of stress during uniaxial tension on EBM base metal is discussed based on the stress state of columnar grains and the internal defects .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [4, 13]}, {"name": "stress", "type": "machanical property", "pos": [17, 23]}, {"name": "EBM", "type": "manufacturing process", "pos": [51, 54]}, {"name": "base metal", "type": "material", "pos": [55, 65]}, {"name": "stress", "type": "machanical property", "pos": [92, 98]}, {"name": "columnar grains", "type": "machanical property", "pos": [108, 123]}, {"name": "defects", "type": "concept or principle", "pos": [141, 148]}]}, {"sentence": "Wire-arc additive manufacturing ( WAAM ) has received substantial attention in recent years due to the very high build rates .", "entities": [{"name": "Wire-arc additive manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "WAAM", "type": "manufacturing process", "pos": [34, 38]}, {"name": "build rates", "type": "process characterization", "pos": [113, 124]}]}, {"sentence": "When bulky structures are generated using standard layer-by-layer tool paths , the build rate in the outer contour of the part may lag behind the build rate in the interior .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [42, 50]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [51, 65]}, {"name": "build rate", "type": "process characterization", "pos": [83, 93]}, {"name": "contour", "type": "engineering feature", "pos": [107, 114]}, {"name": "build rate", "type": "process characterization", "pos": [146, 156]}]}, {"sentence": "In WAAM , the profile of a single weld bead resembles a parabola .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [3, 7]}, {"name": "profile", "type": "engineering feature", "pos": [14, 21]}, {"name": "weld bead", "type": "concept or principle", "pos": [34, 43]}]}, {"sentence": "In order to keep the build rate constant at each point of the layer , optimal overlapping distances can be determined .", "entities": [{"name": "build rate", "type": "process characterization", "pos": [21, 31]}, {"name": "layer", "type": "process parameter", "pos": [62, 67]}, {"name": "be", "type": "material", "pos": [104, 106]}]}, {"sentence": "This paper presents novel multi-bead overlapping models for tool path generation .", "entities": [{"name": "tool path", "type": "concept or principle", "pos": [60, 69]}]}, {"sentence": "Mathematical models are established to minimize valleys between adjacent weld beads by accounting for the overlapping volume .", "entities": [{"name": "Mathematical", "type": "concept or principle", "pos": [0, 12]}, {"name": "weld beads", "type": "concept or principle", "pos": [73, 83]}, {"name": "volume", "type": "concept or principle", "pos": [118, 124]}]}, {"sentence": "The proposed models are validated by manufacturing solid blocks from mild steel with the recommended overlapping distances .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [37, 50]}, {"name": "mild steel", "type": "material", "pos": [69, 79]}]}, {"sentence": "Macrographs are recorded to analyze the boundary profiles .", "entities": [{"name": "boundary", "type": "engineering feature", "pos": [40, 48]}]}, {"sentence": "High-integrity ceramic-metal composites combine electrical , thermal , and corrosion resistance with excellent mechanical robustness .", "entities": [{"name": "ceramic-metal", "type": "material", "pos": [15, 28]}, {"name": "electrical", "type": "application", "pos": [48, 58]}, {"name": "corrosion resistance", "type": "concept or principle", "pos": [75, 95]}, {"name": "mechanical", "type": "application", "pos": [111, 121]}]}, {"sentence": "Ultrasonic additive manufacturing ( UAM ) is a low temperature process that enables dissimilar material welds without inducing brittle phases .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "temperature", "type": "process parameter", "pos": [51, 62]}, {"name": "process", "type": "concept or principle", "pos": [63, 70]}, {"name": "material", "type": "material", "pos": [95, 103]}, {"name": "brittle", "type": "machanical property", "pos": [127, 134]}]}, {"sentence": "In this study , multiple layers of Yttria-stabilized zirconia ( YSZ ) films are jointed between layers of Al 6061-H18 matrix using a 9 kW UAM system .", "entities": [{"name": "zirconia", "type": "material", "pos": [53, 61]}, {"name": "YSZ", "type": "material", "pos": [64, 67]}, {"name": "Al", "type": "material", "pos": [106, 108]}, {"name": "UAM", "type": "manufacturing process", "pos": [138, 141]}]}, {"sentence": "UAM is advantageous over existing metal-ceramic composite fabrication techniques by continuously joining ceramics to metals at a speed of 2 m/min while requiring a moderate temperature that is 55 % of the melting point of aluminum .", "entities": [{"name": "UAM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "composite", "type": "material", "pos": [48, 57]}, {"name": "joining", "type": "manufacturing process", "pos": [97, 104]}, {"name": "ceramics", "type": "material", "pos": [105, 113]}, {"name": "metals", "type": "material", "pos": [117, 123]}, {"name": "temperature", "type": "process parameter", "pos": [173, 184]}, {"name": "melting point", "type": "machanical property", "pos": [205, 218]}, {"name": "aluminum", "type": "material", "pos": [222, 230]}]}, {"sentence": "The welding interface , which is found to include a 10 nm thick diffusion zone , is investigated using optical microscopy and energy-dispersive X-ray ( EDX ) spectroscopy .", "entities": [{"name": "welding interface", "type": "engineering feature", "pos": [4, 21]}, {"name": "diffusion", "type": "concept or principle", "pos": [64, 73]}, {"name": "optical microscopy", "type": "process characterization", "pos": [103, 121]}, {"name": "X-ray", "type": "process characterization", "pos": [144, 149]}, {"name": "EDX", "type": "process characterization", "pos": [152, 155]}, {"name": "spectroscopy", "type": "concept or principle", "pos": [158, 170]}]}, {"sentence": "The shear strengths of the aB-welded and heat-treated composites are 72 MPa and 103 MPa , respectively .", "entities": [{"name": "shear strengths", "type": "machanical property", "pos": [4, 19]}, {"name": "heat-treated", "type": "manufacturing process", "pos": [41, 53]}, {"name": "composites", "type": "material", "pos": [54, 64]}, {"name": "MPa", "type": "concept or principle", "pos": [72, 75]}, {"name": "MPa", "type": "concept or principle", "pos": [84, 87]}]}, {"sentence": "The shear deformation and failure mechanism of the YSZ-Al composites are investigated via finite element modeling .", "entities": [{"name": "deformation", "type": "concept or principle", "pos": [10, 21]}, {"name": "failure mechanism", "type": "machanical property", "pos": [26, 43]}, {"name": "composites", "type": "material", "pos": [58, 68]}, {"name": "finite element", "type": "concept or principle", "pos": [90, 104]}]}, {"sentence": "Additive manufacturing based method was used to join Polypropylene to Al-Mg alloy .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "Polypropylene", "type": "material", "pos": [53, 66]}, {"name": "Al-Mg alloy", "type": "material", "pos": [70, 81]}]}, {"sentence": "Obtained joint was a combination of welding and mechanical lock among constituents .", "entities": [{"name": "joint", "type": "concept or principle", "pos": [9, 14]}, {"name": "welding", "type": "manufacturing process", "pos": [36, 43]}, {"name": "mechanical", "type": "application", "pos": [48, 58]}]}, {"sentence": "Additive filling pattern and printing temperature affected mechanical behavior .", "entities": [{"name": "Additive", "type": "material", "pos": [0, 8]}, {"name": "pattern", "type": "concept or principle", "pos": [17, 24]}, {"name": "temperature", "type": "process parameter", "pos": [38, 49]}, {"name": "mechanical", "type": "application", "pos": [59, 69]}]}, {"sentence": "Introduced method was a fast and versatile technique for joining metal to polymer .", "entities": [{"name": "joining", "type": "manufacturing process", "pos": [57, 64]}, {"name": "polymer", "type": "material", "pos": [74, 81]}]}, {"sentence": "Fused Deposition Modeling with Polypropylene filament was employed to make a lap joint between Polypropylene and pre-punched Al-Mg alloy sheets , in the form of bonds between the polymeric substrate and the additive part and mechanical lock between the additive part and aluminum base sheet .", "entities": [{"name": "Fused Deposition Modeling", "type": "manufacturing process", "pos": [0, 25]}, {"name": "Polypropylene filament", "type": "material", "pos": [31, 53]}, {"name": "lap", "type": "concept or principle", "pos": [77, 80]}, {"name": "joint", "type": "concept or principle", "pos": [81, 86]}, {"name": "Polypropylene", "type": "material", "pos": [95, 108]}, {"name": "Al-Mg alloy", "type": "material", "pos": [125, 136]}, {"name": "substrate", "type": "material", "pos": [189, 198]}, {"name": "additive", "type": "material", "pos": [207, 215]}, {"name": "mechanical", "type": "application", "pos": [225, 235]}, {"name": "additive", "type": "material", "pos": [253, 261]}, {"name": "aluminum", "type": "material", "pos": [271, 279]}, {"name": "sheet", "type": "material", "pos": [285, 290]}]}, {"sentence": "Effects of the joint interface area ( hole diameter of 5–13 mm ) and preheating of the substrates ( room temperature , 50 and 90℃ ) were investigated on the mechanical properties of the joints .", "entities": [{"name": "joint interface", "type": "concept or principle", "pos": [15, 30]}, {"name": "area", "type": "process parameter", "pos": [31, 35]}, {"name": "diameter", "type": "concept or principle", "pos": [43, 51]}, {"name": "mm", "type": "manufacturing process", "pos": [60, 62]}, {"name": "preheating", "type": "manufacturing process", "pos": [69, 79]}, {"name": "temperature", "type": "process parameter", "pos": [105, 116]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [157, 178]}]}, {"sentence": "Peak load in the tensile-shear and crosB-tension tests increased with enhancement of the joint interface area ( up to ˜280 N and ˜160 N , respectively ) .", "entities": [{"name": "joint interface", "type": "concept or principle", "pos": [89, 104]}, {"name": "area", "type": "process parameter", "pos": [105, 109]}, {"name": "N", "type": "material", "pos": [123, 124]}, {"name": "N", "type": "material", "pos": [134, 135]}]}, {"sentence": "Preheating of the substrates increased the joint strength via improvement in the bonds between the polymer sheet and the additive part and increase in the adhesion force between the printed layers .", "entities": [{"name": "Preheating", "type": "manufacturing process", "pos": [0, 10]}, {"name": "joint", "type": "concept or principle", "pos": [43, 48]}, {"name": "polymer", "type": "material", "pos": [99, 106]}, {"name": "additive", "type": "material", "pos": [121, 129]}, {"name": "adhesion", "type": "machanical property", "pos": [155, 163]}]}, {"sentence": "Tungsten is receiving increasing interest as a plasma facing material in the ITER fusion reactor , collimators , and other structural , high temperature applications .", "entities": [{"name": "Tungsten", "type": "material", "pos": [0, 8]}, {"name": "as", "type": "material", "pos": [27, 29]}, {"name": "plasma", "type": "concept or principle", "pos": [47, 53]}, {"name": "facing", "type": "manufacturing process", "pos": [54, 60]}, {"name": "fusion", "type": "concept or principle", "pos": [82, 88]}, {"name": "temperature", "type": "process parameter", "pos": [141, 152]}]}, {"sentence": "Concurrently , there is a demand for manufacturing techniques capable of processing tungsten into the desired geometries .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [37, 50]}, {"name": "tungsten", "type": "material", "pos": [84, 92]}, {"name": "geometries", "type": "concept or principle", "pos": [110, 120]}]}, {"sentence": "Additive manufacturing is a promising technique able to produce complex parts , but the structural integrity is compromised by microcracking .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "structural integrity", "type": "machanical property", "pos": [88, 108]}]}, {"sentence": "This work combines thermomechanical simulations with in situ high-speed video of microcracking in single laser-melted tracks , visualizing the ductile-to-brittle transition .", "entities": [{"name": "thermomechanical", "type": "concept or principle", "pos": [19, 35]}, {"name": "simulations", "type": "enabling technology", "pos": [36, 47]}, {"name": "in situ", "type": "concept or principle", "pos": [53, 60]}, {"name": "transition", "type": "concept or principle", "pos": [162, 172]}]}, {"sentence": "Microcracking is shown to occur in a narrow temperature interval between 450 K – 650 K , and to be strain rate dependent .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [44, 55]}, {"name": "K", "type": "material", "pos": [77, 78]}, {"name": "K", "type": "material", "pos": [85, 86]}, {"name": "be", "type": "material", "pos": [96, 98]}]}, {"sentence": "The size of the crack-affected area around the scan track is determined by the maximum Von Mises residual stress , whereas crack network morphology depends on the local orientation of the principal stress .", "entities": [{"name": "area", "type": "process parameter", "pos": [31, 35]}, {"name": "residual stress", "type": "machanical property", "pos": [97, 112]}, {"name": "morphology", "type": "concept or principle", "pos": [137, 147]}, {"name": "local orientation", "type": "concept or principle", "pos": [163, 180]}, {"name": "principal stress", "type": "machanical property", "pos": [188, 204]}]}, {"sentence": "The fundamental understanding provided by this work contributes to future efforts in crack free , additively manufactured tungsten .", "entities": [{"name": "additively manufactured", "type": "manufacturing process", "pos": [98, 121]}]}, {"sentence": "Due to rapid , localized heating and cooling , distortions accumulate in additive manufactured laser metal deposition ( LMD ) components , leading to a loss of dimensional accuracy or even cracking .", "entities": [{"name": "heating", "type": "manufacturing process", "pos": [25, 32]}, {"name": "cooling", "type": "manufacturing process", "pos": [37, 44]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [73, 94]}, {"name": "metal deposition", "type": "concept or principle", "pos": [101, 117]}, {"name": "LMD", "type": "manufacturing process", "pos": [120, 123]}, {"name": "components", "type": "machine or equipment", "pos": [126, 136]}, {"name": "dimensional accuracy", "type": "process characterization", "pos": [160, 180]}, {"name": "cracking", "type": "concept or principle", "pos": [189, 197]}]}, {"sentence": "Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [10, 17]}, {"name": "simulations", "type": "enabling technology", "pos": [18, 29]}, {"name": "prediction", "type": "concept or principle", "pos": [40, 50]}, {"name": "optimization", "type": "concept or principle", "pos": [81, 93]}]}, {"sentence": "To assess the viability of the simulation tool for the use in a predictive manner , comprehensive validations with experimental results on the newly-built part need to be conducted.In this contribution , a predictive , mechanical simulation of a thin-walled , curved LMD geometry is shown for a 30-layer sample of 1.4404 stainless steel .", "entities": [{"name": "simulation", "type": "enabling technology", "pos": [31, 41]}, {"name": "experimental", "type": "concept or principle", "pos": [115, 127]}, {"name": "be", "type": "material", "pos": [168, 170]}, {"name": "mechanical", "type": "application", "pos": [219, 229]}, {"name": "LMD", "type": "manufacturing process", "pos": [267, 270]}, {"name": "geometry", "type": "concept or principle", "pos": [271, 279]}, {"name": "sample", "type": "concept or principle", "pos": [304, 310]}, {"name": "stainless steel", "type": "material", "pos": [321, 336]}]}, {"sentence": "The part distortions are determined experimentally via an in-situ digital image correlation measurement using the GOM Aramis system and compared with the simulation results .", "entities": [{"name": "in-situ", "type": "concept or principle", "pos": [58, 65]}, {"name": "digital image correlation", "type": "concept or principle", "pos": [66, 91]}, {"name": "simulation", "type": "enabling technology", "pos": [154, 164]}]}, {"sentence": "With this benchmark , the performance of a numerical welding simulation in additive manufacturing is discussed in terms of result accuracy and usability .", "entities": [{"name": "benchmark", "type": "manufacturing standard", "pos": [10, 19]}, {"name": "performance", "type": "concept or principle", "pos": [26, 37]}, {"name": "welding", "type": "manufacturing process", "pos": [53, 60]}, {"name": "simulation", "type": "enabling technology", "pos": [61, 71]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [75, 97]}, {"name": "accuracy", "type": "process characterization", "pos": [130, 138]}]}, {"sentence": "Welding of dissimilar metals is challenging , particularly between crystalline metals and metallic glasses ( MGs ) .", "entities": [{"name": "Welding", "type": "manufacturing process", "pos": [0, 7]}, {"name": "metals", "type": "material", "pos": [22, 28]}, {"name": "metals", "type": "material", "pos": [79, 85]}, {"name": "metallic glasses", "type": "material", "pos": [90, 106]}]}, {"sentence": "In this study , Zr65.7Cu15.6Ni11.7Al3.7Ti3.3 ( wt % ) MG structures were built on 304 stainless steel ( SS ) substrates by laser-foil-printing ( LFP ) additive manufacturing technology in which MG foils were laser welded layer-by-layer onto the SS substrate with a transition route , i.e. , SS → V → Ti → Zr → MG .", "entities": [{"name": "MG", "type": "material", "pos": [54, 56]}, {"name": "stainless steel", "type": "material", "pos": [86, 101]}, {"name": "SS", "type": "material", "pos": [104, 106]}, {"name": "LFP", "type": "material", "pos": [145, 148]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [151, 173]}, {"name": "MG", "type": "material", "pos": [194, 196]}, {"name": "laser", "type": "enabling technology", "pos": [208, 213]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [221, 235]}, {"name": "SS", "type": "material", "pos": [245, 247]}, {"name": "transition", "type": "concept or principle", "pos": [265, 275]}, {"name": "SS", "type": "material", "pos": [291, 293]}, {"name": "V", "type": "material", "pos": [296, 297]}, {"name": "Ti", "type": "material", "pos": [300, 302]}, {"name": "Zr", "type": "material", "pos": [305, 307]}, {"name": "MG", "type": "material", "pos": [310, 312]}]}, {"sentence": "The direct welding of MG on SS would lead to the formation of various brittle intermetallics and the consequent peeling off of the welded MG foils from the SS substrate , which could be resolved via the use of V/Ti/Zr intermediate layers .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [11, 18]}, {"name": "MG", "type": "material", "pos": [22, 24]}, {"name": "SS", "type": "material", "pos": [28, 30]}, {"name": "lead", "type": "material", "pos": [37, 41]}, {"name": "brittle", "type": "machanical property", "pos": [70, 77]}, {"name": "welded", "type": "manufacturing process", "pos": [131, 137]}, {"name": "MG", "type": "material", "pos": [138, 140]}, {"name": "SS", "type": "material", "pos": [156, 158]}, {"name": "be", "type": "material", "pos": [183, 185]}]}, {"sentence": "The chemical composition , formed phases , and micro-hardness were characterized in the dissimilar joints by energy dispersive spectroscopy , X-ray diffraction , and micro-indentation .", "entities": [{"name": "chemical composition", "type": "concept or principle", "pos": [4, 24]}, {"name": "energy dispersive spectroscopy", "type": "process characterization", "pos": [109, 139]}, {"name": "X-ray diffraction", "type": "process characterization", "pos": [142, 159]}]}, {"sentence": "Since the intermediate materials were highly compatible with the base metals or the adjacent intermediate metals , undesirable intermetallics were not detected in the dissimilar joint .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [23, 32]}, {"name": "base metals", "type": "material", "pos": [65, 76]}, {"name": "metals", "type": "material", "pos": [106, 112]}, {"name": "intermetallics", "type": "material", "pos": [127, 141]}, {"name": "joint", "type": "concept or principle", "pos": [178, 183]}]}, {"sentence": "The bonding tensile strength between the SS substrate and the MG part with intermediate layers was measured about 477 MPa .", "entities": [{"name": "bonding", "type": "concept or principle", "pos": [4, 11]}, {"name": "strength", "type": "machanical property", "pos": [20, 28]}, {"name": "SS", "type": "material", "pos": [41, 43]}, {"name": "MG", "type": "material", "pos": [62, 64]}, {"name": "MPa", "type": "concept or principle", "pos": [118, 121]}]}, {"sentence": "The manufacturing of components from the titanium alloy Ti-6Al-4 V is of great significance for many industrial sectors .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [4, 17]}, {"name": "components", "type": "machine or equipment", "pos": [21, 31]}, {"name": "titanium alloy Ti-6Al-4 V", "type": "material", "pos": [41, 66]}, {"name": "industrial sectors", "type": "concept or principle", "pos": [101, 119]}]}, {"sentence": "The production of high-performance Ti-6Al-4 V components typically requires multiple hot forging steps and leads to parts with tolerances that need extensive machining to create the final shape .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [4, 14]}, {"name": "Ti-6Al-4 V", "type": "material", "pos": [35, 45]}, {"name": "components", "type": "machine or equipment", "pos": [46, 56]}, {"name": "forging", "type": "manufacturing process", "pos": [89, 96]}, {"name": "tolerances", "type": "process parameter", "pos": [127, 137]}, {"name": "machining", "type": "manufacturing process", "pos": [158, 167]}]}, {"sentence": "For many applications , net-shape technologies such as additive manufacturing ( AM ) could enable a higher material yield .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [34, 46]}, {"name": "as", "type": "material", "pos": [52, 54]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [55, 77]}, {"name": "AM", "type": "manufacturing process", "pos": [80, 82]}, {"name": "material", "type": "material", "pos": [107, 115]}]}, {"sentence": "Thus , the advantages of AM and forging operations could be exploited by combining both processes to new hybrid process chains .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "forging", "type": "manufacturing process", "pos": [32, 39]}, {"name": "be", "type": "material", "pos": [57, 59]}, {"name": "processes", "type": "concept or principle", "pos": [88, 97]}, {"name": "process chains", "type": "enabling technology", "pos": [112, 126]}]}, {"sentence": "The present study investigates the use of Wire-Arc additive manufacturing ( WAAM ) for hybrid manufacturing of Ti-6Al-4 V aerospace components .", "entities": [{"name": "investigates", "type": "concept or principle", "pos": [18, 30]}, {"name": "Wire-Arc additive manufacturing", "type": "manufacturing process", "pos": [42, 73]}, {"name": "WAAM", "type": "manufacturing process", "pos": [76, 80]}, {"name": "hybrid manufacturing", "type": "concept or principle", "pos": [87, 107]}, {"name": "Ti-6Al-4 V", "type": "material", "pos": [111, 121]}, {"name": "aerospace components", "type": "machine or equipment", "pos": [122, 142]}]}, {"sentence": "Two process routes are investigated that combine forming and AM processes .", "entities": [{"name": "process", "type": "concept or principle", "pos": [4, 11]}, {"name": "forming", "type": "manufacturing process", "pos": [49, 56]}, {"name": "AM processes", "type": "manufacturing process", "pos": [61, 73]}]}, {"sentence": "In the first process route , a WAAM process is used to generate a pre-shaped semi-finished part .", "entities": [{"name": "process", "type": "concept or principle", "pos": [13, 20]}, {"name": "WAAM", "type": "manufacturing process", "pos": [31, 35]}, {"name": "process", "type": "concept or principle", "pos": [36, 43]}]}, {"sentence": "The semi-finished part will then be forged using a single forming tool to obtain the final part contour .", "entities": [{"name": "be", "type": "material", "pos": [33, 35]}, {"name": "forming", "type": "manufacturing process", "pos": [58, 65]}, {"name": "contour", "type": "engineering feature", "pos": [96, 103]}]}, {"sentence": "The second process route utilizes a conventionally forged pre-form , onto which features of the final workpiece are added using WAAM .", "entities": [{"name": "process", "type": "concept or principle", "pos": [11, 18]}, {"name": "workpiece", "type": "concept or principle", "pos": [102, 111]}, {"name": "WAAM", "type": "manufacturing process", "pos": [128, 132]}]}, {"sentence": "The results confirm that hybrid technologies combining WAAM and forging are very promising for Ti-6Al-4 V part production .", "entities": [{"name": "hybrid technologies", "type": "enabling technology", "pos": [25, 44]}, {"name": "WAAM", "type": "manufacturing process", "pos": [55, 59]}, {"name": "forging", "type": "manufacturing process", "pos": [64, 71]}, {"name": "Ti-6Al-4 V", "type": "material", "pos": [95, 105]}, {"name": "production", "type": "manufacturing process", "pos": [111, 121]}]}, {"sentence": "A jet engine blade produced by WAAM and subsequent forging shows microstructures typically produced in conventional processing of Ti-6Al-4 V alloy and exhibits tensile properties , which exceed the specification level of cast and forged Ti-6Al-4 V material .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [31, 35]}, {"name": "forging", "type": "manufacturing process", "pos": [51, 58]}, {"name": "microstructures", "type": "material", "pos": [65, 80]}, {"name": "Ti-6Al-4 V alloy", "type": "material", "pos": [130, 146]}, {"name": "tensile properties", "type": "machanical property", "pos": [160, 178]}, {"name": "specification", "type": "process parameter", "pos": [198, 211]}, {"name": "cast", "type": "manufacturing process", "pos": [221, 225]}, {"name": "Ti-6Al-4 V", "type": "material", "pos": [237, 247]}, {"name": "material", "type": "material", "pos": [248, 256]}]}, {"sentence": "Features created by WAAM on forged pre-forms are shown to reach the mechanical properties required to combine both technologies .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [20, 24]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [68, 89]}, {"name": "technologies", "type": "concept or principle", "pos": [115, 127]}]}, {"sentence": "The combination of WAAM and forging may hence be used to develop new manufacturing chains that allow for higher material yield and flexibility than conventional forging .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [19, 23]}, {"name": "forging", "type": "manufacturing process", "pos": [28, 35]}, {"name": "be", "type": "material", "pos": [46, 48]}, {"name": "manufacturing chains", "type": "concept or principle", "pos": [69, 89]}, {"name": "material", "type": "material", "pos": [112, 120]}, {"name": "flexibility", "type": "machanical property", "pos": [131, 142]}, {"name": "forging", "type": "manufacturing process", "pos": [161, 168]}]}, {"sentence": "This paper explores the application of the ‘ mortise-and-tenon ’ concept for joining hollow section aluminium profiles to composite strips or sheets .", "entities": [{"name": "joining", "type": "manufacturing process", "pos": [77, 84]}, {"name": "aluminium", "type": "material", "pos": [100, 109]}, {"name": "composite", "type": "material", "pos": [122, 131]}, {"name": "sheets", "type": "material", "pos": [142, 148]}]}, {"sentence": "Wire arc additive manufacturing is combined with joining by forming to fabricate the tenons and to obtain the mechanical interlocking with the mortises available in the strips ( or sheets ) .", "entities": [{"name": "Wire arc additive manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "joining", "type": "manufacturing process", "pos": [49, 56]}, {"name": "forming", "type": "manufacturing process", "pos": [60, 67]}, {"name": "fabricate", "type": "manufacturing process", "pos": [71, 80]}, {"name": "mechanical", "type": "application", "pos": [110, 120]}, {"name": "sheets", "type": "material", "pos": [181, 187]}]}, {"sentence": "The workability limits are established by means of an analytical model that combines plastic deformation , instability and fracture .", "entities": [{"name": "limits", "type": "concept or principle", "pos": [16, 22]}, {"name": "model", "type": "concept or principle", "pos": [65, 70]}, {"name": "plastic deformation", "type": "machanical property", "pos": [85, 104]}, {"name": "fracture", "type": "concept or principle", "pos": [123, 131]}]}, {"sentence": "Experimental and finite element modelling are utilized to develop the overall joining process and to validate the round ‘ mortise-and-tenon ’ design resulting from the analytical model .", "entities": [{"name": "Experimental", "type": "concept or principle", "pos": [0, 12]}, {"name": "finite element modelling", "type": "process characterization", "pos": [17, 41]}, {"name": "joining", "type": "manufacturing process", "pos": [78, 85]}, {"name": "design", "type": "engineering feature", "pos": [142, 148]}, {"name": "model", "type": "concept or principle", "pos": [179, 184]}]}, {"sentence": "The proposed joining process also circumvents the need to design extra fixing and interlocking features in low cost hollow section aluminium profiles for easy assembling .", "entities": [{"name": "joining", "type": "manufacturing process", "pos": [13, 20]}, {"name": "design", "type": "engineering feature", "pos": [58, 64]}, {"name": "aluminium", "type": "material", "pos": [131, 140]}]}, {"sentence": "There exist several variants of Additive Manufacturing ( AM ) applicable for metals and alloys .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [32, 54]}, {"name": "AM", "type": "manufacturing process", "pos": [57, 59]}, {"name": "metals", "type": "material", "pos": [77, 83]}, {"name": "alloys", "type": "material", "pos": [88, 94]}]}, {"sentence": "The two main groups are Directed Energy Deposition ( DED ) and Powder Bed Fusion ( PBF ) .", "entities": [{"name": "Directed Energy Deposition", "type": "manufacturing process", "pos": [24, 50]}, {"name": "DED", "type": "manufacturing process", "pos": [53, 56]}, {"name": "Powder Bed Fusion", "type": "manufacturing process", "pos": [63, 80]}, {"name": "PBF", "type": "manufacturing process", "pos": [83, 86]}]}, {"sentence": "AM has advantages and disadvantages when compared to more traditional manufacturing methods .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "traditional manufacturing", "type": "manufacturing process", "pos": [58, 83]}]}, {"sentence": "The best candidate products are those with complex shape and small series and particularly individualized product .", "entities": [{"name": "complex shape", "type": "machanical property", "pos": [43, 56]}]}, {"sentence": "Repair welding is often individualized as defects may occur at various instances in a component .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [7, 14]}, {"name": "as", "type": "material", "pos": [39, 41]}, {"name": "component", "type": "machine or equipment", "pos": [86, 95]}]}, {"sentence": "This method was used before it became categorized as AM and in most cases , it is a DED process .", "entities": [{"name": "as", "type": "material", "pos": [13, 15]}, {"name": "AM", "type": "manufacturing process", "pos": [53, 55]}, {"name": "DED", "type": "manufacturing process", "pos": [84, 87]}]}, {"sentence": "PBF processes are more useful for smaller items and can give a finer surface .", "entities": [{"name": "PBF", "type": "manufacturing process", "pos": [0, 3]}, {"name": "surface", "type": "concept or principle", "pos": [69, 76]}]}, {"sentence": "Both DED and PBF products require subsequent surface finishing for high performance components and sometimes there is also a need for post heat treatment .", "entities": [{"name": "DED", "type": "manufacturing process", "pos": [5, 8]}, {"name": "PBF", "type": "manufacturing process", "pos": [13, 16]}, {"name": "surface finishing", "type": "manufacturing process", "pos": [45, 62]}, {"name": "performance", "type": "concept or principle", "pos": [72, 83]}, {"name": "components", "type": "machine or equipment", "pos": [84, 94]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [139, 153]}]}, {"sentence": "Modelling of AM as well as eventual post-processes can be of use in order to improve product quality , reducing costs and material waste .", "entities": [{"name": "Modelling", "type": "enabling technology", "pos": [0, 9]}, {"name": "AM", "type": "manufacturing process", "pos": [13, 15]}, {"name": "as", "type": "material", "pos": [16, 18]}, {"name": "be", "type": "material", "pos": [55, 57]}, {"name": "product quality", "type": "concept or principle", "pos": [85, 100]}, {"name": "material", "type": "material", "pos": [122, 130]}]}, {"sentence": "The paper describes the use of the finite element method to simulate these processes with focus on superalloys .", "entities": [{"name": "finite element method", "type": "concept or principle", "pos": [35, 56]}, {"name": "processes", "type": "concept or principle", "pos": [75, 84]}, {"name": "superalloys", "type": "material", "pos": [99, 110]}]}, {"sentence": "Additive Manufacturing has recently emerged as an important industrial process that is capable of manufacturing parts with complex geometry .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "as", "type": "material", "pos": [24, 26]}, {"name": "industrial", "type": "application", "pos": [60, 70]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [98, 111]}, {"name": "complex geometry", "type": "concept or principle", "pos": [123, 139]}]}, {"sentence": "One of the drawbacks of metal additive manufacturing processes is the thermo-mechanical distortion of the parts during and after build due to heat effects .", "entities": [{"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [24, 52]}, {"name": "thermo-mechanical distortion", "type": "concept or principle", "pos": [70, 98]}, {"name": "build", "type": "process parameter", "pos": [129, 134]}, {"name": "heat", "type": "concept or principle", "pos": [142, 146]}]}, {"sentence": "Inherent strain is widely adopted by researchers as the basis to predict part distortions during Metal Powder Bed Fusion Additive Manufacturing ( PBFAM ) process and is highly dependent on the laser hatch pattern sintering on each layer during the printing process .", "entities": [{"name": "strain", "type": "machanical property", "pos": [9, 15]}, {"name": "as", "type": "material", "pos": [49, 51]}, {"name": "Metal Powder Bed Fusion Additive Manufacturing", "type": "manufacturing process", "pos": [97, 143]}, {"name": "process", "type": "concept or principle", "pos": [154, 161]}, {"name": "laser", "type": "enabling technology", "pos": [193, 198]}, {"name": "pattern", "type": "concept or principle", "pos": [205, 212]}, {"name": "layer", "type": "process parameter", "pos": [231, 236]}, {"name": "printing process", "type": "manufacturing process", "pos": [248, 264]}]}, {"sentence": "There is a clear need to predict inherent strains for a given arbitrary hatch pattern for a part model so that hatch patterns can be optimized for achieving part quality .", "entities": [{"name": "pattern", "type": "concept or principle", "pos": [78, 85]}, {"name": "model", "type": "concept or principle", "pos": [97, 102]}, {"name": "be", "type": "material", "pos": [130, 132]}, {"name": "quality", "type": "concept or principle", "pos": [162, 169]}]}, {"sentence": "In this paper , we propose a neural network based method to predict inherent strain for any given hatch pattern that is adopted during the part build .", "entities": [{"name": "neural network", "type": "concept or principle", "pos": [29, 43]}, {"name": "strain", "type": "machanical property", "pos": [77, 83]}, {"name": "pattern", "type": "concept or principle", "pos": [104, 111]}, {"name": "build", "type": "process parameter", "pos": [144, 149]}]}, {"sentence": "The authors assumed that the temperature profile inside the heat affected zone within each layer is the same if the part model is reasonably large .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [29, 40]}, {"name": "profile", "type": "engineering feature", "pos": [41, 48]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [60, 78]}, {"name": "layer", "type": "process parameter", "pos": [91, 96]}, {"name": "model", "type": "concept or principle", "pos": [121, 126]}]}, {"sentence": "To start with , inherent strains of two hatch pattern pools with different hatch angles were obtained by thermo-mechanical simulation with temperature profiles obtained through translation and rotation of a single layer of simulation .", "entities": [{"name": "pattern", "type": "concept or principle", "pos": [46, 53]}, {"name": "thermo-mechanical", "type": "concept or principle", "pos": [105, 122]}, {"name": "simulation", "type": "enabling technology", "pos": [123, 133]}, {"name": "temperature", "type": "process parameter", "pos": [139, 150]}, {"name": "profiles", "type": "engineering feature", "pos": [151, 159]}, {"name": "layer", "type": "process parameter", "pos": [214, 219]}, {"name": "simulation", "type": "enabling technology", "pos": [223, 233]}]}, {"sentence": "A feedforward backpropagation neural network was created and trained with data obtained from an initial hatch pattern pool for predicting inherent strains .", "entities": [{"name": "neural network", "type": "concept or principle", "pos": [30, 44]}, {"name": "data", "type": "concept or principle", "pos": [74, 78]}, {"name": "pattern", "type": "concept or principle", "pos": [110, 117]}]}, {"sentence": "The data from a second hatch pattern pool was then utilized to validate the network and test the efficacy of the prediction of the trained neural network .", "entities": [{"name": "data", "type": "concept or principle", "pos": [4, 8]}, {"name": "pattern", "type": "concept or principle", "pos": [29, 36]}, {"name": "prediction", "type": "concept or principle", "pos": [113, 123]}, {"name": "neural network", "type": "concept or principle", "pos": [139, 153]}]}, {"sentence": "The results show that the trained neural network is capable of predicting the inherent strain of any arbitrary hatch pattern within an acceptable error .", "entities": [{"name": "neural network", "type": "concept or principle", "pos": [34, 48]}, {"name": "strain", "type": "machanical property", "pos": [87, 93]}, {"name": "pattern", "type": "concept or principle", "pos": [117, 124]}, {"name": "error", "type": "concept or principle", "pos": [146, 151]}]}, {"sentence": "Since the trained neural network can predict inherent strain quickly for any given hatch pattern , this could provide the basis for hatch pattern optimization of any part model to increase part build accuracy and achieve part GD & T callouts .", "entities": [{"name": "neural network", "type": "concept or principle", "pos": [18, 32]}, {"name": "strain", "type": "machanical property", "pos": [54, 60]}, {"name": "pattern", "type": "concept or principle", "pos": [89, 96]}, {"name": "pattern optimization", "type": "concept or principle", "pos": [138, 158]}, {"name": "model", "type": "concept or principle", "pos": [171, 176]}, {"name": "build", "type": "process parameter", "pos": [194, 199]}, {"name": "accuracy", "type": "process characterization", "pos": [200, 208]}, {"name": "GD", "type": "material", "pos": [226, 228]}]}, {"sentence": "An innovative manufacturing process among the metal 3D printing techniques for stainless steel material is first introduced in Structural Engineering field .", "entities": [{"name": "manufacturing process", "type": "manufacturing process", "pos": [14, 35]}, {"name": "metal", "type": "material", "pos": [46, 51]}, {"name": "3D printing", "type": "manufacturing process", "pos": [52, 63]}, {"name": "stainless steel", "type": "material", "pos": [79, 94]}, {"name": "material", "type": "material", "pos": [95, 103]}, {"name": "Structural Engineering", "type": "concept or principle", "pos": [127, 149]}]}, {"sentence": "For structural design purposes , the main issues in the realization of Wire-and-Arc Additive Manufactured stainless steel concern inherent geometrical imperfections to be properly characterized and the main material properties , influenced by the orientation of the elements .", "entities": [{"name": "structural design", "type": "engineering feature", "pos": [4, 21]}, {"name": "Additive Manufactured", "type": "manufacturing process", "pos": [84, 105]}, {"name": "steel", "type": "material", "pos": [116, 121]}, {"name": "imperfections", "type": "concept or principle", "pos": [151, 164]}, {"name": "be", "type": "material", "pos": [168, 170]}, {"name": "material properties", "type": "concept or principle", "pos": [207, 226]}, {"name": "orientation", "type": "concept or principle", "pos": [247, 258]}, {"name": "elements", "type": "material", "pos": [266, 274]}]}, {"sentence": "The first results of a wide experimental campaign devoted to assess the geometrical and mechanical characterization of Wire-and-Arc Additive Manufactured stainless steel elements evidence the need of proper evaluation of an effective geometry to derive the main mechanical parameters , which differ from the traditionally manufactured stainless steel material .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [28, 40]}, {"name": "mechanical", "type": "application", "pos": [88, 98]}, {"name": "Additive Manufactured", "type": "manufacturing process", "pos": [132, 153]}, {"name": "steel elements", "type": "material", "pos": [164, 178]}, {"name": "geometry", "type": "concept or principle", "pos": [234, 242]}, {"name": "mechanical", "type": "application", "pos": [262, 272]}, {"name": "manufactured", "type": "concept or principle", "pos": [322, 334]}, {"name": "steel material", "type": "material", "pos": [345, 359]}]}, {"sentence": "Additive Manufacturing has recently gained great importance to produce metallic structural elements for civil engineering applications .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "metallic", "type": "material", "pos": [71, 79]}, {"name": "elements", "type": "material", "pos": [91, 99]}, {"name": "engineering", "type": "application", "pos": [110, 121]}]}, {"sentence": "While a lot of research effort has been focused on different technologies ( such as Powder Bed Fusion ) , there is still quite limited knowledge concerning the structural response of Wire-and-Arc Additive Manufactured ( WAAM ) metallic elements , as very few experimental campaigns aimed at assessing their geometrical and mechanical properties have been carried out .", "entities": [{"name": "research", "type": "concept or principle", "pos": [15, 23]}, {"name": "technologies", "type": "concept or principle", "pos": [61, 73]}, {"name": "as", "type": "material", "pos": [81, 83]}, {"name": "Bed Fusion", "type": "manufacturing process", "pos": [91, 101]}, {"name": "Additive Manufactured", "type": "manufacturing process", "pos": [196, 217]}, {"name": "WAAM", "type": "manufacturing process", "pos": [220, 224]}, {"name": "metallic elements", "type": "material", "pos": [227, 244]}, {"name": "as", "type": "material", "pos": [247, 249]}, {"name": "experimental", "type": "concept or principle", "pos": [259, 271]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [323, 344]}]}, {"sentence": "The paper presents selected results of a wide experimental campaign focused on the assessment of the main geometrical and mechanical properties of Wire-and-Arc Additive Manufactured ( WAAM ) stainless steel material , carried out at the Topography and Structural Engineering Labs of University of Bologna .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [46, 58]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [122, 143]}, {"name": "Additive Manufactured", "type": "manufacturing process", "pos": [160, 181]}, {"name": "WAAM", "type": "manufacturing process", "pos": [184, 188]}, {"name": "stainless steel", "type": "material", "pos": [191, 206]}, {"name": "material", "type": "material", "pos": [207, 215]}, {"name": "Topography", "type": "process characterization", "pos": [237, 247]}, {"name": "Structural Engineering", "type": "concept or principle", "pos": [252, 274]}]}, {"sentence": "In detail , the focus is on the characterization of the surface irregularities by means of various measuring techniques and on the evaluation of the main material mechanical properties , including tensile and compressive strengths , Young 's modulus and post elastic behavior .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [56, 63]}, {"name": "material", "type": "material", "pos": [154, 162]}, {"name": "properties", "type": "concept or principle", "pos": [174, 184]}, {"name": "tensile", "type": "machanical property", "pos": [197, 204]}, {"name": "compressive strengths", "type": "machanical property", "pos": [209, 230]}, {"name": "elastic", "type": "machanical property", "pos": [259, 266]}]}, {"sentence": "Tests results have been interpreted through statistical tools in order to derive mean values and gather information about the variability of both geometrical and mechanical parameters .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [56, 61]}, {"name": "variability", "type": "concept or principle", "pos": [126, 137]}, {"name": "mechanical", "type": "application", "pos": [162, 172]}]}, {"sentence": "In this work , rapid prototyping and physical modelling are used to evaluate four different extruder and deposition concepts for the Hybrid Metal Extrusion & Bonding ( HYB ) additive manufacturing ( AM ) process for aluminium alloys .", "entities": [{"name": "rapid prototyping", "type": "enabling technology", "pos": [15, 32]}, {"name": "modelling", "type": "enabling technology", "pos": [46, 55]}, {"name": "extruder", "type": "machine or equipment", "pos": [92, 100]}, {"name": "deposition", "type": "concept or principle", "pos": [105, 115]}, {"name": "Metal", "type": "material", "pos": [140, 145]}, {"name": "Extrusion", "type": "manufacturing process", "pos": [146, 155]}, {"name": "Bonding", "type": "concept or principle", "pos": [158, 165]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [174, 196]}, {"name": "AM", "type": "manufacturing process", "pos": [199, 201]}, {"name": "process", "type": "concept or principle", "pos": [204, 211]}, {"name": "aluminium alloys", "type": "material", "pos": [216, 232]}]}, {"sentence": "The HYB-AM process is a branch of the HYB joining technology and is currently utilizing an extruder design that was initially developed for welding purposes .", "entities": [{"name": "process", "type": "concept or principle", "pos": [11, 18]}, {"name": "joining", "type": "manufacturing process", "pos": [42, 49]}, {"name": "extruder", "type": "machine or equipment", "pos": [91, 99]}, {"name": "design", "type": "engineering feature", "pos": [100, 106]}, {"name": "welding", "type": "manufacturing process", "pos": [140, 147]}]}, {"sentence": "However , due to the different operating conditions of an AM process compared to a welding process , it is of interest to compare the current extruder to that of other alternatives to identify the optimal design .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [58, 68]}, {"name": "welding", "type": "manufacturing process", "pos": [83, 90]}, {"name": "process", "type": "concept or principle", "pos": [91, 98]}, {"name": "extruder", "type": "machine or equipment", "pos": [142, 150]}, {"name": "design", "type": "engineering feature", "pos": [205, 211]}]}, {"sentence": "Plastic models of the different extruders have been produced by rapid prototyping and attached to a CNC-machine .", "entities": [{"name": "Plastic", "type": "material", "pos": [0, 7]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [64, 81]}]}, {"sentence": "To test the performance of each design , plasticine has been processed through the extruders and deposited on the machine bed .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [12, 23]}, {"name": "design", "type": "engineering feature", "pos": [32, 38]}, {"name": "processed", "type": "concept or principle", "pos": [61, 70]}, {"name": "machine", "type": "machine or equipment", "pos": [114, 121]}, {"name": "bed", "type": "machine or equipment", "pos": [122, 125]}]}, {"sentence": "Key learnings from each cycle of designing , building and testing have been used as inputs for the next iteration , to finally end up with a design and the associated requirements upon which the further development process will be based .", "entities": [{"name": "testing", "type": "process characterization", "pos": [58, 65]}, {"name": "as", "type": "material", "pos": [81, 83]}, {"name": "design", "type": "engineering feature", "pos": [141, 147]}, {"name": "process", "type": "concept or principle", "pos": [215, 222]}, {"name": "be", "type": "material", "pos": [228, 230]}]}, {"sentence": "Qualitative study of the mechanism of surface tension driven flow .", "entities": [{"name": "Qualitative", "type": "concept or principle", "pos": [0, 11]}, {"name": "mechanism", "type": "concept or principle", "pos": [25, 34]}, {"name": "surface tension", "type": "machanical property", "pos": [38, 53]}]}, {"sentence": "Analysis of driving forces and driving mechanism .", "entities": [{"name": "forces", "type": "concept or principle", "pos": [20, 26]}, {"name": "mechanism", "type": "concept or principle", "pos": [39, 48]}]}, {"sentence": "Quantitative investigation of surface tension and surface shear stress distribution .", "entities": [{"name": "Quantitative", "type": "concept or principle", "pos": [0, 12]}, {"name": "surface tension", "type": "machanical property", "pos": [30, 45]}, {"name": "surface", "type": "concept or principle", "pos": [50, 57]}, {"name": "shear stress", "type": "machanical property", "pos": [58, 70]}, {"name": "distribution", "type": "concept or principle", "pos": [71, 83]}]}, {"sentence": "3D distribution of solidification parameters .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [0, 2]}, {"name": "solidification parameters", "type": "concept or principle", "pos": [19, 44]}]}, {"sentence": "Semi-qualitatively prediction of solidified microstructure .", "entities": [{"name": "prediction", "type": "concept or principle", "pos": [19, 29]}, {"name": "solidified microstructure", "type": "machanical property", "pos": [33, 58]}]}, {"sentence": "A transient three-dimensional thermal-fluid-metallurgy model was proposed to study the surface tension driven flow and welding metallurgical behavior during laser linear welding of 304 stainless steel .", "entities": [{"name": "transient three-dimensional", "type": "concept or principle", "pos": [2, 29]}, {"name": "model", "type": "concept or principle", "pos": [55, 60]}, {"name": "surface tension", "type": "machanical property", "pos": [87, 102]}, {"name": "welding", "type": "manufacturing process", "pos": [119, 126]}, {"name": "metallurgical", "type": "application", "pos": [127, 140]}, {"name": "laser", "type": "enabling technology", "pos": [157, 162]}, {"name": "welding", "type": "manufacturing process", "pos": [170, 177]}, {"name": "stainless steel", "type": "material", "pos": [185, 200]}]}, {"sentence": "Numerical simulation and experimental method were both used to investigate the thermal behavior , surface tension driven flow , driving mechanism and solidification characteristics .", "entities": [{"name": "Numerical simulation", "type": "enabling technology", "pos": [0, 20]}, {"name": "experimental", "type": "concept or principle", "pos": [25, 37]}, {"name": "surface tension", "type": "machanical property", "pos": [98, 113]}, {"name": "mechanism", "type": "concept or principle", "pos": [136, 145]}, {"name": "solidification", "type": "concept or principle", "pos": [150, 164]}]}, {"sentence": "The temperature related driving force was qualitatively analyzed , and surface tension and surface shear stress were quantitatively studied .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [4, 15]}, {"name": "force", "type": "concept or principle", "pos": [32, 37]}, {"name": "surface tension", "type": "machanical property", "pos": [71, 86]}, {"name": "surface", "type": "concept or principle", "pos": [91, 98]}, {"name": "shear stress", "type": "machanical property", "pos": [99, 111]}, {"name": "quantitatively", "type": "concept or principle", "pos": [117, 131]}]}, {"sentence": "Numerical method and dimensional analysis were also carried out to understand the importance of different driving forces , respectively .", "entities": [{"name": "dimensional analysis", "type": "process characterization", "pos": [21, 41]}, {"name": "forces", "type": "concept or principle", "pos": [114, 120]}]}, {"sentence": "The metallurgical model was sequentially coupled to the thermal-fluid model to calculate four solidification parameters .", "entities": [{"name": "metallurgical", "type": "application", "pos": [4, 17]}, {"name": "model", "type": "concept or principle", "pos": [18, 23]}, {"name": "solidification parameters", "type": "concept or principle", "pos": [94, 119]}]}, {"sentence": "Temperature gradient was observed to be much larger at the front of the melt pool due to the effect of thermal conductivity , and decreased from center to the periphery .", "entities": [{"name": "Temperature gradient", "type": "process parameter", "pos": [0, 20]}, {"name": "be", "type": "material", "pos": [37, 39]}, {"name": "melt pool", "type": "material", "pos": [72, 81]}, {"name": "thermal conductivity", "type": "machanical property", "pos": [103, 123]}]}, {"sentence": "Both the surface tension and surface tension driven flow were found smaller in the central area .", "entities": [{"name": "surface tension", "type": "machanical property", "pos": [9, 24]}, {"name": "surface tension", "type": "machanical property", "pos": [29, 44]}, {"name": "area", "type": "process parameter", "pos": [91, 95]}]}, {"sentence": "The maximum shear stress may reach 2500 N/m2 and pushed an intense outward convection .", "entities": [{"name": "shear stress", "type": "machanical property", "pos": [12, 24]}]}, {"sentence": "The solidification parameters were used to predict the solidified morphology , and the prediction was well validated by experimental results .", "entities": [{"name": "solidification parameters", "type": "concept or principle", "pos": [4, 29]}, {"name": "morphology", "type": "concept or principle", "pos": [66, 76]}, {"name": "prediction", "type": "concept or principle", "pos": [87, 97]}, {"name": "experimental", "type": "concept or principle", "pos": [120, 132]}]}, {"sentence": "The obtained basic conclusions in this work demonstrated that this study of thermal-fluid-metallurgical behavior could provide an improved understanding of the surface tension driven flow and solidification behavior inside the melt pool of welding and additive manufacturing process .", "entities": [{"name": "surface tension", "type": "machanical property", "pos": [160, 175]}, {"name": "solidification", "type": "concept or principle", "pos": [192, 206]}, {"name": "melt pool", "type": "material", "pos": [227, 236]}, {"name": "welding", "type": "manufacturing process", "pos": [240, 247]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [252, 282]}]}, {"sentence": "The microstructure evolution and tensile properties of laser-additive welded Ti2AlNb joints under different heat treatments were investigated in this paper .", "entities": [{"name": "microstructure evolution", "type": "concept or principle", "pos": [4, 28]}, {"name": "tensile properties", "type": "machanical property", "pos": [33, 51]}, {"name": "welded", "type": "manufacturing process", "pos": [70, 76]}, {"name": "heat treatments", "type": "manufacturing process", "pos": [108, 123]}]}, {"sentence": "The heat treatment was conducted in the B2 + O ( HT1 ) and B2 + α2 + O ( HT2 ) phase field to obtain different microstructural characteristics .", "entities": [{"name": "heat treatment", "type": "manufacturing process", "pos": [4, 18]}, {"name": "O", "type": "material", "pos": [45, 46]}, {"name": "O", "type": "material", "pos": [69, 70]}, {"name": "phase", "type": "concept or principle", "pos": [79, 84]}, {"name": "microstructural", "type": "concept or principle", "pos": [111, 126]}]}, {"sentence": "For HT1 , due to the B2 → O transformation , the microstructure of heat affected zone was B2 + α2 + O , B2 + residual α2 + O , and B2 + O as the distance from the base metal increased .", "entities": [{"name": "O", "type": "material", "pos": [26, 27]}, {"name": "microstructure", "type": "concept or principle", "pos": [49, 63]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [67, 85]}, {"name": "O", "type": "material", "pos": [100, 101]}, {"name": "residual", "type": "concept or principle", "pos": [109, 117]}, {"name": "O", "type": "material", "pos": [123, 124]}, {"name": "O", "type": "material", "pos": [136, 137]}, {"name": "as", "type": "material", "pos": [138, 140]}, {"name": "base metal", "type": "material", "pos": [163, 173]}]}, {"sentence": "As for HT2 , the microstructure of heat affected zone was composed of B2 + α2 + rim-O + primary O + acicular O in the region close to the base metal , B2 + intergranular α2 + transformed O + primary O + acicular O in the region close to the fusion zone .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "microstructure", "type": "concept or principle", "pos": [17, 31]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [35, 53]}, {"name": "O", "type": "material", "pos": [84, 85]}, {"name": "O", "type": "material", "pos": [96, 97]}, {"name": "base metal", "type": "material", "pos": [138, 148]}, {"name": "O", "type": "material", "pos": [187, 188]}, {"name": "O", "type": "material", "pos": [199, 200]}, {"name": "O", "type": "material", "pos": [212, 213]}, {"name": "fusion zone", "type": "concept or principle", "pos": [241, 252]}]}, {"sentence": "The fusion zone was composed of B2 + O laths after HT1 , and B2 + intergranular α2 + transformed O + primary O + acicular O after HT2 .", "entities": [{"name": "fusion zone", "type": "concept or principle", "pos": [4, 15]}, {"name": "O", "type": "material", "pos": [37, 38]}, {"name": "O", "type": "material", "pos": [97, 98]}, {"name": "O", "type": "material", "pos": [109, 110]}, {"name": "O", "type": "material", "pos": [122, 123]}]}, {"sentence": "The joints composed of B2 + O phase exhibited higher tensile strength compared with the aB-welded joints due to the strengthening effects of O phase .", "entities": [{"name": "O", "type": "material", "pos": [28, 29]}, {"name": "tensile strength", "type": "machanical property", "pos": [53, 69]}, {"name": "strengthening", "type": "manufacturing process", "pos": [116, 129]}, {"name": "O", "type": "material", "pos": [141, 142]}]}, {"sentence": "The intergranular α2 phase formed during HT2 was detrimental for the tensile strength .", "entities": [{"name": "phase", "type": "concept or principle", "pos": [21, 26]}, {"name": "tensile strength", "type": "machanical property", "pos": [69, 85]}]}, {"sentence": "The joints exhibited no plastic deformation at room temperature after both heat treatments on account of the lack of independent slip systems in the O phase .", "entities": [{"name": "plastic deformation", "type": "machanical property", "pos": [24, 43]}, {"name": "temperature", "type": "process parameter", "pos": [52, 63]}, {"name": "heat treatments", "type": "manufacturing process", "pos": [75, 90]}, {"name": "O", "type": "material", "pos": [149, 150]}]}, {"sentence": "The ductility of the heat-treated joints at 650 °C was better than that at room temperature because more slip systems were activated in the O phase .", "entities": [{"name": "ductility", "type": "machanical property", "pos": [4, 13]}, {"name": "heat-treated", "type": "manufacturing process", "pos": [21, 33]}, {"name": "temperature", "type": "process parameter", "pos": [80, 91]}, {"name": "O", "type": "material", "pos": [140, 141]}]}, {"sentence": "Compared with the joints heat-treated in HT1 , the joints after HT2 exhibited better ductility at 650 °C resulting from the coarse primary O laths and lower volume fraction of O phase .", "entities": [{"name": "heat-treated", "type": "manufacturing process", "pos": [25, 37]}, {"name": "ductility", "type": "machanical property", "pos": [85, 94]}, {"name": "O", "type": "material", "pos": [139, 140]}, {"name": "volume fraction", "type": "process parameter", "pos": [157, 172]}, {"name": "O", "type": "material", "pos": [176, 177]}]}, {"sentence": "Corrosion resistance of carbon steel cladding is better than high speed steel .", "entities": [{"name": "Corrosion resistance", "type": "concept or principle", "pos": [0, 20]}, {"name": "carbon steel", "type": "material", "pos": [24, 36]}, {"name": "high speed steel", "type": "material", "pos": [61, 77]}]}, {"sentence": "Wear resistance of specific carbon steel cladding is close to high speed steel .", "entities": [{"name": "Wear resistance", "type": "machanical property", "pos": [0, 15]}, {"name": "carbon steel", "type": "material", "pos": [28, 40]}, {"name": "high speed steel", "type": "material", "pos": [62, 78]}]}, {"sentence": "Submerged arc welding is available technology to improve wear and corrosion resistance of carbon steel .", "entities": [{"name": "Submerged arc welding", "type": "manufacturing process", "pos": [0, 21]}, {"name": "technology", "type": "concept or principle", "pos": [35, 45]}, {"name": "wear", "type": "concept or principle", "pos": [57, 61]}, {"name": "corrosion resistance", "type": "concept or principle", "pos": [66, 86]}, {"name": "carbon steel", "type": "material", "pos": [90, 102]}]}, {"sentence": "High-speed steel ( HSS ) , traditionally used in the hot rolling industry , suffers from the problem of wear and corrosion .", "entities": [{"name": "steel", "type": "material", "pos": [11, 16]}, {"name": "HSS", "type": "material", "pos": [19, 22]}, {"name": "hot rolling", "type": "manufacturing process", "pos": [53, 64]}, {"name": "wear", "type": "concept or principle", "pos": [104, 108]}, {"name": "corrosion", "type": "concept or principle", "pos": [113, 122]}]}, {"sentence": "For modifying the surface property of metal materials , submerged arc welding , among the industrial additive manufacturing technologies , is employed .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [18, 25]}, {"name": "property", "type": "concept or principle", "pos": [26, 34]}, {"name": "metal materials", "type": "material", "pos": [38, 53]}, {"name": "submerged arc welding", "type": "manufacturing process", "pos": [56, 77]}, {"name": "industrial", "type": "application", "pos": [90, 100]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [101, 123]}]}, {"sentence": "In this study , we aim at improving the resistance of carbon steel cladding against corrosion and wear .", "entities": [{"name": "resistance", "type": "machanical property", "pos": [40, 50]}, {"name": "carbon steel", "type": "material", "pos": [54, 66]}, {"name": "corrosion", "type": "concept or principle", "pos": [84, 93]}, {"name": "wear", "type": "concept or principle", "pos": [98, 102]}]}, {"sentence": "To reduce cost , the HSS matrix is replaced by carbon steel .", "entities": [{"name": "HSS", "type": "material", "pos": [21, 24]}, {"name": "carbon steel", "type": "material", "pos": [47, 59]}]}, {"sentence": "Electrochemical corrosion and high-temperature dry sliding wear experiments are implemented to study the corrosion and tribological behavior of HSS and surface-modified claddings .", "entities": [{"name": "Electrochemical corrosion", "type": "concept or principle", "pos": [0, 25]}, {"name": "wear", "type": "concept or principle", "pos": [59, 63]}, {"name": "corrosion", "type": "concept or principle", "pos": [105, 114]}, {"name": "tribological", "type": "concept or principle", "pos": [119, 131]}, {"name": "HSS", "type": "material", "pos": [144, 147]}]}, {"sentence": "The wear and corrosion behaviors are characterized by potentiodynamic polarization , electrochemical impedance spectroscopy , wear rate , coefficient of friction , and worn surface morphology .", "entities": [{"name": "wear", "type": "concept or principle", "pos": [4, 8]}, {"name": "corrosion behaviors", "type": "machanical property", "pos": [13, 32]}, {"name": "potentiodynamic polarization", "type": "process characterization", "pos": [54, 82]}, {"name": "electrochemical", "type": "concept or principle", "pos": [85, 100]}, {"name": "spectroscopy", "type": "concept or principle", "pos": [111, 123]}, {"name": "wear", "type": "concept or principle", "pos": [126, 130]}, {"name": "coefficient of friction", "type": "machanical property", "pos": [138, 161]}, {"name": "surface morphology", "type": "process characterization", "pos": [173, 191]}]}, {"sentence": "The experimental results indicate that the corrosion current density ( Icorr ) of carbon steel claddings , ranging from 11.023 × 10−3 to 3.372 × 10−3 mA∙cm−2 , is lower than that of the HSS alloy ( 19.247 × 10−3 mA∙cm−2 ) .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "corrosion", "type": "concept or principle", "pos": [43, 52]}, {"name": "density", "type": "machanical property", "pos": [61, 68]}, {"name": "carbon steel", "type": "material", "pos": [82, 94]}, {"name": "HSS", "type": "material", "pos": [186, 189]}, {"name": "alloy", "type": "material", "pos": [190, 195]}]}, {"sentence": "The passive film resistance of prepared carbon steel cladding-3 ( 1870 Ω∙cm2 ) is in fact larger than the resistance of HSS ( 1075 Ω∙cm2 ) .", "entities": [{"name": "resistance", "type": "machanical property", "pos": [17, 27]}, {"name": "carbon steel", "type": "material", "pos": [40, 52]}, {"name": "resistance", "type": "machanical property", "pos": [106, 116]}, {"name": "HSS", "type": "material", "pos": [120, 123]}]}, {"sentence": "The corrosion resistance of surface-modified carbon steel claddings is better than that of the HSS .", "entities": [{"name": "corrosion resistance", "type": "concept or principle", "pos": [4, 24]}, {"name": "carbon steel", "type": "material", "pos": [45, 57]}, {"name": "HSS", "type": "material", "pos": [95, 98]}]}, {"sentence": "The wear rates of carbon steel cladding-2 ( 1.99 × 10−7 mm3·N−1·mm−1 ) and carbon steel cladding-3 ( 2.49 × 10−7 mm3·N−1·mm−1 ) approximate the wear rate of HSS ( 1.59 × 10−7 mm3·N−1·mm−1 ) .", "entities": [{"name": "wear", "type": "concept or principle", "pos": [4, 8]}, {"name": "carbon steel", "type": "material", "pos": [18, 30]}, {"name": "carbon steel", "type": "material", "pos": [75, 87]}, {"name": "wear", "type": "concept or principle", "pos": [144, 148]}, {"name": "HSS", "type": "material", "pos": [157, 160]}]}, {"sentence": "Moreover , the wear width of prepared carbon steel cladding-3 ( 550 μm ) is slightly larger than that of HSS ( 500 μm ) .", "entities": [{"name": "wear", "type": "concept or principle", "pos": [15, 19]}, {"name": "carbon steel", "type": "material", "pos": [38, 50]}, {"name": "HSS", "type": "material", "pos": [105, 108]}]}, {"sentence": "The wear resistance of carbon steel cladding-3 approximates that of HSS .", "entities": [{"name": "wear resistance", "type": "machanical property", "pos": [4, 19]}, {"name": "carbon steel", "type": "material", "pos": [23, 35]}, {"name": "HSS", "type": "material", "pos": [68, 71]}]}, {"sentence": "With the increase in the deposition height , the heat dissipation changes from three-dimensional on the substrate to one-dimensional on the depositing layer .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [25, 35]}, {"name": "heat dissipation", "type": "concept or principle", "pos": [49, 65]}, {"name": "three-dimensional", "type": "concept or principle", "pos": [79, 96]}, {"name": "substrate", "type": "material", "pos": [104, 113]}, {"name": "layer", "type": "process parameter", "pos": [151, 156]}]}, {"sentence": "The residual distortion can be effectively reduced by changing the depositing direction .", "entities": [{"name": "residual distortion", "type": "concept or principle", "pos": [4, 23]}, {"name": "be", "type": "material", "pos": [28, 30]}]}, {"sentence": "The distortion of the reverse directions can be reduced by 25 % .", "entities": [{"name": "distortion", "type": "concept or principle", "pos": [4, 14]}, {"name": "be", "type": "material", "pos": [45, 47]}]}, {"sentence": "The stress concentration at the end of the arc point and the stress produced by the reverse depositing model are more uniform than those produced by the same depositing model .", "entities": [{"name": "stress concentration", "type": "process characterization", "pos": [4, 24]}, {"name": "arc", "type": "concept or principle", "pos": [43, 46]}, {"name": "stress", "type": "machanical property", "pos": [61, 67]}, {"name": "model", "type": "concept or principle", "pos": [103, 108]}, {"name": "model", "type": "concept or principle", "pos": [169, 174]}]}, {"sentence": "The complex residual stress and distortion experienced in wire arc additive manufacturing ( WAAM ) can have a serious impact on production .", "entities": [{"name": "residual stress", "type": "machanical property", "pos": [12, 27]}, {"name": "distortion", "type": "concept or principle", "pos": [32, 42]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [58, 89]}, {"name": "WAAM", "type": "manufacturing process", "pos": [92, 96]}, {"name": "impact", "type": "concept or principle", "pos": [118, 124]}, {"name": "production", "type": "manufacturing process", "pos": [128, 138]}]}, {"sentence": "In this paper , a series of ten-layer depositing walls were deposited by WAAM using the same depositing direction and reverse depositing direction to study the effect of different heat conditions on the residual stress and distortion of the deposition wall .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [73, 77]}, {"name": "heat", "type": "concept or principle", "pos": [180, 184]}, {"name": "residual stress", "type": "machanical property", "pos": [203, 218]}, {"name": "distortion", "type": "concept or principle", "pos": [223, 233]}, {"name": "deposition", "type": "concept or principle", "pos": [241, 251]}]}, {"sentence": "The temperature field , distortion , and residual stress under different paths were obtained by performing experiments .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [4, 15]}, {"name": "distortion", "type": "concept or principle", "pos": [24, 34]}, {"name": "residual stress", "type": "machanical property", "pos": [41, 56]}]}, {"sentence": "Meanwhile , to calculate the variations in the temperature , stress , and distortion under different depositing paths , a model of wire arc additive manufacturing was established by using a numerical model .", "entities": [{"name": "variations", "type": "concept or principle", "pos": [29, 39]}, {"name": "temperature", "type": "process parameter", "pos": [47, 58]}, {"name": "stress", "type": "machanical property", "pos": [61, 67]}, {"name": "distortion", "type": "concept or principle", "pos": [74, 84]}, {"name": "model", "type": "concept or principle", "pos": [122, 127]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [131, 162]}, {"name": "model", "type": "concept or principle", "pos": [200, 205]}]}, {"sentence": "The stress distribution in the reverse directions is more uniform than that in the same directions .", "entities": [{"name": "stress distribution", "type": "machanical property", "pos": [4, 23]}]}, {"sentence": "By comparison with the results from an experimental and numerical analysis , the same depositing directions have a large temperature gradient and produce greater plastic distortion during solidification .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [39, 51]}, {"name": "temperature gradient", "type": "process parameter", "pos": [121, 141]}, {"name": "plastic", "type": "material", "pos": [162, 169]}, {"name": "distortion", "type": "concept or principle", "pos": [170, 180]}, {"name": "solidification", "type": "concept or principle", "pos": [188, 202]}]}, {"sentence": "A concept of layer by layer constrained optimisation of multi-axis additive manufacturing trajectory for parts of revolution is presented .", "entities": [{"name": "layer by layer", "type": "concept or principle", "pos": [13, 27]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [67, 89]}]}, {"sentence": "For a constrained device configuration , the use of non-optimised trajectories can lead to manufacturing failure due to an axis overtravel or singularity state ; problem which can be avoided thanks to the proposed methodology .", "entities": [{"name": "configuration", "type": "concept or principle", "pos": [25, 38]}, {"name": "lead", "type": "material", "pos": [83, 87]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [91, 104]}, {"name": "failure", "type": "concept or principle", "pos": [105, 112]}, {"name": "be", "type": "material", "pos": [180, 182]}, {"name": "methodology", "type": "concept or principle", "pos": [214, 225]}]}, {"sentence": "The methodology has been validated by manufacturing parts of revolution on a multi-axis additive manufacturing device using a coaxial PLA deposition system .", "entities": [{"name": "methodology", "type": "concept or principle", "pos": [4, 15]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [38, 51]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [88, 110]}, {"name": "PLA", "type": "material", "pos": [134, 137]}, {"name": "deposition", "type": "concept or principle", "pos": [138, 148]}]}, {"sentence": "Parts manufactured with an optimised trajectory provide better geometrical accuracy and less results dispersion than parts manufactured without optimisation .", "entities": [{"name": "manufactured", "type": "concept or principle", "pos": [6, 18]}, {"name": "accuracy", "type": "process characterization", "pos": [75, 83]}, {"name": "dispersion", "type": "concept or principle", "pos": [101, 111]}, {"name": "manufactured", "type": "concept or principle", "pos": [123, 135]}]}, {"sentence": "This work focuses on additive manufacturing by Directed Energy Deposition ( DED ) using a 6-axis robot .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [21, 43]}, {"name": "Directed Energy Deposition", "type": "manufacturing process", "pos": [47, 73]}, {"name": "DED", "type": "manufacturing process", "pos": [76, 79]}, {"name": "robot", "type": "machine or equipment", "pos": [97, 102]}]}, {"sentence": "To achieve this goal , a new layer-by-layer method coupled with a trajectory constrained optimization is presented .", "entities": [{"name": "layer-by-layer", "type": "concept or principle", "pos": [29, 43]}, {"name": "optimization", "type": "concept or principle", "pos": [89, 101]}]}, {"sentence": "The layer-by-layer generation of optimized trajectories is validated experimentally on a 6-axis robot using a PLA extrusion system .", "entities": [{"name": "layer-by-layer", "type": "concept or principle", "pos": [4, 18]}, {"name": "robot", "type": "machine or equipment", "pos": [96, 101]}, {"name": "PLA", "type": "material", "pos": [110, 113]}, {"name": "extrusion", "type": "manufacturing process", "pos": [114, 123]}]}, {"sentence": "Experimental results show that the layer-by-layer trajectory optimization strategy applied to parts of revolution provides better geometrical accuracy while improving the efficiency of the manufacturing device compared to non-optimized solutions .", "entities": [{"name": "Experimental", "type": "concept or principle", "pos": [0, 12]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [35, 49]}, {"name": "optimization", "type": "concept or principle", "pos": [61, 73]}, {"name": "accuracy", "type": "process characterization", "pos": [142, 150]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [189, 202]}]}, {"sentence": "In the cold metal transfer additive manufacturing process of Ti-6Al-4V thin wall structure , ultrasonic peening treatment ( UPT ) in three directions is proposed to refine the large columnar prior-β grains and secondary α grains , and to improve anisotropy in tensile properties .", "entities": [{"name": "cold metal transfer additive manufacturing", "type": "manufacturing process", "pos": [7, 49]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [61, 70]}, {"name": "structure", "type": "concept or principle", "pos": [81, 90]}, {"name": "ultrasonic peening", "type": "manufacturing process", "pos": [93, 111]}, {"name": "grains", "type": "concept or principle", "pos": [199, 205]}, {"name": "grains", "type": "concept or principle", "pos": [222, 228]}, {"name": "anisotropy", "type": "machanical property", "pos": [246, 256]}, {"name": "tensile properties", "type": "machanical property", "pos": [260, 278]}]}, {"sentence": "The experimental results showed that UPT in three directions applied to each weld right after arc extinguishing has a minor influence on the surface appearance , which shows no apparent plastic deformation , but has a great improvement in grain refinement .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "weld", "type": "engineering feature", "pos": [77, 81]}, {"name": "arc", "type": "concept or principle", "pos": [94, 97]}, {"name": "surface", "type": "concept or principle", "pos": [141, 148]}, {"name": "plastic deformation", "type": "machanical property", "pos": [186, 205]}, {"name": "grain refinement", "type": "process characterization", "pos": [239, 255]}]}, {"sentence": "The changes in microstructure and dislocations of thin wall structure treated by UPT in three directions were observed .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [15, 29]}, {"name": "dislocations", "type": "concept or principle", "pos": [34, 46]}, {"name": "structure", "type": "concept or principle", "pos": [60, 69]}]}, {"sentence": "By comparing with those without UPT , the main causes for refinement of columnar prior-β and secondary α grains was explored , namely mechanical effects of ultrasonic at the temperature range of α ’ dissolution temperature Tdiss – liquidus temperature Tl .", "entities": [{"name": "grains", "type": "concept or principle", "pos": [105, 111]}, {"name": "mechanical", "type": "application", "pos": [134, 144]}, {"name": "temperature range", "type": "process parameter", "pos": [174, 191]}, {"name": "temperature", "type": "process parameter", "pos": [211, 222]}, {"name": "liquidus", "type": "concept or principle", "pos": [231, 239]}, {"name": "Tl", "type": "material", "pos": [252, 254]}]}, {"sentence": "Specimens with UPT have better properties , higher loads with the same indentation displacement in nano-indentation tests , an increase in ultimate tensile strength and a reduction in anisotropic percentage in tensile tests .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [31, 41]}, {"name": "indentation", "type": "concept or principle", "pos": [71, 82]}, {"name": "ultimate tensile strength", "type": "machanical property", "pos": [139, 164]}, {"name": "reduction", "type": "concept or principle", "pos": [171, 180]}, {"name": "anisotropic", "type": "machanical property", "pos": [184, 195]}, {"name": "tensile tests", "type": "process characterization", "pos": [210, 223]}]}, {"sentence": "2Cr13 thin-wall part with defect-free was additively manufactured by robot-assisted CMT technology .", "entities": [{"name": "additively manufactured", "type": "manufacturing process", "pos": [42, 65]}, {"name": "CMT", "type": "manufacturing process", "pos": [84, 87]}]}, {"sentence": "Martensite coarsened gradually from FZ to CZ while only ultra-fine acicular martensite in the top layer .", "entities": [{"name": "Martensite", "type": "material", "pos": [0, 10]}, {"name": "FZ", "type": "concept or principle", "pos": [36, 38]}, {"name": "martensite", "type": "material", "pos": [76, 86]}, {"name": "layer", "type": "process parameter", "pos": [98, 103]}]}, {"sentence": "A random crystallographic orientation in the middle region while a slightly fiber texture in the top layer Mechanical properties were evolved periodically due to the periodic microstructural evolution .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [26, 37]}, {"name": "fiber", "type": "material", "pos": [76, 81]}, {"name": "layer", "type": "process parameter", "pos": [101, 106]}, {"name": "properties", "type": "concept or principle", "pos": [118, 128]}, {"name": "microstructural evolution", "type": "concept or principle", "pos": [175, 200]}]}, {"sentence": "Based on cold metal transfer ( CMT ) welding , wire-arc additive manufacturing ( WAAM ) technology was adopted to manufacture 2Cr13 part .", "entities": [{"name": "cold metal transfer", "type": "manufacturing process", "pos": [9, 28]}, {"name": "CMT", "type": "manufacturing process", "pos": [31, 34]}, {"name": "welding", "type": "manufacturing process", "pos": [37, 44]}, {"name": "wire-arc additive manufacturing", "type": "manufacturing process", "pos": [47, 78]}, {"name": "WAAM", "type": "manufacturing process", "pos": [81, 85]}, {"name": "technology", "type": "concept or principle", "pos": [88, 98]}, {"name": "manufacture", "type": "concept or principle", "pos": [114, 125]}]}, {"sentence": "The spatial periodicity of the microstructural evolution and the anti-indentation properties was explored .", "entities": [{"name": "microstructural evolution", "type": "concept or principle", "pos": [31, 56]}, {"name": "properties", "type": "concept or principle", "pos": [82, 92]}]}, {"sentence": "The results show that the aB-deposited part was featured by periodic martensite laths within the block-shaped ferrite matrix in the inner layers , followed by epitaxial ferrite grains containing ultra-fine acicular martensite in the top layer only .", "entities": [{"name": "martensite", "type": "material", "pos": [69, 79]}, {"name": "ferrite", "type": "material", "pos": [110, 117]}, {"name": "epitaxial", "type": "machanical property", "pos": [159, 168]}, {"name": "grains", "type": "concept or principle", "pos": [177, 183]}, {"name": "martensite", "type": "material", "pos": [215, 225]}, {"name": "layer", "type": "process parameter", "pos": [237, 242]}]}, {"sentence": "A slightly decreased Fe intensity was caused by local elemental segregation during the re-melting process ; the homogeneity of Fe and Cr was attributed to similar cooling conditions in the top layer .", "entities": [{"name": "Fe", "type": "material", "pos": [21, 23]}, {"name": "segregation", "type": "concept or principle", "pos": [64, 75]}, {"name": "process", "type": "concept or principle", "pos": [98, 105]}, {"name": "Fe", "type": "material", "pos": [127, 129]}, {"name": "Cr", "type": "material", "pos": [134, 136]}, {"name": "cooling", "type": "manufacturing process", "pos": [163, 170]}, {"name": "layer", "type": "process parameter", "pos": [193, 198]}]}, {"sentence": "Elongated ferrite grains exhibited a slight fiber texture in the top layer and a random crystallographic orientation in the middle region .", "entities": [{"name": "ferrite", "type": "material", "pos": [10, 17]}, {"name": "fiber", "type": "material", "pos": [44, 49]}, {"name": "layer", "type": "process parameter", "pos": [69, 74]}, {"name": "orientation", "type": "concept or principle", "pos": [105, 116]}]}, {"sentence": "The anti-indentation properties evolved periodically due to the periodic microstructural characteristics .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [21, 31]}, {"name": "microstructural", "type": "concept or principle", "pos": [73, 88]}]}, {"sentence": "The obtained experimental results confirmed higher anti-indentation properties of the aB-deposited part following comparison with the aB-annealed base metal , while the elastic moduli of samples were not significantly different .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [13, 25]}, {"name": "properties", "type": "concept or principle", "pos": [68, 78]}, {"name": "base metal", "type": "material", "pos": [146, 156]}, {"name": "elastic moduli", "type": "machanical property", "pos": [169, 183]}, {"name": "samples", "type": "concept or principle", "pos": [187, 194]}]}, {"sentence": "Titanium alloys have high strength to low weight ratio , good creep resistance and high temperature strength properties .", "entities": [{"name": "Titanium alloys", "type": "material", "pos": [0, 15]}, {"name": "strength", "type": "machanical property", "pos": [26, 34]}, {"name": "weight", "type": "process parameter", "pos": [42, 48]}, {"name": "creep", "type": "machanical property", "pos": [62, 67]}, {"name": "temperature", "type": "process parameter", "pos": [88, 99]}, {"name": "strength properties", "type": "machanical property", "pos": [100, 119]}]}, {"sentence": "Based on these properties , Ti alloys are used as a ‘ workhorse ’ material in the aerospace industry such as engine blades , landing gear assemblies , large structural parts , airframe and drums etc .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [15, 25]}, {"name": "Ti alloys", "type": "material", "pos": [28, 37]}, {"name": "as", "type": "material", "pos": [47, 49]}, {"name": "material", "type": "material", "pos": [66, 74]}, {"name": "aerospace industry", "type": "application", "pos": [82, 100]}, {"name": "as", "type": "material", "pos": [106, 108]}, {"name": "gear", "type": "machine or equipment", "pos": [133, 137]}]}, {"sentence": "Traditional fabrication methods of Ti alloy are expensive and inferior in their mechanical properties .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [12, 23]}, {"name": "Ti alloy", "type": "material", "pos": [35, 43]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [80, 101]}]}, {"sentence": "Due to continuous development in science and technology , many researchers have been attracted towards Wire Feed Additive Manufacturing ( WFAM ) for the fabrication of titanium and its alloys .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [45, 55]}, {"name": "Feed", "type": "process parameter", "pos": [108, 112]}, {"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [113, 135]}, {"name": "fabrication", "type": "manufacturing process", "pos": [153, 164]}, {"name": "titanium", "type": "material", "pos": [168, 176]}, {"name": "alloys", "type": "material", "pos": [185, 191]}]}, {"sentence": "WFAM has set a new trend by accomplishing the production demand of components from medium to large scale with moderate complexity .", "entities": [{"name": "set", "type": "application", "pos": [9, 12]}, {"name": "trend", "type": "concept or principle", "pos": [19, 24]}, {"name": "production", "type": "manufacturing process", "pos": [46, 56]}, {"name": "components", "type": "machine or equipment", "pos": [67, 77]}, {"name": "complexity", "type": "concept or principle", "pos": [119, 129]}]}, {"sentence": "This additive manufacturing technology generally employes for high material utilization and higher deposition .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [5, 27]}, {"name": "material utilization", "type": "process characterization", "pos": [67, 87]}, {"name": "deposition", "type": "concept or principle", "pos": [99, 109]}]}, {"sentence": "This state of art highlights the remarkable achievements of WFAM processes followed by their effect of process parameters , microstructural changes , residual stresses and mechanical properties of Ti-6Al-4V alloy .", "entities": [{"name": "art", "type": "application", "pos": [14, 17]}, {"name": "processes", "type": "concept or principle", "pos": [65, 74]}, {"name": "process parameters", "type": "concept or principle", "pos": [103, 121]}, {"name": "microstructural", "type": "concept or principle", "pos": [124, 139]}, {"name": "residual stresses", "type": "machanical property", "pos": [150, 167]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [172, 193]}, {"name": "Ti-6Al-4V alloy", "type": "material", "pos": [197, 212]}]}, {"sentence": "Accurate on-line weld defects detection is still challenging for robotic welding manufacturing due to the complexity of weld defects .", "entities": [{"name": "Accurate", "type": "process characterization", "pos": [0, 8]}, {"name": "weld", "type": "engineering feature", "pos": [17, 21]}, {"name": "defects", "type": "concept or principle", "pos": [22, 29]}, {"name": "robotic welding manufacturing", "type": "manufacturing process", "pos": [65, 94]}, {"name": "complexity", "type": "concept or principle", "pos": [106, 116]}, {"name": "weld", "type": "engineering feature", "pos": [120, 124]}, {"name": "defects", "type": "concept or principle", "pos": [125, 132]}]}, {"sentence": "This paper studied deep learning–based on-line defects detection for aluminum alloy in robotic arc welding using Convolutional Neural Networks ( CNN ) and weld images .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [47, 54]}, {"name": "aluminum alloy", "type": "material", "pos": [69, 83]}, {"name": "arc welding", "type": "manufacturing process", "pos": [95, 106]}, {"name": "Neural Networks", "type": "concept or principle", "pos": [127, 142]}, {"name": "weld", "type": "engineering feature", "pos": [155, 159]}, {"name": "images", "type": "concept or principle", "pos": [160, 166]}]}, {"sentence": "Firstly , an image acquisition system was developed to simultaneously collect weld images , which can provide more information of the real-time weld images from different angles including top front , top back and back seam .", "entities": [{"name": "image", "type": "concept or principle", "pos": [13, 18]}, {"name": "weld", "type": "engineering feature", "pos": [78, 82]}, {"name": "images", "type": "concept or principle", "pos": [83, 89]}, {"name": "weld", "type": "engineering feature", "pos": [144, 148]}, {"name": "images", "type": "concept or principle", "pos": [149, 155]}, {"name": "seam", "type": "manufacturing process", "pos": [218, 222]}]}, {"sentence": "Then , a new CNN classification model with 11 layers based on weld image was designed to identify weld penetration defects .", "entities": [{"name": "classification", "type": "concept or principle", "pos": [17, 31]}, {"name": "weld", "type": "engineering feature", "pos": [62, 66]}, {"name": "image", "type": "concept or principle", "pos": [67, 72]}, {"name": "designed", "type": "engineering feature", "pos": [77, 85]}, {"name": "weld penetration defects", "type": "concept or principle", "pos": [98, 122]}]}, {"sentence": "In order to improve the robustness and generalization ability of the CNN model , weld images from different welding current and feeding speed were captured for the CNN model .", "entities": [{"name": "robustness", "type": "machanical property", "pos": [24, 34]}, {"name": "model", "type": "concept or principle", "pos": [73, 78]}, {"name": "weld", "type": "engineering feature", "pos": [81, 85]}, {"name": "images", "type": "concept or principle", "pos": [86, 92]}, {"name": "welding", "type": "manufacturing process", "pos": [108, 115]}, {"name": "model", "type": "concept or principle", "pos": [168, 173]}]}, {"sentence": "Based on the actual industry challenges such as the instability of welding arc , the complexity of the welding environment and the random changing of plate gap condition , two kinds of data augmentation including noise adding and image rotation were used to boost the CNN dataset while parameters optimization was carried out .", "entities": [{"name": "industry", "type": "application", "pos": [20, 28]}, {"name": "as", "type": "material", "pos": [45, 47]}, {"name": "welding", "type": "manufacturing process", "pos": [67, 74]}, {"name": "arc", "type": "concept or principle", "pos": [75, 78]}, {"name": "complexity", "type": "concept or principle", "pos": [85, 95]}, {"name": "welding", "type": "manufacturing process", "pos": [103, 110]}, {"name": "data", "type": "concept or principle", "pos": [185, 189]}, {"name": "image", "type": "concept or principle", "pos": [230, 235]}, {"name": "parameters optimization", "type": "concept or principle", "pos": [286, 309]}]}, {"sentence": "Instead of decreasing the interference from arc light as in traditional way , the CNN model has taken full use of those arc lights by combining them in a various way to form the complementary features .", "entities": [{"name": "arc", "type": "concept or principle", "pos": [44, 47]}, {"name": "as", "type": "material", "pos": [54, 56]}, {"name": "model", "type": "concept or principle", "pos": [86, 91]}, {"name": "arc", "type": "concept or principle", "pos": [120, 123]}]}, {"sentence": "Test results shows that the CNN model has better performance than our previous work with the mean classification accuracy of 99.38 % .", "entities": [{"name": "model", "type": "concept or principle", "pos": [32, 37]}, {"name": "performance", "type": "concept or principle", "pos": [49, 60]}, {"name": "classification", "type": "concept or principle", "pos": [98, 112]}, {"name": "accuracy", "type": "process characterization", "pos": [113, 121]}]}, {"sentence": "This paper can provide some guidance for on-line detection of manufacturing quality in metal additive manufacturing ( AM ) and laser welding .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [62, 75]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [87, 115]}, {"name": "AM", "type": "manufacturing process", "pos": [118, 120]}, {"name": "laser welding", "type": "manufacturing process", "pos": [127, 140]}]}, {"sentence": "A high temperature gaB-to-gas manifold-microchannel heat exchanger was fabricated .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [7, 18]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [52, 66]}, {"name": "fabricated", "type": "concept or principle", "pos": [71, 81]}]}, {"sentence": "The heat exchanger core was 3D printed using Inconel 718 through DMLS .", "entities": [{"name": "heat exchanger", "type": "machine or equipment", "pos": [4, 18]}, {"name": "core", "type": "machine or equipment", "pos": [19, 23]}, {"name": "3D printed", "type": "manufacturing process", "pos": [28, 38]}, {"name": "Inconel 718", "type": "material", "pos": [45, 56]}, {"name": "DMLS", "type": "manufacturing process", "pos": [65, 69]}]}, {"sentence": "The heat exchanger was tested at 600 °C with inlet pressure of 450 kPa .", "entities": [{"name": "heat exchanger", "type": "machine or equipment", "pos": [4, 18]}, {"name": "inlet", "type": "machine or equipment", "pos": [45, 50]}]}, {"sentence": "The experimental results validated the numerical model .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "model", "type": "concept or principle", "pos": [49, 54]}]}, {"sentence": "25 % higher heat transfer density compared to conventional plate fin heat exchangers .", "entities": [{"name": "heat transfer density", "type": "process parameter", "pos": [12, 33]}, {"name": "heat exchangers", "type": "machine or equipment", "pos": [69, 84]}]}, {"sentence": "This work presents an additively manufactured manifold-microchannel heat exchanger made of Inconel 718 and experimentally tested for high temperature aerospace applications .", "entities": [{"name": "additively manufactured", "type": "manufacturing process", "pos": [22, 45]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [68, 82]}, {"name": "Inconel 718", "type": "material", "pos": [91, 102]}, {"name": "temperature", "type": "process parameter", "pos": [138, 149]}, {"name": "aerospace", "type": "application", "pos": [150, 159]}]}, {"sentence": "The heat exchanger core with a size of 66 mm × 74 mm × 27 mm was fabricated as a single piece through the direct metal laser sintering process .", "entities": [{"name": "heat exchanger", "type": "machine or equipment", "pos": [4, 18]}, {"name": "core", "type": "machine or equipment", "pos": [19, 23]}, {"name": "mm", "type": "manufacturing process", "pos": [42, 44]}, {"name": "mm", "type": "manufacturing process", "pos": [50, 52]}, {"name": "mm", "type": "manufacturing process", "pos": [58, 60]}, {"name": "fabricated", "type": "concept or principle", "pos": [65, 75]}, {"name": "as", "type": "material", "pos": [76, 78]}, {"name": "direct metal laser sintering", "type": "manufacturing process", "pos": [106, 134]}]}, {"sentence": "Successful welding of additively manufactured headers with the heat exchanger core and conventionally manufactured flanges was demonstrated through the fabrication of the unit .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [11, 18]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [22, 45]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [63, 77]}, {"name": "core", "type": "machine or equipment", "pos": [78, 82]}, {"name": "manufactured", "type": "concept or principle", "pos": [102, 114]}, {"name": "fabrication", "type": "manufacturing process", "pos": [152, 163]}]}, {"sentence": "The heat exchanger was tested using nitrogen ( N2 ) on the hot-side and air on the cold-side as the working fluids .", "entities": [{"name": "heat exchanger", "type": "machine or equipment", "pos": [4, 18]}, {"name": "nitrogen", "type": "material", "pos": [36, 44]}, {"name": "N2", "type": "material", "pos": [47, 49]}, {"name": "as", "type": "material", "pos": [93, 95]}, {"name": "fluids", "type": "material", "pos": [108, 114]}]}, {"sentence": "A maximum heat duty of 2.78 kW and a maximum overall heat transfer coefficient of 1000 W/m2K were achieved during the experiments .", "entities": [{"name": "heat", "type": "concept or principle", "pos": [10, 14]}, {"name": "heat transfer", "type": "concept or principle", "pos": [53, 66]}]}, {"sentence": "The decent agreement between the experimental and the numerical results demonstrates the validity of the numerical analysis model used for heat transfer and pressure drop prediction of the additively manufactured manifold-microchannel heat exchanger .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [33, 45]}, {"name": "model", "type": "concept or principle", "pos": [124, 129]}, {"name": "heat transfer", "type": "concept or principle", "pos": [139, 152]}, {"name": "pressure", "type": "concept or principle", "pos": [157, 165]}, {"name": "prediction", "type": "concept or principle", "pos": [171, 181]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [189, 212]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [235, 249]}]}, {"sentence": "Compared to conventional plate fin heat exchangers , nearly 25 % improvement in heat transfer density— the ratio between heat duty and mass ( Q/m ) —was noted at a coefficient of performance ( COP ) of 62 .", "entities": [{"name": "heat exchangers", "type": "machine or equipment", "pos": [35, 50]}, {"name": "heat transfer", "type": "concept or principle", "pos": [80, 93]}, {"name": "heat", "type": "concept or principle", "pos": [121, 125]}, {"name": "performance", "type": "concept or principle", "pos": [179, 190]}]}, {"sentence": "A 3D heat and fluid flow model is developed for the multilayer deposition of wire and arc additive manufacture .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [2, 4]}, {"name": "fluid flow", "type": "machanical property", "pos": [14, 24]}, {"name": "deposition", "type": "concept or principle", "pos": [63, 73]}, {"name": "wire and arc additive manufacture", "type": "manufacturing process", "pos": [77, 110]}]}, {"sentence": "Utilizing a modified double ellipsoidal heat source model which shows better adaptability to free surface deformation .", "entities": [{"name": "heat source", "type": "concept or principle", "pos": [40, 51]}, {"name": "free surface", "type": "concept or principle", "pos": [93, 105]}, {"name": "deformation", "type": "concept or principle", "pos": [106, 117]}]}, {"sentence": "Predicting the morphology of molten pool and deposited bead in WAAM process using CFD model for the first time .", "entities": [{"name": "morphology", "type": "concept or principle", "pos": [15, 25]}, {"name": "molten pool", "type": "concept or principle", "pos": [29, 40]}, {"name": "deposited bead", "type": "process characterization", "pos": [45, 59]}, {"name": "WAAM", "type": "manufacturing process", "pos": [63, 67]}, {"name": "process", "type": "concept or principle", "pos": [68, 75]}, {"name": "CFD", "type": "application", "pos": [82, 85]}]}, {"sentence": "Conduction is the dominant method of heat dissipation compared to convection and radiation to the air during deposition .", "entities": [{"name": "heat dissipation", "type": "concept or principle", "pos": [37, 53]}, {"name": "radiation", "type": "manufacturing process", "pos": [81, 90]}, {"name": "deposition", "type": "concept or principle", "pos": [109, 119]}]}, {"sentence": "A three-dimensional numerical model has been developed to investigate the fluid flow and heat transfer behaviors in multilayer deposition of plasma arc welding ( PAW ) based wire and arc additive manufacture ( WAAM ) .", "entities": [{"name": "three-dimensional", "type": "concept or principle", "pos": [2, 19]}, {"name": "model", "type": "concept or principle", "pos": [30, 35]}, {"name": "fluid flow", "type": "machanical property", "pos": [74, 84]}, {"name": "heat transfer", "type": "concept or principle", "pos": [89, 102]}, {"name": "deposition", "type": "concept or principle", "pos": [127, 137]}, {"name": "plasma arc welding", "type": "manufacturing process", "pos": [141, 159]}, {"name": "PAW", "type": "manufacturing process", "pos": [162, 165]}, {"name": "wire and arc additive manufacture", "type": "manufacturing process", "pos": [174, 207]}, {"name": "WAAM", "type": "manufacturing process", "pos": [210, 214]}]}, {"sentence": "The volume of fluid ( VOF ) and porosity enthalpy methods are employed to track the molten pool free surface and solidification front , respectively .", "entities": [{"name": "volume of fluid", "type": "concept or principle", "pos": [4, 19]}, {"name": "VOF", "type": "concept or principle", "pos": [22, 25]}, {"name": "porosity", "type": "machanical property", "pos": [32, 40]}, {"name": "molten pool free surface", "type": "concept or principle", "pos": [84, 108]}, {"name": "solidification", "type": "concept or principle", "pos": [113, 127]}]}, {"sentence": "A modified double ellipsoidal heat source model is utilized to ensure constant arc heat input in calculation in the case that molten pool surface dynamically changes .", "entities": [{"name": "heat source", "type": "concept or principle", "pos": [30, 41]}, {"name": "arc", "type": "concept or principle", "pos": [79, 82]}, {"name": "molten pool", "type": "concept or principle", "pos": [126, 137]}]}, {"sentence": "Transient simulations were conducted for the 1st , 2nd and 21st layer depositions .", "entities": [{"name": "Transient", "type": "concept or principle", "pos": [0, 9]}, {"name": "simulations", "type": "enabling technology", "pos": [10, 21]}, {"name": "layer", "type": "process parameter", "pos": [64, 69]}]}, {"sentence": "The shape and size of deposited bead and weld pool were predicted and compared with experimental results .", "entities": [{"name": "deposited bead", "type": "process characterization", "pos": [22, 36]}, {"name": "weld pool", "type": "concept or principle", "pos": [41, 50]}, {"name": "predicted", "type": "concept or principle", "pos": [56, 65]}, {"name": "experimental", "type": "concept or principle", "pos": [84, 96]}]}, {"sentence": "The results show that for each layer of deposition the Marangoni force plays the most important role in affecting fluid flow , conduction is the dominant method of heat dissipation compared to convection and radiation to the air .", "entities": [{"name": "layer", "type": "process parameter", "pos": [31, 36]}, {"name": "deposition", "type": "concept or principle", "pos": [40, 50]}, {"name": "force", "type": "concept or principle", "pos": [65, 70]}, {"name": "fluid flow", "type": "machanical property", "pos": [114, 124]}, {"name": "heat dissipation", "type": "concept or principle", "pos": [164, 180]}, {"name": "radiation", "type": "manufacturing process", "pos": [208, 217]}]}, {"sentence": "As the layer number increases , the length and width of molten pool and the width of deposited bead increase , whilst the layer height decreases .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "layer", "type": "process parameter", "pos": [7, 12]}, {"name": "molten pool", "type": "concept or principle", "pos": [56, 67]}, {"name": "deposited bead", "type": "process characterization", "pos": [85, 99]}, {"name": "layer height", "type": "process parameter", "pos": [122, 134]}]}, {"sentence": "In high layer deposition , where side support is absent , the depth of the molten pool at the rear part is almost flat in the Y direction .", "entities": [{"name": "layer", "type": "process parameter", "pos": [8, 13]}, {"name": "deposition", "type": "concept or principle", "pos": [14, 24]}, {"name": "support", "type": "application", "pos": [38, 45]}, {"name": "molten pool", "type": "concept or principle", "pos": [75, 86]}, {"name": "Y", "type": "material", "pos": [126, 127]}]}, {"sentence": "The profile of the deposited bead is mainly determined by static pressure caused by gravity and surface tension pressure , therefore the bead profile is nearly circular .", "entities": [{"name": "profile", "type": "engineering feature", "pos": [4, 11]}, {"name": "deposited bead", "type": "process characterization", "pos": [19, 33]}, {"name": "pressure", "type": "concept or principle", "pos": [65, 73]}, {"name": "surface tension", "type": "machanical property", "pos": [96, 111]}, {"name": "pressure", "type": "concept or principle", "pos": [112, 120]}, {"name": "bead", "type": "process characterization", "pos": [137, 141]}]}, {"sentence": "The simulated profiles and size dimensions of deposited bead and molten pool were validated with experimental weld appearance , crosB-sectional images and process camera images .", "entities": [{"name": "profiles", "type": "engineering feature", "pos": [14, 22]}, {"name": "dimensions", "type": "engineering feature", "pos": [32, 42]}, {"name": "deposited bead", "type": "process characterization", "pos": [46, 60]}, {"name": "molten pool", "type": "concept or principle", "pos": [65, 76]}, {"name": "experimental", "type": "concept or principle", "pos": [97, 109]}, {"name": "images", "type": "concept or principle", "pos": [144, 150]}, {"name": "process", "type": "concept or principle", "pos": [155, 162]}, {"name": "camera", "type": "machine or equipment", "pos": [163, 169]}]}, {"sentence": "Wire-based directed energy deposition additive manufacturing techniques ( AM ) permit the rapid production of large-scale structural components which are not currently possible using the more common powder bed fusion ( PBF ) AM methods .", "entities": [{"name": "directed energy deposition additive manufacturing", "type": "manufacturing process", "pos": [11, 60]}, {"name": "AM", "type": "manufacturing process", "pos": [74, 76]}, {"name": "production", "type": "manufacturing process", "pos": [96, 106]}, {"name": "structural components", "type": "concept or principle", "pos": [122, 143]}, {"name": "powder bed fusion", "type": "manufacturing process", "pos": [199, 216]}, {"name": "PBF", "type": "manufacturing process", "pos": [219, 222]}, {"name": "AM", "type": "manufacturing process", "pos": [225, 227]}]}, {"sentence": "However , due to larger melt pool widths and higher energy inputs than PBF methods , local thermal history effects produce significant location-dependent microstructure , porosity , and mechanical behavior that necessitates thorough quantification of this emergent technology .", "entities": [{"name": "melt pool", "type": "material", "pos": [24, 33]}, {"name": "PBF", "type": "manufacturing process", "pos": [71, 74]}, {"name": "microstructure", "type": "concept or principle", "pos": [154, 168]}, {"name": "porosity", "type": "machanical property", "pos": [171, 179]}, {"name": "mechanical", "type": "application", "pos": [186, 196]}, {"name": "technology", "type": "concept or principle", "pos": [265, 275]}]}, {"sentence": "Wire + Arc Additive Manufacturing ( WAAM ) was used to produce austenitic stainlesB-steel single bead walls in order to statistically quantify the variation of critical material properties within the build .", "entities": [{"name": "Wire + Arc Additive Manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "WAAM", "type": "manufacturing process", "pos": [36, 40]}, {"name": "austenitic", "type": "material", "pos": [63, 73]}, {"name": "bead", "type": "process characterization", "pos": [97, 101]}, {"name": "variation", "type": "concept or principle", "pos": [147, 156]}, {"name": "material properties", "type": "concept or principle", "pos": [169, 188]}, {"name": "build", "type": "process parameter", "pos": [200, 205]}]}, {"sentence": "Individual grain geometric properties evaluated using electron back scatter diffraction at different points in the build were well fit by a three-parameter Weibull cumulative distribution function , yet sufficiently different from averaged values .", "entities": [{"name": "grain", "type": "concept or principle", "pos": [11, 16]}, {"name": "properties", "type": "concept or principle", "pos": [27, 37]}, {"name": "electron back scatter diffraction", "type": "enabling technology", "pos": [54, 87]}, {"name": "build", "type": "process parameter", "pos": [115, 120]}, {"name": "fit", "type": "concept or principle", "pos": [131, 134]}, {"name": "distribution", "type": "concept or principle", "pos": [175, 187]}]}, {"sentence": "X-ray diffraction for each location disclosed a strong wire texture in the build direction , leading to anisotropic elastic moduli values that were well described by directionally-dependent modulus predictions obtained from diffraction peak analysis .", "entities": [{"name": "X-ray diffraction", "type": "process characterization", "pos": [0, 17]}, {"name": "texture", "type": "engineering feature", "pos": [60, 67]}, {"name": "build direction", "type": "process parameter", "pos": [75, 90]}, {"name": "anisotropic", "type": "machanical property", "pos": [104, 115]}, {"name": "predictions", "type": "concept or principle", "pos": [198, 209]}, {"name": "diffraction", "type": "process characterization", "pos": [224, 235]}]}, {"sentence": "Location-dependent mechanical behavior was examined and accurately captured by an elasto-viscoplastic model based on the Fast-Fourier Transforms ( EvpFFT ) using the local microstructure orientation data as input .", "entities": [{"name": "mechanical", "type": "application", "pos": [19, 29]}, {"name": "accurately", "type": "process characterization", "pos": [56, 66]}, {"name": "model", "type": "concept or principle", "pos": [102, 107]}, {"name": "microstructure", "type": "concept or principle", "pos": [172, 186]}, {"name": "data", "type": "concept or principle", "pos": [199, 203]}, {"name": "as", "type": "material", "pos": [204, 206]}]}, {"sentence": "Overall , a high-quality build was realized , with minimal porosity of less than 0.32 % , and median yield and tensile strength values of approximately 320.4 ± 8.0 MPa and 531.6 ± 8.2 MPa , respectively .", "entities": [{"name": "build", "type": "process parameter", "pos": [25, 30]}, {"name": "porosity", "type": "machanical property", "pos": [59, 67]}, {"name": "tensile strength", "type": "machanical property", "pos": [111, 127]}, {"name": "MPa", "type": "concept or principle", "pos": [164, 167]}, {"name": "MPa", "type": "concept or principle", "pos": [184, 187]}]}, {"sentence": "Additively manufactured components made of metallic material are subject to special consideration for many R & D departments , since the process control is not yet sufficiently reliable and therefore an extensive quality assurance is necessary .", "entities": [{"name": "Additively manufactured", "type": "manufacturing process", "pos": [0, 23]}, {"name": "metallic material", "type": "material", "pos": [43, 60]}, {"name": "process control", "type": "concept or principle", "pos": [137, 152]}, {"name": "quality", "type": "concept or principle", "pos": [213, 220]}]}, {"sentence": "For this reason , few structural components for aviation have been established so far .", "entities": [{"name": "structural components", "type": "concept or principle", "pos": [22, 43]}]}, {"sentence": "In this paper , a feasibility study for the use of laser metal deposition ( LMD ) for the additive manufacturing of a fuselage made of aluminum is carried out .", "entities": [{"name": "feasibility", "type": "concept or principle", "pos": [18, 29]}, {"name": "laser metal deposition", "type": "manufacturing process", "pos": [51, 73]}, {"name": "LMD", "type": "manufacturing process", "pos": [76, 79]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [90, 112]}, {"name": "fuselage", "type": "machine or equipment", "pos": [118, 126]}, {"name": "aluminum", "type": "material", "pos": [135, 143]}]}, {"sentence": "The redistribution of alloying elements and the crystallographic characterizations in wire and arc additive manufactured ( WAAM ) super duplex stainless steel ( SDSS ) was investigated from the wire to the final aB-deposited structure .", "entities": [{"name": "alloying elements", "type": "material", "pos": [22, 39]}, {"name": "arc", "type": "concept or principle", "pos": [95, 98]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [99, 120]}, {"name": "WAAM", "type": "manufacturing process", "pos": [123, 127]}, {"name": "stainless steel", "type": "material", "pos": [143, 158]}, {"name": "structure", "type": "concept or principle", "pos": [225, 234]}]}, {"sentence": "The results showed that elemental partitioning between austenite and ferrite was suppressed in the last layer and the solidified droplet .", "entities": [{"name": "austenite", "type": "material", "pos": [55, 64]}, {"name": "ferrite", "type": "material", "pos": [69, 76]}, {"name": "layer", "type": "process parameter", "pos": [104, 109]}, {"name": "droplet", "type": "concept or principle", "pos": [129, 136]}]}, {"sentence": "The high Ni content but low Cr and N contents in the initial state of the intragranular austenite ( IGA ) confirmed the predominance of the chromium nitrides acted as the nucleation sites .", "entities": [{"name": "Ni", "type": "material", "pos": [9, 11]}, {"name": "Cr", "type": "material", "pos": [28, 30]}, {"name": "N", "type": "material", "pos": [35, 36]}, {"name": "austenite", "type": "material", "pos": [88, 97]}, {"name": "chromium", "type": "material", "pos": [140, 148]}, {"name": "as", "type": "material", "pos": [164, 166]}, {"name": "nucleation", "type": "concept or principle", "pos": [171, 181]}]}, {"sentence": "Gathering of nitrogen was found more distinct in the coarsening IGA , Widmanstätten austenite ( WA ) than the grain boundary austenite ( GBA ) .", "entities": [{"name": "nitrogen", "type": "material", "pos": [13, 21]}, {"name": "austenite", "type": "material", "pos": [84, 93]}, {"name": "WA", "type": "manufacturing process", "pos": [96, 98]}, {"name": "grain boundary", "type": "concept or principle", "pos": [110, 124]}, {"name": "austenite", "type": "material", "pos": [125, 134]}]}, {"sentence": "The columnar epitaxial ferrite presented a strong < 001 > texture in the deposition direction , while the < 001 > and < 101 > orientations was found in the austenite .", "entities": [{"name": "epitaxial", "type": "machanical property", "pos": [13, 22]}, {"name": "texture", "type": "engineering feature", "pos": [58, 65]}, {"name": "deposition direction", "type": "process parameter", "pos": [73, 93]}, {"name": "orientations", "type": "concept or principle", "pos": [126, 138]}, {"name": "austenite", "type": "material", "pos": [156, 165]}]}, {"sentence": "Random orientations of the intragranular secondary austenite was revealed .", "entities": [{"name": "orientations", "type": "concept or principle", "pos": [7, 19]}, {"name": "austenite", "type": "material", "pos": [51, 60]}]}, {"sentence": "The Rotated Cube texture of the austenite grains were consumed by the “ recrystallization ” textures ( Brass , Rotated Brass , Cu , R , E , and F ) caused by the austenite reformation .", "entities": [{"name": "Cube", "type": "concept or principle", "pos": [12, 16]}, {"name": "austenite", "type": "material", "pos": [32, 41]}, {"name": "recrystallization", "type": "concept or principle", "pos": [72, 89]}, {"name": "Brass", "type": "material", "pos": [103, 108]}, {"name": "Brass", "type": "material", "pos": [119, 124]}, {"name": "Cu", "type": "material", "pos": [127, 129]}, {"name": "F", "type": "manufacturing process", "pos": [144, 145]}, {"name": "austenite", "type": "material", "pos": [162, 171]}]}, {"sentence": "The low-angle interphase boundaries between austenite and ferrite were predominated in the aB-deposited wall , and , at which , the K–S orientation took the crucial part .", "entities": [{"name": "interphase", "type": "concept or principle", "pos": [14, 24]}, {"name": "boundaries", "type": "engineering feature", "pos": [25, 35]}, {"name": "austenite", "type": "material", "pos": [44, 53]}, {"name": "ferrite", "type": "material", "pos": [58, 65]}, {"name": "orientation", "type": "concept or principle", "pos": [136, 147]}]}, {"sentence": "A Taylor factor analysis revealed that through fabrication via additive process , the austenite became oriented “ harder ” and contributed most to good mechanical properties .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [47, 58]}, {"name": "additive", "type": "material", "pos": [63, 71]}, {"name": "austenite", "type": "material", "pos": [86, 95]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [152, 173]}]}, {"sentence": "The textured microstructure contributed about a 2.6 % higher engineering strain in the Z direction and a 27.8 MPa higher yield strength in the X direction .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [13, 27]}, {"name": "engineering", "type": "application", "pos": [61, 72]}, {"name": "MPa", "type": "concept or principle", "pos": [110, 113]}, {"name": "yield strength", "type": "machanical property", "pos": [121, 135]}]}, {"sentence": "AB-deposited Wire + Arc Additively Manufactured ( WAAM ) Inconel ( IN ) 718 contains Laves phase in the microstructure .", "entities": [{"name": "Wire + Arc Additively Manufactured", "type": "manufacturing process", "pos": [13, 47]}, {"name": "WAAM", "type": "manufacturing process", "pos": [50, 54]}, {"name": "Inconel", "type": "material", "pos": [57, 64]}, {"name": "Laves phase", "type": "concept or principle", "pos": [85, 96]}, {"name": "microstructure", "type": "concept or principle", "pos": [104, 118]}]}, {"sentence": "A modified post-deposition heat treatment successfully dissolved Laves phase without precipitating δ phase .", "entities": [{"name": "heat treatment", "type": "manufacturing process", "pos": [27, 41]}, {"name": "Laves phase", "type": "concept or principle", "pos": [65, 76]}, {"name": "phase", "type": "concept or principle", "pos": [101, 106]}]}, {"sentence": "Changes to the grain structure through heat treatments reduced anisotropy in elevated temperature tensile properties .", "entities": [{"name": "grain structure", "type": "concept or principle", "pos": [15, 30]}, {"name": "heat treatments", "type": "manufacturing process", "pos": [39, 54]}, {"name": "anisotropy", "type": "machanical property", "pos": [63, 73]}, {"name": "temperature", "type": "process parameter", "pos": [86, 97]}, {"name": "properties", "type": "concept or principle", "pos": [106, 116]}]}, {"sentence": "Elevated temperature tensile properties of WAAM IN 718 meet minimum specifications for cast but not for wrought material .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [9, 20]}, {"name": "properties", "type": "concept or principle", "pos": [29, 39]}, {"name": "WAAM", "type": "manufacturing process", "pos": [43, 47]}, {"name": "specifications", "type": "process parameter", "pos": [68, 82]}, {"name": "cast", "type": "manufacturing process", "pos": [87, 91]}, {"name": "wrought material", "type": "material", "pos": [104, 120]}]}, {"sentence": "Wire + Arc Additive Manufacturing ( WAAM ) can be used to create large free-form components out of specialist materials such as nickel-base superalloys .", "entities": [{"name": "Wire + Arc Additive Manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "WAAM", "type": "manufacturing process", "pos": [36, 40]}, {"name": "be", "type": "material", "pos": [47, 49]}, {"name": "components", "type": "machine or equipment", "pos": [81, 91]}, {"name": "materials", "type": "concept or principle", "pos": [110, 119]}, {"name": "as", "type": "material", "pos": [125, 127]}, {"name": "superalloys", "type": "material", "pos": [140, 151]}]}, {"sentence": "Inconel ( IN ) 718 is well suited for the WAAM process due to its excellent weldability .", "entities": [{"name": "Inconel", "type": "material", "pos": [0, 7]}, {"name": "WAAM", "type": "manufacturing process", "pos": [42, 46]}, {"name": "process", "type": "concept or principle", "pos": [47, 54]}, {"name": "weldability", "type": "machanical property", "pos": [76, 87]}]}, {"sentence": "However , during deposition , WAAM IN718 is susceptible to micro-segregation , leading to undesirable Laves phase formation in the interdendritic regions .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [17, 27]}, {"name": "WAAM", "type": "manufacturing process", "pos": [30, 34]}, {"name": "IN718", "type": "material", "pos": [35, 40]}, {"name": "micro-segregation", "type": "concept or principle", "pos": [59, 76]}, {"name": "Laves phase", "type": "concept or principle", "pos": [102, 113]}]}, {"sentence": "Further , the WAAM process encourages columnar grain growth and the development of a strong fibre texture , leading to anisotropy in grain structure .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [14, 18]}, {"name": "process", "type": "concept or principle", "pos": [19, 26]}, {"name": "columnar grain", "type": "machanical property", "pos": [38, 52]}, {"name": "fibre", "type": "material", "pos": [92, 97]}, {"name": "anisotropy", "type": "machanical property", "pos": [119, 129]}, {"name": "grain structure", "type": "concept or principle", "pos": [133, 148]}]}, {"sentence": "This unfavourable microstructure can be addressed through specialised post-deposition homogenisation heat treatments .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [18, 32]}, {"name": "be", "type": "material", "pos": [37, 39]}, {"name": "heat treatments", "type": "manufacturing process", "pos": [101, 116]}]}, {"sentence": "A new modified heat treatment was found to be effective in dissolving Laves phase , whereas a standard treatment precipitated δ phase .", "entities": [{"name": "heat treatment", "type": "manufacturing process", "pos": [15, 29]}, {"name": "be", "type": "material", "pos": [43, 45]}, {"name": "Laves phase", "type": "concept or principle", "pos": [70, 81]}, {"name": "standard", "type": "concept or principle", "pos": [94, 102]}, {"name": "phase", "type": "concept or principle", "pos": [128, 133]}]}, {"sentence": "Tensile test results revealed that Laves and δ phases lead to low ductility when present in a precipitation-hardened matrix .", "entities": [{"name": "Tensile test", "type": "process characterization", "pos": [0, 12]}, {"name": "Laves", "type": "concept or principle", "pos": [35, 40]}, {"name": "lead", "type": "material", "pos": [54, 58]}, {"name": "ductility", "type": "machanical property", "pos": [66, 75]}]}, {"sentence": "The modified heat treatment also reduced the anisotropy in grain structure , leading to almost isotropic elevated temperature tensile properties , which meet minimum specifications for conventional cast but not for wrought material .", "entities": [{"name": "heat treatment", "type": "manufacturing process", "pos": [13, 27]}, {"name": "anisotropy", "type": "machanical property", "pos": [45, 55]}, {"name": "grain structure", "type": "concept or principle", "pos": [59, 74]}, {"name": "isotropic", "type": "machanical property", "pos": [95, 104]}, {"name": "temperature", "type": "process parameter", "pos": [114, 125]}, {"name": "properties", "type": "concept or principle", "pos": [134, 144]}, {"name": "specifications", "type": "process parameter", "pos": [166, 180]}, {"name": "cast", "type": "manufacturing process", "pos": [198, 202]}, {"name": "wrought material", "type": "material", "pos": [215, 231]}]}, {"sentence": "Specialised post-deposition heat treatments , which address the unique microstructure of WAAM IN718 , are crucial to achieving optimal mechanical properties .", "entities": [{"name": "heat treatments", "type": "manufacturing process", "pos": [28, 43]}, {"name": "microstructure", "type": "concept or principle", "pos": [71, 85]}, {"name": "WAAM", "type": "manufacturing process", "pos": [89, 93]}, {"name": "IN718", "type": "material", "pos": [94, 99]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [135, 156]}]}, {"sentence": "Powder bed fusion process is one of the basic technique associated with additive manufacturing .", "entities": [{"name": "Powder bed fusion process", "type": "manufacturing process", "pos": [0, 25]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [72, 94]}]}, {"sentence": "It follows the basic principle of manufacturing the product layer by layer and their fusion .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [34, 47]}, {"name": "layer by layer", "type": "concept or principle", "pos": [60, 74]}, {"name": "fusion", "type": "concept or principle", "pos": [85, 91]}]}, {"sentence": "A heat source focuses its heat over a powder base material and heats the selected cross section area .", "entities": [{"name": "heat source", "type": "concept or principle", "pos": [2, 13]}, {"name": "heat", "type": "concept or principle", "pos": [26, 30]}, {"name": "powder", "type": "material", "pos": [38, 44]}, {"name": "material", "type": "material", "pos": [50, 58]}, {"name": "cross section", "type": "concept or principle", "pos": [82, 95]}, {"name": "area", "type": "process parameter", "pos": [96, 100]}]}, {"sentence": "Sources like laser beam , electron beam and infrared beam are used as heating tool .", "entities": [{"name": "laser beam", "type": "concept or principle", "pos": [13, 23]}, {"name": "electron beam", "type": "concept or principle", "pos": [26, 39]}, {"name": "infrared", "type": "concept or principle", "pos": [44, 52]}, {"name": "beam", "type": "machine or equipment", "pos": [53, 57]}, {"name": "as", "type": "material", "pos": [67, 69]}, {"name": "tool", "type": "machine or equipment", "pos": [78, 82]}]}, {"sentence": "The process of heating allows the powder to take the shape of the intended object .", "entities": [{"name": "process", "type": "concept or principle", "pos": [4, 11]}, {"name": "heating", "type": "manufacturing process", "pos": [15, 22]}, {"name": "powder", "type": "material", "pos": [34, 40]}]}, {"sentence": "Powder bed fusion process is compatible to every engineering material such as metals , ceramics polymers , composites etc .", "entities": [{"name": "Powder bed fusion process", "type": "manufacturing process", "pos": [0, 25]}, {"name": "engineering material", "type": "material", "pos": [49, 69]}, {"name": "as", "type": "material", "pos": [75, 77]}, {"name": "ceramics", "type": "material", "pos": [87, 95]}, {"name": "composites", "type": "material", "pos": [107, 117]}]}, {"sentence": "this technique is widely used in many industrial sectors such as aerospace , energy sector , transportation etc .", "entities": [{"name": "industrial sectors", "type": "concept or principle", "pos": [38, 56]}, {"name": "as", "type": "material", "pos": [62, 64]}, {"name": "aerospace", "type": "application", "pos": [65, 74]}]}, {"sentence": "A comprehensive overview on powder bed fusion process is presented in this review paper .", "entities": [{"name": "powder bed fusion process", "type": "manufacturing process", "pos": [28, 53]}]}, {"sentence": "Other popular techniques like selective laser melting ( SLM ) , selective laser sintering ( SLS ) , and electron beam melting ( EBM ) are also reviewed .", "entities": [{"name": "selective laser melting", "type": "manufacturing process", "pos": [30, 53]}, {"name": "SLM", "type": "manufacturing process", "pos": [56, 59]}, {"name": "selective laser sintering", "type": "manufacturing process", "pos": [64, 89]}, {"name": "SLS", "type": "manufacturing process", "pos": [92, 95]}, {"name": "electron beam melting", "type": "manufacturing process", "pos": [104, 125]}, {"name": "EBM", "type": "manufacturing process", "pos": [128, 131]}]}, {"sentence": "Wire and arc additive manufacturing ( WAAM ) , using cold metal transfer ( CMT ) as heat source , exhibits a great potential for additive manufacturing of magnesium alloys due to low heat input .", "entities": [{"name": "Wire and arc additive manufacturing", "type": "manufacturing process", "pos": [0, 35]}, {"name": "WAAM", "type": "manufacturing process", "pos": [38, 42]}, {"name": "cold metal transfer", "type": "manufacturing process", "pos": [53, 72]}, {"name": "CMT", "type": "manufacturing process", "pos": [75, 78]}, {"name": "as", "type": "material", "pos": [81, 83]}, {"name": "source", "type": "application", "pos": [89, 95]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [129, 151]}, {"name": "magnesium alloys", "type": "material", "pos": [155, 171]}, {"name": "heat", "type": "concept or principle", "pos": [183, 187]}]}, {"sentence": "With the purpose of revealing the relationship between the microstructure and mechanical properties of WAAMed AZ31 material , the present study has been carried out .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [59, 73]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [78, 99]}, {"name": "material", "type": "material", "pos": [115, 123]}]}, {"sentence": "The average primary dendrite arm spacing increases from 17 μm at the bottom to 39 μm at the top of the deposit , and the volume fraction of the interdendritic eutectic decreases from 52.1 % to 39.3 % .", "entities": [{"name": "average", "type": "concept or principle", "pos": [4, 11]}, {"name": "dendrite", "type": "biomedical", "pos": [20, 28]}, {"name": "volume fraction", "type": "process parameter", "pos": [121, 136]}, {"name": "eutectic", "type": "concept or principle", "pos": [159, 167]}]}, {"sentence": "The microstructure of each layer except the top layer consists of vertical columnar dendrites and direction-changed columnar dendrites in sequence .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "layer", "type": "process parameter", "pos": [27, 32]}, {"name": "layer", "type": "process parameter", "pos": [48, 53]}, {"name": "vertical", "type": "concept or principle", "pos": [66, 74]}, {"name": "columnar dendrites", "type": "material", "pos": [75, 93]}, {"name": "columnar dendrites", "type": "material", "pos": [116, 134]}]}, {"sentence": "The top layer appears equiaxed dendrites due to columnar to equiaxed transition ( CET ) .", "entities": [{"name": "layer", "type": "process parameter", "pos": [8, 13]}, {"name": "dendrites", "type": "biomedical", "pos": [31, 40]}, {"name": "transition", "type": "concept or principle", "pos": [69, 79]}]}, {"sentence": "The tensile properties present obvious anisotropic characteristics because of the epitaxial columnar dendritic growth along the building direction .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [4, 22]}, {"name": "anisotropic", "type": "machanical property", "pos": [39, 50]}, {"name": "epitaxial", "type": "machanical property", "pos": [82, 91]}, {"name": "building direction", "type": "process parameter", "pos": [128, 146]}]}, {"sentence": "The tensile properties also show obvious variation from the bottom to the top of the deposit because of the differing microstructures in different regions .", "entities": [{"name": "tensile properties", "type": "machanical property", "pos": [4, 22]}, {"name": "variation", "type": "concept or principle", "pos": [41, 50]}, {"name": "microstructures", "type": "material", "pos": [118, 133]}]}, {"sentence": "The results are further analyzed in detail through the microstructure evolution resulted from the new manufacturing method .", "entities": [{"name": "microstructure evolution", "type": "concept or principle", "pos": [55, 79]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [102, 115]}]}, {"sentence": "Using Electrical Discharge Machining in combination with forming is an option to manufacture a U-shaped First Wall without welding .", "entities": [{"name": "Electrical Discharge Machining", "type": "manufacturing process", "pos": [6, 36]}, {"name": "forming", "type": "manufacturing process", "pos": [57, 64]}, {"name": "manufacture", "type": "concept or principle", "pos": [81, 92]}, {"name": "welding", "type": "manufacturing process", "pos": [123, 130]}]}, {"sentence": "Additive Manufacturing ( e.g .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [0, 22]}]}, {"sentence": "Selective Laser Melting and Metal Powder Application ) provides promising options for nuclear fusion applications .", "entities": [{"name": "Selective Laser Melting", "type": "manufacturing process", "pos": [0, 23]}, {"name": "Metal Powder", "type": "material", "pos": [28, 40]}, {"name": "fusion", "type": "concept or principle", "pos": [94, 100]}]}, {"sentence": "Selective Laser Melting is suitable to manufacture high complex and thin walled segments with internal channel structures .", "entities": [{"name": "Selective Laser Melting", "type": "manufacturing process", "pos": [0, 23]}, {"name": "manufacture", "type": "concept or principle", "pos": [39, 50]}, {"name": "channel", "type": "application", "pos": [103, 110]}]}, {"sentence": "Metal Powder Application provides cost effective options to build First Wall relevant components .", "entities": [{"name": "Metal Powder", "type": "material", "pos": [0, 12]}, {"name": "build", "type": "process parameter", "pos": [60, 65]}, {"name": "components", "type": "machine or equipment", "pos": [86, 96]}]}, {"sentence": "Different manufacturing routes are investigated at the KIT INR for the realization of First Walls ( FW ) for nuclear fusion components , such as the ITER Test Blanket Module ( TBM ) and DEMO Breeding Blankets ( BB ) for the Helium Cooled Pebble Bed ( HCPB ) Breeding concept .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [10, 23]}, {"name": "fusion", "type": "concept or principle", "pos": [117, 123]}, {"name": "components", "type": "machine or equipment", "pos": [124, 134]}, {"name": "as", "type": "material", "pos": [142, 144]}, {"name": "Helium", "type": "material", "pos": [224, 230]}, {"name": "Bed", "type": "machine or equipment", "pos": [245, 248]}]}, {"sentence": "One conventional manufacturing route mainly basing of Electrical Discharge Machining ( EDM ) and forming was demonstrated successfully .", "entities": [{"name": "conventional manufacturing", "type": "manufacturing process", "pos": [4, 30]}, {"name": "Electrical Discharge Machining", "type": "manufacturing process", "pos": [54, 84]}, {"name": "EDM", "type": "manufacturing process", "pos": [87, 90]}, {"name": "forming", "type": "manufacturing process", "pos": [97, 104]}]}, {"sentence": "Therefore , options also to apply Additive Manufacturing ( AM ) as alternative were investigated .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [34, 56]}, {"name": "AM", "type": "manufacturing process", "pos": [59, 61]}, {"name": "as", "type": "material", "pos": [64, 66]}]}, {"sentence": "This paper compares the HCPB reference concept for FW fabrication to innovative concepts basing on AM .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [54, 65]}, {"name": "AM", "type": "manufacturing process", "pos": [99, 101]}]}, {"sentence": "The solid-state friction stir welding ( FSW ) process was used to join Al–Si12 parts fabricated via the selective laser melting ( SLM ) technique .", "entities": [{"name": "solid-state", "type": "concept or principle", "pos": [4, 15]}, {"name": "friction stir welding", "type": "manufacturing process", "pos": [16, 37]}, {"name": "FSW", "type": "manufacturing process", "pos": [40, 43]}, {"name": "process", "type": "concept or principle", "pos": [46, 53]}, {"name": "fabricated", "type": "concept or principle", "pos": [85, 95]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [104, 127]}, {"name": "SLM", "type": "manufacturing process", "pos": [130, 133]}]}, {"sentence": "The effect of the welding process on microstructural evolution and mechanical properties of the samples is investigated in present work .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [18, 25]}, {"name": "process", "type": "concept or principle", "pos": [26, 33]}, {"name": "microstructural evolution", "type": "concept or principle", "pos": [37, 62]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [67, 88]}, {"name": "samples", "type": "concept or principle", "pos": [96, 103]}]}, {"sentence": "Microstructural studies demonstrate that FSW is capable of changing Si phase morphologies ( i.e .", "entities": [{"name": "Microstructural", "type": "concept or principle", "pos": [0, 15]}, {"name": "FSW", "type": "manufacturing process", "pos": [41, 44]}, {"name": "Si", "type": "material", "pos": [68, 70]}, {"name": "phase morphologies", "type": "concept or principle", "pos": [71, 89]}]}, {"sentence": "shape and size ) resulting in various mechanical properties .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [38, 59]}]}, {"sentence": "The stir zone of the welded joint shows significantly lower micro-hardness in comparison to the aB-built SLM samples .", "entities": [{"name": "welded joint", "type": "engineering feature", "pos": [21, 33]}, {"name": "SLM", "type": "manufacturing process", "pos": [105, 108]}, {"name": "samples", "type": "concept or principle", "pos": [109, 116]}]}, {"sentence": "Correspondingly , the friction stir welding process results in significant reduction of tensile strength , while ductility is strongly improved .", "entities": [{"name": "friction stir welding", "type": "manufacturing process", "pos": [22, 43]}, {"name": "reduction", "type": "concept or principle", "pos": [75, 84]}, {"name": "tensile strength", "type": "machanical property", "pos": [88, 104]}, {"name": "ductility", "type": "machanical property", "pos": [113, 122]}]}, {"sentence": "The fully-reversed strain-controlled low-cycle fatigue ( LCF ) tests imply that at low strain amplitudes the FSW and SLM samples show almost the same fatigue life , while at the high strain amplitudes the SLM samples show superior LCF performance .", "entities": [{"name": "fatigue", "type": "machanical property", "pos": [47, 54]}, {"name": "strain", "type": "machanical property", "pos": [87, 93]}, {"name": "FSW", "type": "manufacturing process", "pos": [109, 112]}, {"name": "SLM", "type": "manufacturing process", "pos": [117, 120]}, {"name": "samples", "type": "concept or principle", "pos": [121, 128]}, {"name": "fatigue life", "type": "machanical property", "pos": [150, 162]}, {"name": "strain", "type": "machanical property", "pos": [183, 189]}, {"name": "SLM", "type": "manufacturing process", "pos": [205, 208]}, {"name": "samples", "type": "concept or principle", "pos": [209, 216]}, {"name": "performance", "type": "concept or principle", "pos": [235, 246]}]}, {"sentence": "Fracture analysis of fatigued samples reveals that the near-surface pores lead to the crack initiation in both SLM and FSW cases .", "entities": [{"name": "Fracture", "type": "concept or principle", "pos": [0, 8]}, {"name": "samples", "type": "concept or principle", "pos": [30, 37]}, {"name": "pores", "type": "machanical property", "pos": [68, 73]}, {"name": "lead", "type": "material", "pos": [74, 78]}, {"name": "SLM", "type": "manufacturing process", "pos": [111, 114]}, {"name": "FSW", "type": "manufacturing process", "pos": [119, 122]}]}, {"sentence": "Various methods have been reported to join carbon fiber reinforced polymer ( CFRP ) composites with aluminum alloy ( AA ) , with strengths ranging from 13 MPa to 112 MPa .", "entities": [{"name": "carbon fiber", "type": "material", "pos": [43, 55]}, {"name": "polymer", "type": "material", "pos": [67, 74]}, {"name": "composites", "type": "material", "pos": [84, 94]}, {"name": "aluminum alloy", "type": "material", "pos": [100, 114]}, {"name": "strengths", "type": "machanical property", "pos": [129, 138]}, {"name": "MPa", "type": "concept or principle", "pos": [155, 158]}, {"name": "MPa", "type": "concept or principle", "pos": [166, 169]}]}, {"sentence": "This paper presents a new method for joining carbon fiber reinforced composites and metals using ultrasonic additive manufacturing ( UAM ) .", "entities": [{"name": "joining", "type": "manufacturing process", "pos": [37, 44]}, {"name": "carbon fiber", "type": "material", "pos": [45, 57]}, {"name": "composites", "type": "material", "pos": [69, 79]}, {"name": "metals", "type": "material", "pos": [84, 90]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [97, 130]}, {"name": "UAM", "type": "manufacturing process", "pos": [133, 136]}]}, {"sentence": "Although UAM is a metal 3D printing process , it is applied here to produce continuous CF-AA transition joints that can have uniform thickness across the CF and AA constituents .", "entities": [{"name": "UAM", "type": "manufacturing process", "pos": [9, 12]}, {"name": "metal", "type": "material", "pos": [18, 23]}, {"name": "3D printing", "type": "manufacturing process", "pos": [24, 35]}, {"name": "transition", "type": "concept or principle", "pos": [93, 103]}]}, {"sentence": "Joint strength is achieved by mechanical interlocking of CF loops within the AA matrix ; tensile tests demonstrate that UAM CFRP-AA joints reach strengths of 129.5 MPa .", "entities": [{"name": "Joint", "type": "concept or principle", "pos": [0, 5]}, {"name": "mechanical", "type": "application", "pos": [30, 40]}, {"name": "tensile tests", "type": "process characterization", "pos": [89, 102]}, {"name": "UAM", "type": "manufacturing process", "pos": [120, 123]}, {"name": "strengths", "type": "machanical property", "pos": [145, 154]}, {"name": "MPa", "type": "concept or principle", "pos": [164, 167]}]}, {"sentence": "The dry CF fabric extending from these joints can be laid up and cured into a CFRP part , whereas the AA can be welded to metal structures using traditional metal welding techniques – hence their designation as “ transition joints. ” This approach enables the incorporation of CFRP parts into vehicle structures without requiring modifications to existing metal welding infrastructure .", "entities": [{"name": "be", "type": "material", "pos": [50, 52]}, {"name": "cured", "type": "manufacturing process", "pos": [65, 70]}, {"name": "be", "type": "material", "pos": [109, 111]}, {"name": "metal", "type": "material", "pos": [122, 127]}, {"name": "metal", "type": "material", "pos": [157, 162]}, {"name": "as", "type": "material", "pos": [208, 210]}, {"name": "transition", "type": "concept or principle", "pos": [213, 223]}, {"name": "metal", "type": "material", "pos": [356, 361]}]}, {"sentence": "Two failure modes , CF tow failure and AA failure , have been identified .", "entities": [{"name": "failure modes", "type": "machanical property", "pos": [4, 17]}, {"name": "failure", "type": "concept or principle", "pos": [27, 34]}, {"name": "failure", "type": "concept or principle", "pos": [42, 49]}]}, {"sentence": "It is shown that the joint failure mode can be designed for maximum strength or maximum energy dissipation by adjusting the ratio of embedded CF to AA matrix .", "entities": [{"name": "joint failure", "type": "concept or principle", "pos": [21, 34]}, {"name": "be", "type": "material", "pos": [44, 46]}, {"name": "strength", "type": "machanical property", "pos": [68, 76]}]}, {"sentence": "Welded joints of SLM and CR stainless steels were produced by laser welding .", "entities": [{"name": "Welded joints", "type": "engineering feature", "pos": [0, 13]}, {"name": "SLM", "type": "manufacturing process", "pos": [17, 20]}, {"name": "CR", "type": "material", "pos": [25, 27]}, {"name": "steels", "type": "material", "pos": [38, 44]}, {"name": "laser welding", "type": "manufacturing process", "pos": [62, 75]}]}, {"sentence": "A comparison of keyhole and heat conduction laser welding was performed .", "entities": [{"name": "heat conduction", "type": "concept or principle", "pos": [28, 43]}, {"name": "welding", "type": "manufacturing process", "pos": [50, 57]}]}, {"sentence": "The influence of pre-heat treatment on the strength and weldability was revealed .", "entities": [{"name": "pre-heat treatment", "type": "manufacturing process", "pos": [17, 35]}, {"name": "strength", "type": "machanical property", "pos": [43, 51]}, {"name": "weldability", "type": "machanical property", "pos": [56, 67]}]}, {"sentence": "The hardness of welding seams produced by head conduction is 500 HV , by keyhole – 280 HV .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [4, 12]}, {"name": "welding", "type": "manufacturing process", "pos": [16, 23]}]}, {"sentence": "The welded joints strength is comparable to the SLM metal strength ( 1450 MPa ) .", "entities": [{"name": "welded joints", "type": "engineering feature", "pos": [4, 17]}, {"name": "strength", "type": "machanical property", "pos": [18, 26]}, {"name": "SLM", "type": "manufacturing process", "pos": [48, 51]}, {"name": "metal", "type": "material", "pos": [52, 57]}, {"name": "MPa", "type": "concept or principle", "pos": [74, 77]}]}, {"sentence": "The details produced by additive manufacturing have limitations in sizes , if you produce large details then there are large residual stresses .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [24, 46]}, {"name": "residual stresses", "type": "machanical property", "pos": [125, 142]}]}, {"sentence": "It is also economically advantageous to produce complexly configured details by additive manufacturing and then weld them to rolled or wrought cheaper details .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [80, 102]}, {"name": "weld", "type": "engineering feature", "pos": [112, 116]}, {"name": "wrought", "type": "concept or principle", "pos": [135, 142]}]}, {"sentence": "The aim of this study is to investigate the influence of pre-heat treatment on laser beam weldability of Selective Laser Welding ( SLM ) stainless steel to Cold Rolled ( CR ) stainless steel .", "entities": [{"name": "pre-heat treatment", "type": "manufacturing process", "pos": [57, 75]}, {"name": "laser beam", "type": "concept or principle", "pos": [79, 89]}, {"name": "Selective Laser", "type": "manufacturing process", "pos": [105, 120]}, {"name": "SLM", "type": "manufacturing process", "pos": [131, 134]}, {"name": "stainless steel", "type": "material", "pos": [137, 152]}, {"name": "Cold Rolled", "type": "manufacturing process", "pos": [156, 167]}, {"name": "CR", "type": "material", "pos": [170, 172]}, {"name": "stainless steel", "type": "material", "pos": [175, 190]}]}, {"sentence": "The results of metallographic studies and mechanical tests of produced welds are presented .", "entities": [{"name": "mechanical tests", "type": "process characterization", "pos": [42, 58]}, {"name": "welds", "type": "engineering feature", "pos": [71, 76]}]}, {"sentence": "The results showed that the pre-heat treatment of SLM workpieces affects the welded joint strength .", "entities": [{"name": "pre-heat treatment", "type": "manufacturing process", "pos": [28, 46]}, {"name": "SLM", "type": "manufacturing process", "pos": [50, 53]}, {"name": "welded joint", "type": "engineering feature", "pos": [77, 89]}, {"name": "strength", "type": "machanical property", "pos": [90, 98]}]}, {"sentence": "The laser welding mode , keyhole or conduction , affected the microstructure and microhardness of the welds .", "entities": [{"name": "laser welding", "type": "manufacturing process", "pos": [4, 17]}, {"name": "microstructure", "type": "concept or principle", "pos": [62, 76]}, {"name": "microhardness", "type": "concept or principle", "pos": [81, 94]}, {"name": "welds", "type": "engineering feature", "pos": [102, 107]}]}, {"sentence": "With the recent rise in the demand for additive manufacturing ( AM ) , the need for reliable simulation tools to support experimental efforts grows steadily .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [39, 61]}, {"name": "AM", "type": "manufacturing process", "pos": [64, 66]}, {"name": "simulation", "type": "enabling technology", "pos": [93, 103]}, {"name": "support", "type": "application", "pos": [113, 120]}, {"name": "experimental", "type": "concept or principle", "pos": [121, 133]}]}, {"sentence": "Computational welding mechanics approaches can simulate the AM processes but are generally not validated for AM-specific effects originating from multiple heating and cooling cycles .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [14, 21]}, {"name": "AM processes", "type": "manufacturing process", "pos": [60, 72]}, {"name": "heating", "type": "manufacturing process", "pos": [155, 162]}, {"name": "cooling", "type": "manufacturing process", "pos": [167, 174]}]}, {"sentence": "To increase confidence in the outcomes and to use numerical simulation reliably , the result quality needs to be validated against experiments for in-situ and post-process cases .", "entities": [{"name": "numerical simulation", "type": "enabling technology", "pos": [50, 70]}, {"name": "quality", "type": "concept or principle", "pos": [93, 100]}, {"name": "be", "type": "material", "pos": [110, 112]}, {"name": "in-situ", "type": "concept or principle", "pos": [147, 154]}, {"name": "post-process", "type": "concept or principle", "pos": [159, 171]}]}, {"sentence": "In this article , a validation is demonstrated for a structural thermomechanical simulation model on an arbitrarily curved Directed Energy Deposition ( DED ) part : at first , the validity of the heat input is ensured and subsequently , the model ’ s predictive quality for in-situ deformation and the bulging behaviour is investigated .", "entities": [{"name": "validation", "type": "concept or principle", "pos": [20, 30]}, {"name": "thermomechanical", "type": "concept or principle", "pos": [64, 80]}, {"name": "simulation", "type": "enabling technology", "pos": [81, 91]}, {"name": "model", "type": "concept or principle", "pos": [92, 97]}, {"name": "Directed Energy Deposition", "type": "manufacturing process", "pos": [123, 149]}, {"name": "DED", "type": "manufacturing process", "pos": [152, 155]}, {"name": "heat", "type": "concept or principle", "pos": [196, 200]}, {"name": "model", "type": "concept or principle", "pos": [241, 246]}, {"name": "s", "type": "material", "pos": [249, 250]}, {"name": "quality", "type": "concept or principle", "pos": [262, 269]}, {"name": "in-situ deformation", "type": "concept or principle", "pos": [274, 293]}]}, {"sentence": "For the in-situ deformations , 3D-Digital Image Correlation measurements are conducted that quantify periodic expansion and shrinkage as they occur .", "entities": [{"name": "in-situ deformations", "type": "concept or principle", "pos": [8, 28]}, {"name": "Image", "type": "concept or principle", "pos": [42, 47]}, {"name": "shrinkage", "type": "concept or principle", "pos": [124, 133]}, {"name": "as", "type": "material", "pos": [134, 136]}]}, {"sentence": "The results show a strong dependency of the local stiffness of the surrounding geometry .", "entities": [{"name": "stiffness", "type": "machanical property", "pos": [50, 59]}, {"name": "geometry", "type": "concept or principle", "pos": [79, 87]}]}, {"sentence": "The numerical simulation model is set up in accordance with the experiment and can reproduce the measured 3-dimensional in-situ displacements .", "entities": [{"name": "numerical simulation", "type": "enabling technology", "pos": [4, 24]}, {"name": "model", "type": "concept or principle", "pos": [25, 30]}, {"name": "set", "type": "application", "pos": [34, 37]}, {"name": "experiment", "type": "concept or principle", "pos": [64, 74]}, {"name": "in-situ", "type": "concept or principle", "pos": [120, 127]}]}, {"sentence": "Furthermore , the deformations due to removal from the substrate are quantified via 3D-scanning , exhibiting considerable distortions due to stress relaxation .", "entities": [{"name": "deformations", "type": "concept or principle", "pos": [18, 30]}, {"name": "substrate", "type": "material", "pos": [55, 64]}, {"name": "stress relaxation", "type": "concept or principle", "pos": [141, 158]}]}, {"sentence": "Finally , the prediction of the deformed shape is discussed in regards to bulging simulation : to improve the accuracy of the calculated final shape , a novel extension of the model relying on the modified stiffness of inactive upper layers is proposed and the experimentally observed bulging could be reproduced in the finite element model .", "entities": [{"name": "prediction", "type": "concept or principle", "pos": [14, 24]}, {"name": "deformed shape", "type": "machanical property", "pos": [32, 46]}, {"name": "simulation", "type": "enabling technology", "pos": [82, 92]}, {"name": "accuracy", "type": "process characterization", "pos": [110, 118]}, {"name": "model", "type": "concept or principle", "pos": [176, 181]}, {"name": "stiffness", "type": "machanical property", "pos": [206, 215]}, {"name": "be", "type": "material", "pos": [299, 301]}, {"name": "finite element model", "type": "concept or principle", "pos": [320, 340]}]}, {"sentence": "High-performance components from titanium alloy Ti-6Al-4V are used in many industries , particularly in aerospace , but also in the automotive and medical market .", "entities": [{"name": "components", "type": "machine or equipment", "pos": [17, 27]}, {"name": "titanium alloy", "type": "material", "pos": [33, 47]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [48, 57]}, {"name": "industries", "type": "application", "pos": [75, 85]}, {"name": "aerospace", "type": "application", "pos": [104, 113]}, {"name": "automotive", "type": "application", "pos": [132, 142]}, {"name": "medical", "type": "application", "pos": [147, 154]}]}, {"sentence": "Traditionally , such components are produced by hot forging and subsequent post processing .", "entities": [{"name": "components", "type": "machine or equipment", "pos": [21, 31]}, {"name": "forging", "type": "manufacturing process", "pos": [52, 59]}, {"name": "post processing", "type": "concept or principle", "pos": [75, 90]}]}, {"sentence": "The multi-stage forging process requires several expensive dies and leads to components with a high material oversize .", "entities": [{"name": "forging", "type": "manufacturing process", "pos": [16, 23]}, {"name": "dies", "type": "machine or equipment", "pos": [59, 63]}, {"name": "components", "type": "machine or equipment", "pos": [77, 87]}, {"name": "material", "type": "material", "pos": [100, 108]}]}, {"sentence": "Therefore , costly machining operations with machining removal up to more than 90 % are necessary to produce the final geometry .", "entities": [{"name": "machining", "type": "manufacturing process", "pos": [19, 28]}, {"name": "machining", "type": "manufacturing process", "pos": [45, 54]}, {"name": "geometry", "type": "concept or principle", "pos": [119, 127]}]}, {"sentence": "New technologies , such as additive manufacturing ( AM ) , could support traditional process chains and could enable a more resource-efficient production .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [4, 16]}, {"name": "as", "type": "material", "pos": [24, 26]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [27, 49]}, {"name": "AM", "type": "manufacturing process", "pos": [52, 54]}, {"name": "support", "type": "application", "pos": [65, 72]}, {"name": "process chains", "type": "enabling technology", "pos": [85, 99]}, {"name": "production", "type": "manufacturing process", "pos": [143, 153]}]}, {"sentence": "However , in additive manufacturing production cycles are still long and manufacturing costs are very high , especially for larger parts .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [13, 35]}, {"name": "manufacturing costs", "type": "concept or principle", "pos": [73, 92]}]}, {"sentence": "Thus , the production by AM is often limited to low quantities and smaller components .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [11, 21]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "components", "type": "machine or equipment", "pos": [75, 85]}]}, {"sentence": "To overcome the above-mentioned disadvantages the present study proposes a hybrid manufacturing route , combining the advantages of forging and AM .", "entities": [{"name": "hybrid manufacturing", "type": "concept or principle", "pos": [75, 95]}, {"name": "forging", "type": "manufacturing process", "pos": [132, 139]}, {"name": "AM", "type": "manufacturing process", "pos": [144, 146]}]}, {"sentence": "The new manufacturing route could reduce the number of processing steps and forging dies , and additionally could provide efficient near-net-shape production .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [8, 21]}, {"name": "forging", "type": "manufacturing process", "pos": [76, 83]}, {"name": "dies", "type": "machine or equipment", "pos": [84, 88]}, {"name": "near-net-shape", "type": "manufacturing process", "pos": [132, 146]}]}, {"sentence": "These features , such as ribs or other structural or functional geometries , will be added by additive manufacturing .", "entities": [{"name": "as", "type": "material", "pos": [22, 24]}, {"name": "geometries", "type": "concept or principle", "pos": [64, 74]}, {"name": "be", "type": "material", "pos": [82, 84]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [94, 116]}]}, {"sentence": "The present study investigates the use of powder laser metal deposition ( p-LMD ) and wire-arc additive manufacturing ( WAAM ) for hybrid manufacturing of Ti-6Al-4V aerospace forgings .", "entities": [{"name": "investigates", "type": "concept or principle", "pos": [18, 30]}, {"name": "powder", "type": "material", "pos": [42, 48]}, {"name": "laser metal deposition", "type": "manufacturing process", "pos": [49, 71]}, {"name": "wire-arc additive manufacturing", "type": "manufacturing process", "pos": [86, 117]}, {"name": "WAAM", "type": "manufacturing process", "pos": [120, 124]}, {"name": "hybrid manufacturing", "type": "concept or principle", "pos": [131, 151]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [155, 164]}, {"name": "aerospace", "type": "application", "pos": [165, 174]}]}, {"sentence": "BackgroundAdditive manufacturing ( AM ) is a rapidly expanding new technology involving challenges to occupational health .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [19, 32]}, {"name": "AM", "type": "manufacturing process", "pos": [35, 37]}, {"name": "technology", "type": "concept or principle", "pos": [67, 77]}]}, {"sentence": "Here , metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between.MethodsGravimetric analyzes measured airborne particle concentrations , and filters were analyzed for metal content .", "entities": [{"name": "metal", "type": "material", "pos": [7, 12]}, {"name": "exposure", "type": "concept or principle", "pos": [13, 21]}, {"name": "AM", "type": "manufacturing process", "pos": [28, 30]}, {"name": "metallic", "type": "material", "pos": [57, 65]}, {"name": "component", "type": "machine or equipment", "pos": [66, 75]}, {"name": "particle", "type": "concept or principle", "pos": [214, 222]}, {"name": "filters", "type": "application", "pos": [244, 251]}, {"name": "metal", "type": "material", "pos": [270, 275]}]}, {"sentence": "Particles from recycled powder were characterized .", "entities": [{"name": "Particles", "type": "concept or principle", "pos": [0, 9]}, {"name": "recycled", "type": "concept or principle", "pos": [15, 23]}, {"name": "powder", "type": "material", "pos": [24, 30]}]}, {"sentence": "Airborne particle concentrations ( < 300 nm ) showed transient peaks in the AM facility but were lower than those of the welding facility .", "entities": [{"name": "particle", "type": "concept or principle", "pos": [9, 17]}, {"name": "transient", "type": "concept or principle", "pos": [53, 62]}, {"name": "AM", "type": "manufacturing process", "pos": [76, 78]}, {"name": "welding", "type": "manufacturing process", "pos": [121, 128]}]}, {"sentence": "Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals .", "entities": [{"name": "Particle", "type": "concept or principle", "pos": [0, 8]}, {"name": "recycled", "type": "concept or principle", "pos": [29, 37]}, {"name": "powder", "type": "material", "pos": [38, 44]}, {"name": "metals", "type": "material", "pos": [103, 109]}]}, {"sentence": "Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators .", "entities": [{"name": "metals", "type": "material", "pos": [63, 69]}, {"name": "AM", "type": "manufacturing process", "pos": [82, 84]}]}, {"sentence": "Dermal cobalt and a trend for increasing urine metals during Workweek Year 1 , but not in Year 2 , indicated reduced exposure after preventive actions.ConclusionGravimetric analyses showed low total and inhalable dust exposure in AM operators .", "entities": [{"name": "cobalt", "type": "material", "pos": [7, 13]}, {"name": "trend", "type": "concept or principle", "pos": [20, 25]}, {"name": "metals", "type": "material", "pos": [47, 53]}, {"name": "exposure", "type": "concept or principle", "pos": [117, 125]}, {"name": "exposure", "type": "concept or principle", "pos": [218, 226]}, {"name": "AM", "type": "manufacturing process", "pos": [230, 232]}]}, {"sentence": "However , transient emission of smaller particles constitutes exposure risks .", "entities": [{"name": "transient", "type": "concept or principle", "pos": [10, 19]}, {"name": "emission", "type": "process characterization", "pos": [20, 28]}, {"name": "particles", "type": "concept or principle", "pos": [40, 49]}, {"name": "exposure", "type": "concept or principle", "pos": [62, 70]}]}, {"sentence": "Preventive actions implemented by the company reduced the workers ' metal exposure despite unchanged emissions of particles , indicating a need for careful design and regulation of the AM environments .", "entities": [{"name": "company", "type": "application", "pos": [38, 45]}, {"name": "metal", "type": "material", "pos": [68, 73]}, {"name": "exposure", "type": "concept or principle", "pos": [74, 82]}, {"name": "particles", "type": "concept or principle", "pos": [114, 123]}, {"name": "design", "type": "engineering feature", "pos": [156, 162]}, {"name": "AM", "type": "manufacturing process", "pos": [185, 187]}]}, {"sentence": "HDPE polymer HX is fabricated using layer-by-layer line welding of plastic sheets .", "entities": [{"name": "HDPE", "type": "material", "pos": [0, 4]}, {"name": "fabricated", "type": "concept or principle", "pos": [19, 29]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [36, 50]}, {"name": "welding", "type": "manufacturing process", "pos": [56, 63]}, {"name": "plastic", "type": "material", "pos": [67, 74]}]}, {"sentence": "The polymer HX shows superior air-side performance over plane plate fin surface .", "entities": [{"name": "polymer", "type": "material", "pos": [4, 11]}, {"name": "performance", "type": "concept or principle", "pos": [39, 50]}, {"name": "surface", "type": "concept or principle", "pos": [72, 79]}]}, {"sentence": "In addition to their low cost and weight , polymer heat exchangers offer good anticorrosion and antifouling properties .", "entities": [{"name": "weight", "type": "process parameter", "pos": [34, 40]}, {"name": "polymer", "type": "material", "pos": [43, 50]}, {"name": "heat exchangers", "type": "machine or equipment", "pos": [51, 66]}, {"name": "properties", "type": "concept or principle", "pos": [108, 118]}]}, {"sentence": "In this work , a cost effective air-water polymer heat exchanger made of thin polymer sheets using layer-by-layer line welding with a laser through an additive manufacturing process was fabricated and experimentally tested .", "entities": [{"name": "polymer", "type": "material", "pos": [42, 49]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [50, 64]}, {"name": "polymer", "type": "material", "pos": [78, 85]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [99, 113]}, {"name": "welding", "type": "manufacturing process", "pos": [119, 126]}, {"name": "laser", "type": "enabling technology", "pos": [134, 139]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [151, 181]}, {"name": "fabricated", "type": "concept or principle", "pos": [186, 196]}]}, {"sentence": "The flow channels were made of 150 μm-thick high density polyethylene sheets , which were 15.5 cm wide and 29 cm long .", "entities": [{"name": "high density polyethylene", "type": "material", "pos": [44, 69]}]}, {"sentence": "The experimental results show that the overall heat transfer coefficient of 35–120 W/m2 K is achievable for an air-water fluid combination for air-side flow rate of 3–24 L/s and water-side flow rate of 12.5 mL/s .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "heat transfer", "type": "concept or principle", "pos": [47, 60]}, {"name": "K", "type": "material", "pos": [88, 89]}, {"name": "fluid", "type": "material", "pos": [121, 126]}, {"name": "flow rate", "type": "process parameter", "pos": [152, 161]}, {"name": "flow rate", "type": "process parameter", "pos": [189, 198]}]}, {"sentence": "In addition , by fabricating a very thin wall heat exchanger ( 150 μm ) , the wall thermal resistance , which usually becomes the limiting factor on polymer heat exchangers , was calculated to account for only 3 % of the total thermal resistance .", "entities": [{"name": "fabricating", "type": "manufacturing process", "pos": [17, 28]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [46, 60]}, {"name": "resistance", "type": "machanical property", "pos": [91, 101]}, {"name": "polymer", "type": "material", "pos": [149, 156]}, {"name": "heat exchangers", "type": "machine or equipment", "pos": [157, 172]}, {"name": "resistance", "type": "machanical property", "pos": [235, 245]}]}, {"sentence": "A comparison of the air-side heat transfer coefficient of the present polymer heat exchanger with some of the commercially available plain plate fin heat exchanger surfaces suggests that its performance in general is superior to that of common plain plate fin surfaces .", "entities": [{"name": "heat transfer", "type": "concept or principle", "pos": [29, 42]}, {"name": "polymer", "type": "material", "pos": [70, 77]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [78, 92]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [149, 163]}, {"name": "performance", "type": "concept or principle", "pos": [191, 202]}, {"name": "surfaces", "type": "concept or principle", "pos": [260, 268]}]}, {"sentence": "Additive manufacturing ( AM ) offers the possibility of locally reinforcing sheet metal or sheet metal products by adding patches that are metallurgically bonded to the substrate .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "sheet metal", "type": "material", "pos": [76, 87]}, {"name": "sheet metal", "type": "material", "pos": [91, 102]}, {"name": "substrate", "type": "material", "pos": [169, 178]}]}, {"sentence": "Due to the high design freedom of AM , patches can be easily adapted to loads in geometry and thickness .", "entities": [{"name": "design freedom", "type": "concept or principle", "pos": [16, 30]}, {"name": "AM", "type": "manufacturing process", "pos": [34, 36]}, {"name": "be", "type": "material", "pos": [51, 53]}, {"name": "geometry", "type": "concept or principle", "pos": [81, 89]}]}, {"sentence": "However , the heat input and the high cooling rates during AM processes have a strong influence on the microstructure in the patch as well as in the substrate , which will affect forming properties .", "entities": [{"name": "heat", "type": "concept or principle", "pos": [14, 18]}, {"name": "cooling rates", "type": "process parameter", "pos": [38, 51]}, {"name": "AM processes", "type": "manufacturing process", "pos": [59, 71]}, {"name": "microstructure", "type": "concept or principle", "pos": [103, 117]}, {"name": "as", "type": "material", "pos": [131, 133]}, {"name": "as", "type": "material", "pos": [139, 141]}, {"name": "substrate", "type": "material", "pos": [149, 158]}, {"name": "forming", "type": "manufacturing process", "pos": [179, 186]}]}, {"sentence": "The aim of this work is to investigate the influence of patches produced by laser material deposition ( LMD ) on formability of micro-alloyed sheet metals .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [76, 81]}, {"name": "deposition", "type": "concept or principle", "pos": [91, 101]}, {"name": "LMD", "type": "manufacturing process", "pos": [104, 107]}, {"name": "formability", "type": "machanical property", "pos": [113, 124]}, {"name": "sheet metals", "type": "material", "pos": [142, 154]}]}, {"sentence": "After determining a suitable process window for metallurgically bonded patches without cracks and pores , investigations were carried out on the microstructure and mechanical properties of reinforced samples .", "entities": [{"name": "process", "type": "concept or principle", "pos": [29, 36]}, {"name": "pores", "type": "machanical property", "pos": [98, 103]}, {"name": "microstructure", "type": "concept or principle", "pos": [145, 159]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [164, 185]}, {"name": "reinforced", "type": "concept or principle", "pos": [189, 199]}]}, {"sentence": "This work includes metallographic examinations using optical microscopy , hardness measurements and tensile tests .", "entities": [{"name": "optical microscopy", "type": "process characterization", "pos": [53, 71]}, {"name": "hardness", "type": "machanical property", "pos": [74, 82]}, {"name": "tensile tests", "type": "process characterization", "pos": [100, 113]}]}, {"sentence": "The formability of sheets with local reinforcement was investigated by stretching and Nakajima tests .", "entities": [{"name": "formability", "type": "machanical property", "pos": [4, 15]}, {"name": "sheets", "type": "material", "pos": [19, 25]}, {"name": "reinforcement", "type": "process parameter", "pos": [37, 50]}]}, {"sentence": "The heat input creates a heat affected zone ( HAZ ) directly next to the patches with a reduced strength , caused by recrystallization that may lead to failure in the forming process and thus limits the forming capacity of locally reinforced sheet metals .", "entities": [{"name": "heat", "type": "concept or principle", "pos": [4, 8]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [25, 43]}, {"name": "HAZ", "type": "concept or principle", "pos": [46, 49]}, {"name": "strength", "type": "machanical property", "pos": [96, 104]}, {"name": "recrystallization", "type": "concept or principle", "pos": [117, 134]}, {"name": "lead", "type": "material", "pos": [144, 148]}, {"name": "failure", "type": "concept or principle", "pos": [152, 159]}, {"name": "forming process", "type": "manufacturing process", "pos": [167, 182]}, {"name": "limits", "type": "concept or principle", "pos": [192, 198]}, {"name": "forming", "type": "manufacturing process", "pos": [203, 210]}, {"name": "capacity", "type": "concept or principle", "pos": [211, 219]}, {"name": "reinforced", "type": "concept or principle", "pos": [231, 241]}, {"name": "metals", "type": "material", "pos": [248, 254]}]}, {"sentence": "A subsequent laser heat treatment can homogenize the properties in the HAZ .", "entities": [{"name": "laser heat", "type": "process parameter", "pos": [13, 23]}, {"name": "properties", "type": "concept or principle", "pos": [53, 63]}, {"name": "HAZ", "type": "concept or principle", "pos": [71, 74]}]}, {"sentence": "Ti-6Al-4V samples produced by electron beam melting ( EBM ) are welded using solid-state friction welding ( FW ) process .", "entities": [{"name": "Ti-6Al-4V", "type": "material", "pos": [0, 9]}, {"name": "samples", "type": "concept or principle", "pos": [10, 17]}, {"name": "electron beam melting", "type": "manufacturing process", "pos": [30, 51]}, {"name": "EBM", "type": "manufacturing process", "pos": [54, 57]}, {"name": "welded", "type": "manufacturing process", "pos": [64, 70]}, {"name": "solid-state", "type": "concept or principle", "pos": [77, 88]}, {"name": "friction welding", "type": "manufacturing process", "pos": [89, 105]}, {"name": "process", "type": "concept or principle", "pos": [113, 120]}]}, {"sentence": "The microstructure of the weld sample shows the presence of fine equiaxed α grains with irregular β phase .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "weld", "type": "engineering feature", "pos": [26, 30]}, {"name": "sample", "type": "concept or principle", "pos": [31, 37]}, {"name": "grains", "type": "concept or principle", "pos": [76, 82]}, {"name": "phase", "type": "concept or principle", "pos": [100, 105]}]}, {"sentence": "Microstructural investigations reveal a pronounced change in the shape and size of the α phase in the weld metal aB-compared to the base material along with the disappearance of columnar prior β grains .", "entities": [{"name": "Microstructural", "type": "concept or principle", "pos": [0, 15]}, {"name": "phase", "type": "concept or principle", "pos": [89, 94]}, {"name": "weld metal", "type": "material", "pos": [102, 112]}, {"name": "material", "type": "material", "pos": [137, 145]}, {"name": "grains", "type": "concept or principle", "pos": [195, 201]}]}, {"sentence": "Such variations in the microstructure significantly change the mechanical properties of the FW material .", "entities": [{"name": "variations", "type": "concept or principle", "pos": [5, 15]}, {"name": "microstructure", "type": "concept or principle", "pos": [23, 37]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [63, 84]}, {"name": "material", "type": "material", "pos": [95, 103]}]}, {"sentence": "The hardness in the weld zone increases and a decrease of hardness is observed along the heat affected zone ( HAZ ) with respect to the base metal as expected .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [4, 12]}, {"name": "weld zone", "type": "concept or principle", "pos": [20, 29]}, {"name": "hardness", "type": "machanical property", "pos": [58, 66]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [89, 107]}, {"name": "HAZ", "type": "concept or principle", "pos": [110, 113]}, {"name": "base metal", "type": "material", "pos": [136, 146]}, {"name": "as", "type": "material", "pos": [147, 149]}]}, {"sentence": "Similarly , the room temperature tensile tests show an improvement of ductility in the welded EBM samples .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [21, 32]}, {"name": "ductility", "type": "machanical property", "pos": [70, 79]}, {"name": "welded EBM", "type": "manufacturing process", "pos": [87, 97]}, {"name": "samples", "type": "concept or principle", "pos": [98, 105]}]}, {"sentence": "However , the yield and the ultimate strength show a marginal drop in the welded samples compared to the aB-prepared EBM specimens .", "entities": [{"name": "ultimate strength", "type": "machanical property", "pos": [28, 45]}, {"name": "welded", "type": "manufacturing process", "pos": [74, 80]}, {"name": "samples", "type": "concept or principle", "pos": [81, 88]}, {"name": "EBM", "type": "manufacturing process", "pos": [117, 120]}]}, {"sentence": "The present work demonstrates that solid-state FW process not only permits successful joining of additively manufactured materials , but also helps in improving their ductility .", "entities": [{"name": "solid-state", "type": "concept or principle", "pos": [35, 46]}, {"name": "process", "type": "concept or principle", "pos": [50, 57]}, {"name": "joining", "type": "manufacturing process", "pos": [86, 93]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [97, 120]}, {"name": "ductility", "type": "machanical property", "pos": [167, 176]}]}, {"sentence": "Laser zone with refined grains and more uniform element distribution forms by laser-arc hybrid additive manufacturing .", "entities": [{"name": "Laser", "type": "enabling technology", "pos": [0, 5]}, {"name": "grains", "type": "concept or principle", "pos": [24, 30]}, {"name": "element", "type": "material", "pos": [48, 55]}, {"name": "distribution", "type": "concept or principle", "pos": [56, 68]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [95, 117]}]}, {"sentence": "Outstanding micro-hardness and tensile strength can be obtained by laser-arc hybrid additive manufacturing .", "entities": [{"name": "tensile strength", "type": "machanical property", "pos": [31, 47]}, {"name": "be", "type": "material", "pos": [52, 54]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [84, 106]}]}, {"sentence": "Finer grains and significant decreasing of element segregation in laser zone can help to strengthen mechanical properties .", "entities": [{"name": "grains", "type": "concept or principle", "pos": [6, 12]}, {"name": "element", "type": "material", "pos": [43, 50]}, {"name": "laser", "type": "enabling technology", "pos": [66, 71]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [100, 121]}]}, {"sentence": "4043 AlSi alloy samples are fabricated by laser-arc hybrid additive manufacturing and wire arc additive manufacturing .", "entities": [{"name": "alloy", "type": "material", "pos": [10, 15]}, {"name": "fabricated", "type": "concept or principle", "pos": [28, 38]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [59, 81]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [86, 117]}]}, {"sentence": "To investigate the influence of laser energy on the fabricated sample , the microstructure evaluation and mechanical properties are studied .", "entities": [{"name": "laser energy", "type": "concept or principle", "pos": [32, 44]}, {"name": "fabricated", "type": "concept or principle", "pos": [52, 62]}, {"name": "microstructure", "type": "concept or principle", "pos": [76, 90]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [106, 127]}]}, {"sentence": "After the input of laser energy , there are laser zones with finer grains and reduced Si segregation .", "entities": [{"name": "laser energy", "type": "concept or principle", "pos": [19, 31]}, {"name": "laser", "type": "enabling technology", "pos": [44, 49]}, {"name": "grains", "type": "concept or principle", "pos": [67, 73]}, {"name": "Si", "type": "material", "pos": [86, 88]}, {"name": "segregation", "type": "concept or principle", "pos": [89, 100]}]}, {"sentence": "As a result , the Si phases at grain boundaries in laser zone are smaller than that in other zones .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "Si", "type": "material", "pos": [18, 20]}, {"name": "grain boundaries", "type": "concept or principle", "pos": [31, 47]}, {"name": "laser", "type": "enabling technology", "pos": [51, 56]}]}, {"sentence": "And it is found that semi-coherent interface between Al and Si phases with crystal orientation relations , [ 110 ] Al∥ [ 110 ] Si and ( 111 ) Al∥ ( 220 ) Si , indicating the Si phase tends to grow along ( 111 ) Al plane .", "entities": [{"name": "interface", "type": "concept or principle", "pos": [35, 44]}, {"name": "Al", "type": "material", "pos": [53, 55]}, {"name": "Si", "type": "material", "pos": [60, 62]}, {"name": "crystal orientation", "type": "machanical property", "pos": [75, 94]}, {"name": "Si", "type": "material", "pos": [127, 129]}, {"name": "Si", "type": "material", "pos": [154, 156]}, {"name": "Si", "type": "material", "pos": [174, 176]}, {"name": "phase", "type": "concept or principle", "pos": [177, 182]}, {"name": "Al", "type": "material", "pos": [211, 213]}]}, {"sentence": "The results of mechanical properties show that the micro-hardness in laser zone is 54.3 HV0.05 , with the increment of 19.08 % compared to that in heat-affected zone .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [15, 36]}, {"name": "laser", "type": "enabling technology", "pos": [69, 74]}]}, {"sentence": "And the tensile strength , yield strength and elongation after the input of laser energy are 163.39 ± 1.68 MPa , 75.60 ± 4.91 MPa and 17.38 ± 5.44 % , which are 7.56 % , 8.45 % and 3.45 % higher than that without laser .", "entities": [{"name": "tensile strength", "type": "machanical property", "pos": [8, 24]}, {"name": "yield strength", "type": "machanical property", "pos": [27, 41]}, {"name": "elongation", "type": "machanical property", "pos": [46, 56]}, {"name": "laser energy", "type": "concept or principle", "pos": [76, 88]}, {"name": "MPa", "type": "concept or principle", "pos": [107, 110]}, {"name": "MPa", "type": "concept or principle", "pos": [126, 129]}, {"name": "laser", "type": "enabling technology", "pos": [213, 218]}]}, {"sentence": "The improved mechanical properties are due to the finer gains , reduced Si segregation and the crack deflection in LAHAM samples .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [13, 34]}, {"name": "Si", "type": "material", "pos": [72, 74]}, {"name": "segregation", "type": "concept or principle", "pos": [75, 86]}, {"name": "samples", "type": "concept or principle", "pos": [121, 128]}]}, {"sentence": "The structure and properties of welded and additively manufactured alloys are affected by the microstructural evolution in the fusion zone ( FZ ) and heat affected zone ( HAZ ) .", "entities": [{"name": "structure", "type": "concept or principle", "pos": [4, 13]}, {"name": "properties", "type": "concept or principle", "pos": [18, 28]}, {"name": "welded", "type": "manufacturing process", "pos": [32, 38]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [43, 66]}, {"name": "microstructural evolution", "type": "concept or principle", "pos": [94, 119]}, {"name": "fusion zone", "type": "concept or principle", "pos": [127, 138]}, {"name": "FZ", "type": "concept or principle", "pos": [141, 143]}, {"name": "heat affected zone", "type": "concept or principle", "pos": [150, 168]}, {"name": "HAZ", "type": "concept or principle", "pos": [171, 174]}]}, {"sentence": "The motion of the liquid pool and the interdependence of grain growth in both the solid and liquid regions are important in the evolution of the final grain structure .", "entities": [{"name": "grain growth", "type": "concept or principle", "pos": [57, 69]}, {"name": "evolution", "type": "concept or principle", "pos": [128, 137]}, {"name": "grain structure", "type": "concept or principle", "pos": [151, 166]}]}, {"sentence": "Previous investigations of microstructure evolution have been limited to either the HAZ or the FZ and in many cases in idealized isothermal systems .", "entities": [{"name": "microstructure evolution", "type": "concept or principle", "pos": [27, 51]}, {"name": "HAZ", "type": "concept or principle", "pos": [84, 87]}, {"name": "FZ", "type": "concept or principle", "pos": [95, 97]}, {"name": "isothermal", "type": "concept or principle", "pos": [129, 139]}]}, {"sentence": "Here we report the evolution of grain structure and topology in three dimensions in both the FZ and the HAZ considering the motion of the liquid pool .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [19, 28]}, {"name": "grain structure", "type": "concept or principle", "pos": [32, 47]}, {"name": "topology", "type": "concept or principle", "pos": [52, 60]}, {"name": "dimensions", "type": "engineering feature", "pos": [70, 80]}, {"name": "FZ", "type": "concept or principle", "pos": [93, 95]}, {"name": "HAZ", "type": "concept or principle", "pos": [104, 107]}]}, {"sentence": "Temporal and spatial distributions of temperature obtained from a well-tested heat transfer and liquid metal flow calculation are combined with Monte Carlo and topology calculations in a computationally efficient manner .", "entities": [{"name": "spatial distributions", "type": "process characterization", "pos": [13, 34]}, {"name": "temperature", "type": "process parameter", "pos": [38, 49]}, {"name": "heat transfer", "type": "concept or principle", "pos": [78, 91]}, {"name": "liquid metal", "type": "material", "pos": [96, 108]}, {"name": "topology", "type": "concept or principle", "pos": [160, 168]}]}, {"sentence": "The computed results are tested against independent experimental data for arc welding of an aluminum alloy .", "entities": [{"name": "experimental data", "type": "concept or principle", "pos": [52, 69]}, {"name": "arc welding", "type": "manufacturing process", "pos": [74, 85]}, {"name": "aluminum alloy", "type": "material", "pos": [92, 106]}]}, {"sentence": "The average size of the columnar grains in the FZ and the equiaxed grains in the HAZ are shown to decrease with increasing scanning speed .", "entities": [{"name": "average", "type": "concept or principle", "pos": [4, 11]}, {"name": "columnar grains", "type": "machanical property", "pos": [24, 39]}, {"name": "FZ", "type": "concept or principle", "pos": [47, 49]}, {"name": "equiaxed grains", "type": "concept or principle", "pos": [58, 73]}, {"name": "HAZ", "type": "concept or principle", "pos": [81, 84]}, {"name": "scanning speed", "type": "process parameter", "pos": [123, 137]}]}, {"sentence": "For a given weld , the size and aspect ratio of the columnar grains in the longitudinal and horizontal planes are shown to decrease with distance from the weld interface .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [12, 16]}, {"name": "aspect ratio", "type": "engineering feature", "pos": [32, 44]}, {"name": "columnar grains", "type": "machanical property", "pos": [52, 67]}, {"name": "weld", "type": "engineering feature", "pos": [155, 159]}, {"name": "interface", "type": "concept or principle", "pos": [160, 169]}]}, {"sentence": "It is further shown that the grain size distributions and topological class distributions in the HAZ are largely unaffected by the temporal and spatial variations of the temperature created by different welding parameters .", "entities": [{"name": "grain size", "type": "machanical property", "pos": [29, 39]}, {"name": "distributions", "type": "concept or principle", "pos": [40, 53]}, {"name": "distributions", "type": "concept or principle", "pos": [76, 89]}, {"name": "HAZ", "type": "concept or principle", "pos": [97, 100]}, {"name": "spatial variations", "type": "engineering feature", "pos": [144, 162]}, {"name": "temperature", "type": "process parameter", "pos": [170, 181]}, {"name": "welding", "type": "manufacturing process", "pos": [203, 210]}, {"name": "parameters", "type": "concept or principle", "pos": [211, 221]}]}, {"sentence": "In laser welding and other processes , such as cladding and additive manufacturing , the weld bead geometry ( depth of penetration and weld width ) can be controlled with different parameters .", "entities": [{"name": "laser welding", "type": "manufacturing process", "pos": [3, 16]}, {"name": "processes", "type": "concept or principle", "pos": [27, 36]}, {"name": "as", "type": "material", "pos": [44, 46]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [60, 82]}, {"name": "weld bead geometry", "type": "process parameter", "pos": [89, 107]}, {"name": "penetration", "type": "concept or principle", "pos": [119, 130]}, {"name": "weld", "type": "engineering feature", "pos": [135, 139]}, {"name": "be", "type": "material", "pos": [152, 154]}, {"name": "parameters", "type": "concept or principle", "pos": [181, 191]}]}, {"sentence": "A common practice is to develop process parameters for a particular application based on an engineering approach using the system parameters i.e .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [32, 50]}, {"name": "engineering", "type": "application", "pos": [92, 103]}, {"name": "parameters", "type": "concept or principle", "pos": [130, 140]}]}, {"sentence": "laser power and travel speed .", "entities": [{"name": "laser power", "type": "process parameter", "pos": [0, 11]}]}, {"sentence": "This study is focused on understanding of the phenomena controlling the weld profile in conduction welding for a wide range of beam diameters from 0.07 mm to 5.50 mm .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [72, 76]}, {"name": "profile", "type": "engineering feature", "pos": [77, 84]}, {"name": "welding", "type": "manufacturing process", "pos": [99, 106]}, {"name": "range", "type": "process parameter", "pos": [118, 123]}, {"name": "beam diameters", "type": "process parameter", "pos": [127, 141]}, {"name": "mm", "type": "manufacturing process", "pos": [152, 154]}, {"name": "mm", "type": "manufacturing process", "pos": [163, 165]}]}, {"sentence": "It has been shown that the weld bead geometry can be controlled by the spatial and temporal distribution of laser energy on the surface of workpiece , such as power density , interaction time and energy density .", "entities": [{"name": "weld bead geometry", "type": "process parameter", "pos": [27, 45]}, {"name": "be", "type": "material", "pos": [50, 52]}, {"name": "distribution", "type": "concept or principle", "pos": [92, 104]}, {"name": "laser energy", "type": "concept or principle", "pos": [108, 120]}, {"name": "surface", "type": "concept or principle", "pos": [128, 135]}, {"name": "workpiece", "type": "concept or principle", "pos": [139, 148]}, {"name": "as", "type": "material", "pos": [156, 158]}, {"name": "density", "type": "machanical property", "pos": [165, 172]}, {"name": "energy density", "type": "process parameter", "pos": [196, 210]}]}, {"sentence": "This means that similar depths of penetration can be achieved with various optical set-ups .", "entities": [{"name": "penetration", "type": "concept or principle", "pos": [34, 45]}, {"name": "be", "type": "material", "pos": [50, 52]}, {"name": "optical", "type": "process characterization", "pos": [75, 82]}]}, {"sentence": "It has been also found that it is more difficult to achieve pure conduction welds with small beam diameters , which are typically used in powder bed additive manufacturing , due to high conduction losses and low vaporisation threshold .", "entities": [{"name": "welds", "type": "engineering feature", "pos": [76, 81]}, {"name": "beam diameters", "type": "process parameter", "pos": [93, 107]}, {"name": "powder bed additive manufacturing", "type": "manufacturing process", "pos": [138, 171]}]}, {"sentence": "Ultrasonic Additive Manufacturing ( UAM ) is a hybrid manufacturing process that involves the layer-by-layer ultrasonic welding of metal foils in the solid state with periodic CNC machining to achieve the desired 3D shape .", "entities": [{"name": "Ultrasonic Additive Manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "hybrid manufacturing", "type": "concept or principle", "pos": [47, 67]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [94, 108]}, {"name": "welding", "type": "manufacturing process", "pos": [120, 127]}, {"name": "metal", "type": "material", "pos": [131, 136]}, {"name": "solid state", "type": "concept or principle", "pos": [150, 161]}, {"name": "CNC machining", "type": "manufacturing process", "pos": [176, 189]}, {"name": "3D", "type": "concept or principle", "pos": [213, 215]}]}, {"sentence": "UAM enables the fabrication of metal smart structures , because it allows the embedding of various components into the metal matrix , due to the high degree of plastic metal flow and the relatively low temperatures encountered during the layer bonding process .", "entities": [{"name": "UAM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "fabrication", "type": "manufacturing process", "pos": [16, 27]}, {"name": "metal", "type": "material", "pos": [31, 36]}, {"name": "components", "type": "machine or equipment", "pos": [99, 109]}, {"name": "metal matrix", "type": "concept or principle", "pos": [119, 131]}, {"name": "plastic metal", "type": "material", "pos": [160, 173]}, {"name": "temperatures", "type": "process parameter", "pos": [202, 214]}, {"name": "layer", "type": "process parameter", "pos": [238, 243]}, {"name": "bonding", "type": "concept or principle", "pos": [244, 251]}]}, {"sentence": "To further the embedding capabilities of UAM , in this paper we examine the ultrasonic welding of aluminium foils with features machined prior to bonding .", "entities": [{"name": "UAM", "type": "manufacturing process", "pos": [41, 44]}, {"name": "ultrasonic welding", "type": "manufacturing process", "pos": [76, 94]}, {"name": "aluminium", "type": "material", "pos": [98, 107]}, {"name": "machined", "type": "manufacturing process", "pos": [128, 136]}, {"name": "bonding", "type": "concept or principle", "pos": [146, 153]}]}, {"sentence": "These pre-machined features can be stacked layer-by-layer to create pockets for the accommodation of fragile components , such as electronic circuitry , prior to encapsulation .", "entities": [{"name": "be", "type": "material", "pos": [32, 34]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [43, 57]}, {"name": "fragile", "type": "concept or principle", "pos": [101, 108]}, {"name": "components", "type": "machine or equipment", "pos": [109, 119]}, {"name": "as", "type": "material", "pos": [127, 129]}, {"name": "encapsulation", "type": "concept or principle", "pos": [162, 175]}]}, {"sentence": "This manufacturing approach transforms UAM into a “ form-then-bond ” process .", "entities": [{"name": "manufacturing approach", "type": "manufacturing process", "pos": [5, 27]}, {"name": "UAM", "type": "manufacturing process", "pos": [39, 42]}, {"name": "process", "type": "concept or principle", "pos": [69, 76]}]}, {"sentence": "By studying the deformation of aluminium foils during UAM , a statistical model was developed that allowed the prediction of the final location , dimensions and tolerances of pre-machined features for a set of UAM process parameters .", "entities": [{"name": "deformation", "type": "concept or principle", "pos": [16, 27]}, {"name": "aluminium", "type": "material", "pos": [31, 40]}, {"name": "UAM", "type": "manufacturing process", "pos": [54, 57]}, {"name": "model", "type": "concept or principle", "pos": [74, 79]}, {"name": "prediction", "type": "concept or principle", "pos": [111, 121]}, {"name": "dimensions", "type": "engineering feature", "pos": [146, 156]}, {"name": "tolerances", "type": "process parameter", "pos": [161, 171]}, {"name": "set", "type": "application", "pos": [203, 206]}, {"name": "UAM", "type": "manufacturing process", "pos": [210, 213]}, {"name": "process parameters", "type": "concept or principle", "pos": [214, 232]}]}, {"sentence": "The predictive power of the model was demonstrated by designing a cavity to accommodate an electronic component ( i.e .", "entities": [{"name": "power", "type": "process parameter", "pos": [15, 20]}, {"name": "model", "type": "concept or principle", "pos": [28, 33]}, {"name": "component", "type": "machine or equipment", "pos": [102, 111]}]}, {"sentence": "a surface mount resistor ) prior to its encapsulation within the metal matrix .", "entities": [{"name": "surface mount", "type": "enabling technology", "pos": [2, 15]}, {"name": "resistor", "type": "machine or equipment", "pos": [16, 24]}, {"name": "encapsulation", "type": "concept or principle", "pos": [40, 53]}, {"name": "metal matrix", "type": "concept or principle", "pos": [65, 77]}]}, {"sentence": "We also further emphasised the importance of the tensioning force in the UAM process .", "entities": [{"name": "force", "type": "concept or principle", "pos": [60, 65]}, {"name": "UAM", "type": "manufacturing process", "pos": [73, 76]}, {"name": "process", "type": "concept or principle", "pos": [77, 84]}]}, {"sentence": "The current work paves the way for the creation of a novel system for the fabrication of three-dimensional electronic circuits embedded into an additively manufactured complex metal composite .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [74, 85]}, {"name": "three-dimensional", "type": "concept or principle", "pos": [89, 106]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [144, 167]}, {"name": "metal composite", "type": "material", "pos": [176, 191]}]}, {"sentence": "Additive manufacturing of metals is an innovative near-net-shaped manufacturing technology used for producing final solid objects by depositing successive layers of material melted in powder or wire form using a focused heat source directed from an electron beam , laser beam , or plasma or electric arc .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "metals", "type": "material", "pos": [26, 32]}, {"name": "manufacturing technology", "type": "manufacturing process", "pos": [66, 90]}, {"name": "material", "type": "material", "pos": [165, 173]}, {"name": "powder", "type": "material", "pos": [184, 190]}, {"name": "heat source", "type": "concept or principle", "pos": [220, 231]}, {"name": "electron beam", "type": "concept or principle", "pos": [249, 262]}, {"name": "laser beam", "type": "concept or principle", "pos": [265, 275]}, {"name": "plasma", "type": "concept or principle", "pos": [281, 287]}, {"name": "electric arc", "type": "process parameter", "pos": [291, 303]}]}, {"sentence": "Wire arc additive manufacturing ( WAAM ) techniques , although have lesser precision as compared to laser or electron beam techniques but have the advantage of lower cost and lesser time required .", "entities": [{"name": "Wire arc additive manufacturing", "type": "manufacturing process", "pos": [0, 31]}, {"name": "WAAM", "type": "manufacturing process", "pos": [34, 38]}, {"name": "precision", "type": "process characterization", "pos": [75, 84]}, {"name": "as", "type": "material", "pos": [85, 87]}, {"name": "laser", "type": "enabling technology", "pos": [100, 105]}, {"name": "electron beam", "type": "concept or principle", "pos": [109, 122]}]}, {"sentence": "In this research , gas metal arc welding ( GMAW ) process has been used using AWS ER70B-6 electrode wire to create a multi-layer single pass structure after controlling the parameters including current , voltage and travel speed so that uniform height is attained throughout the weld bead .", "entities": [{"name": "research", "type": "concept or principle", "pos": [8, 16]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [19, 40]}, {"name": "GMAW", "type": "manufacturing process", "pos": [43, 47]}, {"name": "process", "type": "concept or principle", "pos": [50, 57]}, {"name": "ER70B-6", "type": "material", "pos": [82, 89]}, {"name": "electrode", "type": "machine or equipment", "pos": [90, 99]}, {"name": "structure", "type": "concept or principle", "pos": [141, 150]}, {"name": "parameters", "type": "concept or principle", "pos": [173, 183]}, {"name": "weld bead", "type": "concept or principle", "pos": [279, 288]}]}, {"sentence": "The resulting material may have different directional mechanical properties because of factors including different penetration properties and bonding strength and also preheating and post-heating effects of successive layers .", "entities": [{"name": "material", "type": "material", "pos": [14, 22]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [54, 75]}, {"name": "penetration", "type": "concept or principle", "pos": [115, 126]}, {"name": "bonding strength", "type": "machanical property", "pos": [142, 158]}, {"name": "preheating", "type": "manufacturing process", "pos": [168, 178]}]}, {"sentence": "This study focuses on the impact toughness of the resulting material .", "entities": [{"name": "impact", "type": "concept or principle", "pos": [26, 32]}, {"name": "material", "type": "material", "pos": [60, 68]}]}, {"sentence": "Charpy impact test is carried out on the samples taken in both along the direction of deposition and in the direction perpendicular to it to analyze the impact toughness in different directions .", "entities": [{"name": "impact test", "type": "process characterization", "pos": [7, 18]}, {"name": "samples", "type": "concept or principle", "pos": [41, 48]}, {"name": "deposition", "type": "concept or principle", "pos": [86, 96]}, {"name": "impact", "type": "concept or principle", "pos": [153, 159]}]}, {"sentence": "To further investigate the behavior of the structure , Brinell hardness , metallography and fractography have been performed .", "entities": [{"name": "structure", "type": "concept or principle", "pos": [43, 52]}, {"name": "Brinell hardness", "type": "machanical property", "pos": [55, 71]}, {"name": "metallography", "type": "concept or principle", "pos": [74, 87]}, {"name": "fractography", "type": "process characterization", "pos": [92, 104]}]}, {"sentence": "The results show that material has high impact toughness with very ductile behavior .", "entities": [{"name": "material", "type": "material", "pos": [22, 30]}, {"name": "impact", "type": "concept or principle", "pos": [40, 46]}, {"name": "ductile", "type": "machanical property", "pos": [67, 74]}]}, {"sentence": "High-efficiency elastocaloric refrigeration requires high-performance elastocaloric materials with both large surface areas to promote heat exchange rate and large elastocaloric effects to increase the amount of heat transfer .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [84, 93]}, {"name": "surface areas", "type": "process parameter", "pos": [110, 123]}, {"name": "heat", "type": "concept or principle", "pos": [135, 139]}, {"name": "heat transfer", "type": "concept or principle", "pos": [212, 225]}]}, {"sentence": "Ni-Ti shape memory alloys ( SMAs ) are the most promising elastocaloric materials but they are difficult to process by conventional methods due to their poor manufacturability .", "entities": [{"name": "shape memory alloys", "type": "material", "pos": [6, 25]}, {"name": "SMAs", "type": "material", "pos": [28, 32]}, {"name": "materials", "type": "concept or principle", "pos": [72, 81]}, {"name": "process", "type": "concept or principle", "pos": [108, 115]}, {"name": "manufacturability", "type": "concept or principle", "pos": [158, 175]}]}, {"sentence": "Here , we successfully developed Ni-Ti SMAs with large elastocaloric effects by additive manufacturing which has the capability to fabricate complex geometries with large surface areas .", "entities": [{"name": "SMAs", "type": "material", "pos": [39, 43]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [80, 102]}, {"name": "fabricate", "type": "manufacturing process", "pos": [131, 140]}, {"name": "complex geometries", "type": "concept or principle", "pos": [141, 159]}, {"name": "surface areas", "type": "process parameter", "pos": [171, 184]}]}, {"sentence": "The phase transformation temperatures of these additively manufactured Ni-Ti SMAs , fabricated by selective laser melting ( SLM ) , can be tuned by varying the SLM processing parameters and/or post heat treatments and thus tunable large elastocaloric effects were achieved at different temperatures , which can be used for different applications .", "entities": [{"name": "phase", "type": "concept or principle", "pos": [4, 9]}, {"name": "temperatures", "type": "process parameter", "pos": [25, 37]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [47, 70]}, {"name": "SMAs", "type": "material", "pos": [77, 81]}, {"name": "fabricated", "type": "concept or principle", "pos": [84, 94]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [98, 121]}, {"name": "SLM", "type": "manufacturing process", "pos": [124, 127]}, {"name": "be", "type": "material", "pos": [136, 138]}, {"name": "SLM", "type": "manufacturing process", "pos": [160, 163]}, {"name": "parameters", "type": "concept or principle", "pos": [175, 185]}, {"name": "heat treatments", "type": "manufacturing process", "pos": [198, 213]}, {"name": "temperatures", "type": "process parameter", "pos": [286, 298]}, {"name": "be", "type": "material", "pos": [311, 313]}]}, {"sentence": "Owing to its large transformation entropy change and high yield strength as a result of precipitation hardening , the aged SLM fabricated alloy exhibits a remarkably large elastocaloric effect with an adiabatic temperature change as high as 23.2 K , which is among the highest values reported for all Ni-Ti SMAs fabricated by both conventional methods and additive manufacturing .", "entities": [{"name": "yield strength", "type": "machanical property", "pos": [58, 72]}, {"name": "as", "type": "material", "pos": [73, 75]}, {"name": "precipitation hardening", "type": "manufacturing process", "pos": [88, 111]}, {"name": "SLM", "type": "manufacturing process", "pos": [123, 126]}, {"name": "fabricated", "type": "concept or principle", "pos": [127, 137]}, {"name": "alloy", "type": "material", "pos": [138, 143]}, {"name": "temperature", "type": "process parameter", "pos": [211, 222]}, {"name": "as", "type": "material", "pos": [230, 232]}, {"name": "as", "type": "material", "pos": [238, 240]}, {"name": "K", "type": "material", "pos": [246, 247]}, {"name": "SMAs", "type": "material", "pos": [307, 311]}, {"name": "fabricated", "type": "concept or principle", "pos": [312, 322]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [356, 378]}]}, {"sentence": "Furthermore , by virtue of the high yield strength and low stress hysteresis of the aged alloy , this large elastocaloric effect shows good stability during cycling .", "entities": [{"name": "yield strength", "type": "machanical property", "pos": [36, 50]}, {"name": "stress hysteresis", "type": "machanical property", "pos": [59, 76]}, {"name": "alloy", "type": "material", "pos": [89, 94]}, {"name": "stability", "type": "machanical property", "pos": [140, 149]}]}, {"sentence": "The achievement of such large elastocaloric effects in alloys fabricated by near-net-shape additive manufacturing may accelerate the implementation of high-efficiency elastocaloric refrigeration .", "entities": [{"name": "alloys", "type": "material", "pos": [55, 61]}, {"name": "near-net-shape", "type": "manufacturing process", "pos": [76, 90]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [91, 113]}]}, {"sentence": "This study is instructive for the development of advanced high-performance solid-state refrigeration materials by additive manufacturing .", "entities": [{"name": "solid-state", "type": "concept or principle", "pos": [75, 86]}, {"name": "materials", "type": "concept or principle", "pos": [101, 110]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [114, 136]}]}, {"sentence": "Due to the practicability of economically generating large-scale metal components with relatively high deposition rates , consequential progress has been made in the perspective of the Wire Arc Additive Manufacturing ( WAAM ) process .", "entities": [{"name": "metal", "type": "material", "pos": [65, 70]}, {"name": "components", "type": "machine or equipment", "pos": [71, 81]}, {"name": "high deposition rates", "type": "process parameter", "pos": [98, 119]}, {"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [185, 216]}, {"name": "WAAM", "type": "manufacturing process", "pos": [219, 223]}, {"name": "process", "type": "concept or principle", "pos": [226, 233]}]}, {"sentence": "This article reviews the looming research on WAAM techniques and the commonly used metallic feedstock materials .", "entities": [{"name": "research", "type": "concept or principle", "pos": [33, 41]}, {"name": "WAAM", "type": "manufacturing process", "pos": [45, 49]}, {"name": "metallic", "type": "material", "pos": [83, 91]}, {"name": "feedstock materials", "type": "material", "pos": [92, 111]}]}, {"sentence": "The frequent defects that are produced in components during the WAAM process using different alloys are characterized including deformity , porosity , and cracking .", "entities": [{"name": "defects", "type": "concept or principle", "pos": [13, 20]}, {"name": "components", "type": "machine or equipment", "pos": [42, 52]}, {"name": "WAAM", "type": "manufacturing process", "pos": [64, 68]}, {"name": "process", "type": "concept or principle", "pos": [69, 76]}, {"name": "alloys", "type": "material", "pos": [93, 99]}, {"name": "porosity", "type": "machanical property", "pos": [140, 148]}, {"name": "cracking", "type": "concept or principle", "pos": [155, 163]}]}, {"sentence": "Methods for enhancing the fabrication quality of the additively manufactured components are also discussed , with the consideration of the requirements of the distinct alloys .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [26, 37]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [53, 76]}, {"name": "alloys", "type": "material", "pos": [168, 174]}]}, {"sentence": "The implementation of the standardized Conventional Heat Treatment procedure to mitigate the defects in the WAAM process and in capturing the future possibilities that are efficient has been discussed .", "entities": [{"name": "Heat Treatment", "type": "manufacturing process", "pos": [52, 66]}, {"name": "defects", "type": "concept or principle", "pos": [93, 100]}, {"name": "WAAM", "type": "manufacturing process", "pos": [108, 112]}, {"name": "process", "type": "concept or principle", "pos": [113, 120]}]}, {"sentence": "The unification of materials and manufacturing process to produce defect-free and structurally-sound deposited parts remains a crucial effort in the future .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [19, 28]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [33, 54]}]}, {"sentence": "Additive manufacturing ( AM ) , through directed energy deposition , supports planned composition changes between locations within a single component , allowing for functionally graded materials ( FGMs ) to be developed and fabricated .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "directed energy deposition", "type": "manufacturing process", "pos": [40, 66]}, {"name": "supports", "type": "application", "pos": [69, 77]}, {"name": "composition", "type": "concept or principle", "pos": [86, 97]}, {"name": "component", "type": "machine or equipment", "pos": [140, 149]}, {"name": "functionally graded materials", "type": "material", "pos": [165, 194]}, {"name": "be", "type": "material", "pos": [207, 209]}, {"name": "fabricated", "type": "concept or principle", "pos": [224, 234]}]}, {"sentence": "The formation of deleterious phases along a particular composition path can cause significant cracking during the AM build process that makes the composition path unviable to produce these FGMs , but it is challenging to predict which phases will be present in aB-built additively manufactured parts by analyzing only equilibrium phase relations .", "entities": [{"name": "composition", "type": "concept or principle", "pos": [55, 66]}, {"name": "cracking", "type": "concept or principle", "pos": [94, 102]}, {"name": "AM", "type": "manufacturing process", "pos": [114, 116]}, {"name": "process", "type": "concept or principle", "pos": [123, 130]}, {"name": "composition", "type": "concept or principle", "pos": [146, 157]}, {"name": "be", "type": "material", "pos": [247, 249]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [270, 293]}, {"name": "equilibrium", "type": "concept or principle", "pos": [318, 329]}]}, {"sentence": "Solute segregation during solidification can lead to the formation of non-equilibrium phases that are stable at compositions far from the nominal composition of the melt , leading to crack formation .", "entities": [{"name": "segregation", "type": "concept or principle", "pos": [7, 18]}, {"name": "solidification", "type": "concept or principle", "pos": [26, 40]}, {"name": "lead", "type": "material", "pos": [45, 49]}, {"name": "composition", "type": "concept or principle", "pos": [112, 123]}, {"name": "melt", "type": "concept or principle", "pos": [165, 169]}]}, {"sentence": "We used this tool to compare the non-equilibrium phases predicted to form during the AM build process using the Scheil-Gulliver model with experimentally measured phases at several locations with different composition in a Ti-6Al-4V to Invar-36 FGM and a commercially pure Ti to Invar-36 FGM .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [13, 17]}, {"name": "predicted", "type": "concept or principle", "pos": [56, 65]}, {"name": "AM", "type": "manufacturing process", "pos": [85, 87]}, {"name": "process", "type": "concept or principle", "pos": [94, 101]}, {"name": "Scheil-Gulliver model", "type": "concept or principle", "pos": [112, 133]}, {"name": "composition", "type": "concept or principle", "pos": [206, 217]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [223, 232]}, {"name": "FGM", "type": "manufacturing process", "pos": [245, 248]}, {"name": "Ti", "type": "material", "pos": [273, 275]}, {"name": "FGM", "type": "manufacturing process", "pos": [288, 291]}]}, {"sentence": "We showed that the phases predicted to form by the Scheil-Gulliver model agree better with the experimental results than the predictions made by assuming equilibrium solidification , proving that the Scheil-Gulliver model can be applied to FGMs .", "entities": [{"name": "predicted", "type": "concept or principle", "pos": [26, 35]}, {"name": "Scheil-Gulliver model", "type": "concept or principle", "pos": [51, 72]}, {"name": "experimental", "type": "concept or principle", "pos": [95, 107]}, {"name": "predictions", "type": "concept or principle", "pos": [125, 136]}, {"name": "equilibrium", "type": "concept or principle", "pos": [154, 165]}, {"name": "Scheil-Gulliver model", "type": "concept or principle", "pos": [200, 221]}, {"name": "be", "type": "material", "pos": [226, 228]}]}, {"sentence": "Further , we demonstrated the use of our Scheil-Gulliver simulation tool as a method of designing FGMs through screening potential FGM pathways by calculating the solidification phase fractions along the experimental gradient path in composition space .", "entities": [{"name": "simulation", "type": "enabling technology", "pos": [57, 67]}, {"name": "as", "type": "material", "pos": [73, 75]}, {"name": "FGM", "type": "manufacturing process", "pos": [98, 101]}, {"name": "solidification phase", "type": "concept or principle", "pos": [163, 183]}, {"name": "experimental", "type": "concept or principle", "pos": [204, 216]}, {"name": "composition", "type": "concept or principle", "pos": [234, 245]}]}, {"sentence": "Ultrasonic additive manufacturing ( UAM ) is a solid-state manufacturing technique employing principles of ultrasonic welding coupled with mechanized tape layering to fabricate fully functional parts .", "entities": [{"name": "Ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [0, 33]}, {"name": "UAM", "type": "manufacturing process", "pos": [36, 39]}, {"name": "solid-state", "type": "concept or principle", "pos": [47, 58]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [59, 72]}, {"name": "ultrasonic welding", "type": "manufacturing process", "pos": [107, 125]}, {"name": "fabricate", "type": "manufacturing process", "pos": [167, 176]}]}, {"sentence": "However , UAM-fabricated parts often exhibit a reduction in strength when loaded normal to the welding interfaces ( Z-direction ) .", "entities": [{"name": "reduction", "type": "concept or principle", "pos": [47, 56]}, {"name": "strength", "type": "machanical property", "pos": [60, 68]}, {"name": "welding interfaces", "type": "engineering feature", "pos": [95, 113]}, {"name": "Z-direction", "type": "engineering feature", "pos": [116, 127]}]}, {"sentence": "Here , the effect of hot isostatic pressing ( HIP ) on UAM builds of aluminum alloy was explored .", "entities": [{"name": "hot isostatic pressing", "type": "manufacturing process", "pos": [21, 43]}, {"name": "HIP", "type": "manufacturing process", "pos": [46, 49]}, {"name": "UAM", "type": "manufacturing process", "pos": [55, 58]}, {"name": "builds", "type": "process characterization", "pos": [59, 65]}, {"name": "aluminum alloy", "type": "material", "pos": [69, 83]}]}, {"sentence": "Tensile testing and microstructure characterization were conducted ; it was established that HIP eliminated the brittle Z-direction fracture and improved the strength and ductility of the Z-direction specimens .", "entities": [{"name": "Tensile testing", "type": "process characterization", "pos": [0, 15]}, {"name": "microstructure", "type": "concept or principle", "pos": [20, 34]}, {"name": "HIP", "type": "manufacturing process", "pos": [93, 96]}, {"name": "brittle", "type": "machanical property", "pos": [112, 119]}, {"name": "fracture", "type": "concept or principle", "pos": [132, 140]}, {"name": "strength", "type": "machanical property", "pos": [158, 166]}, {"name": "ductility", "type": "machanical property", "pos": [171, 180]}, {"name": "Z-direction", "type": "engineering feature", "pos": [188, 199]}]}, {"sentence": "HIP eliminated voids and produced recrystallized structure ; however , welding interfaces survived the HIP treatment .", "entities": [{"name": "HIP", "type": "manufacturing process", "pos": [0, 3]}, {"name": "voids", "type": "concept or principle", "pos": [15, 20]}, {"name": "recrystallized", "type": "manufacturing process", "pos": [34, 48]}, {"name": "welding interfaces", "type": "engineering feature", "pos": [71, 89]}, {"name": "HIP", "type": "manufacturing process", "pos": [103, 106]}]}, {"sentence": "A virtual binocular vision system is designed to monitor molten pool appearance .", "entities": [{"name": "virtual binocular", "type": "machine or equipment", "pos": [2, 19]}, {"name": "designed", "type": "engineering feature", "pos": [37, 45]}, {"name": "monitor", "type": "concept or principle", "pos": [49, 56]}, {"name": "molten pool", "type": "concept or principle", "pos": [57, 68]}]}, {"sentence": "Effects of different stereo matching algorithms on reconstruction accuracy are conducted .", "entities": [{"name": "algorithms", "type": "concept or principle", "pos": [37, 47]}, {"name": "reconstruction", "type": "concept or principle", "pos": [51, 65]}, {"name": "accuracy", "type": "process characterization", "pos": [66, 74]}]}, {"sentence": "Molten pool appearance in wire and arc additive manufacturing is reconstructed .", "entities": [{"name": "Molten pool", "type": "concept or principle", "pos": [0, 11]}, {"name": "wire and arc additive manufacturing", "type": "manufacturing process", "pos": [26, 61]}]}, {"sentence": "Robust measurement of layer geometry can help better understand the complex deposition process and provide feedback control to increase process stability of wire and arc additive manufacturing ( WAAM ) .", "entities": [{"name": "measurement", "type": "process characterization", "pos": [7, 18]}, {"name": "layer", "type": "process parameter", "pos": [22, 27]}, {"name": "geometry", "type": "concept or principle", "pos": [28, 36]}, {"name": "deposition process", "type": "manufacturing process", "pos": [76, 94]}, {"name": "feedback", "type": "process parameter", "pos": [107, 115]}, {"name": "process", "type": "concept or principle", "pos": [136, 143]}, {"name": "wire and arc additive manufacturing", "type": "manufacturing process", "pos": [157, 192]}, {"name": "WAAM", "type": "manufacturing process", "pos": [195, 199]}]}, {"sentence": "In this study , a virtual binocular vision sensing system is designed to measure the layer width and torch height from top layer simultaneously .", "entities": [{"name": "virtual binocular vision sensing", "type": "enabling technology", "pos": [18, 50]}, {"name": "designed", "type": "engineering feature", "pos": [61, 69]}, {"name": "layer", "type": "process parameter", "pos": [85, 90]}, {"name": "layer", "type": "process parameter", "pos": [123, 128]}]}, {"sentence": "Considering that stereo matching is the most crucial step for 3-D reconstruction in stereovision sensing , various matching algorithms , i.e .", "entities": [{"name": "step", "type": "concept or principle", "pos": [53, 57]}, {"name": "3-D", "type": "concept or principle", "pos": [62, 65]}, {"name": "sensing", "type": "application", "pos": [97, 104]}, {"name": "algorithms", "type": "concept or principle", "pos": [124, 134]}]}, {"sentence": "The matching algorithms are tested based on the standard datasets , indicating that the highest matching accuracy comes from the GCI matching algorithm .", "entities": [{"name": "algorithms", "type": "concept or principle", "pos": [13, 23]}, {"name": "standard", "type": "concept or principle", "pos": [48, 56]}, {"name": "accuracy", "type": "process characterization", "pos": [105, 113]}, {"name": "algorithm", "type": "concept or principle", "pos": [142, 151]}]}, {"sentence": "Then , a standard cylinder is taken as an example to verify the effectiveness of the sensing system and algorithms .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [9, 17]}, {"name": "as", "type": "material", "pos": [36, 38]}, {"name": "effectiveness", "type": "concept or principle", "pos": [64, 77]}, {"name": "sensing system", "type": "process characterization", "pos": [85, 99]}, {"name": "algorithms", "type": "concept or principle", "pos": [104, 114]}]}, {"sentence": "Finally , layer geometries in WAAM with various process parameters are determined .", "entities": [{"name": "layer", "type": "process parameter", "pos": [10, 15]}, {"name": "geometries", "type": "concept or principle", "pos": [16, 26]}, {"name": "WAAM", "type": "manufacturing process", "pos": [30, 34]}, {"name": "process parameters", "type": "concept or principle", "pos": [48, 66]}]}, {"sentence": "The width and height errors of layer geometry with the GCI matching algorithm are less than 3.2 % .", "entities": [{"name": "errors", "type": "concept or principle", "pos": [21, 27]}, {"name": "layer", "type": "process parameter", "pos": [31, 36]}, {"name": "geometry", "type": "concept or principle", "pos": [37, 45]}, {"name": "algorithm", "type": "concept or principle", "pos": [68, 77]}]}, {"sentence": "This study will lay a solid foundation for subsequent feedback control for layer geometry in WAAM .", "entities": [{"name": "lay", "type": "concept or principle", "pos": [16, 19]}, {"name": "feedback", "type": "process parameter", "pos": [54, 62]}, {"name": "layer", "type": "process parameter", "pos": [75, 80]}, {"name": "geometry", "type": "concept or principle", "pos": [81, 89]}, {"name": "WAAM", "type": "manufacturing process", "pos": [93, 97]}]}, {"sentence": "High-strain-rate deformation in ultrasonic additive manufacturing was analyzed by performing microstructural characterization via electron microscopy .", "entities": [{"name": "deformation", "type": "concept or principle", "pos": [17, 28]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [32, 65]}, {"name": "microstructural characterization", "type": "process characterization", "pos": [93, 125]}, {"name": "electron microscopy", "type": "process characterization", "pos": [130, 149]}]}, {"sentence": "The micro-asperities on the top tape surface , which were formed by contact with the sonotrode surface , underwent cyclic deformation in the shear direction at high strain rates during welding with an additional tape .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [37, 44]}, {"name": "contact", "type": "application", "pos": [68, 75]}, {"name": "sonotrode", "type": "machine or equipment", "pos": [85, 94]}, {"name": "deformation", "type": "concept or principle", "pos": [122, 133]}, {"name": "shear direction", "type": "machanical property", "pos": [141, 156]}, {"name": "strain rates", "type": "concept or principle", "pos": [165, 177]}, {"name": "welding", "type": "manufacturing process", "pos": [185, 192]}]}, {"sentence": "This caused plastic flow and crushing of the micro-asperities , and a flattened interface was formed between the upper and lower tapes .", "entities": [{"name": "plastic", "type": "material", "pos": [12, 19]}, {"name": "crushing", "type": "concept or principle", "pos": [29, 37]}, {"name": "interface", "type": "concept or principle", "pos": [80, 89]}]}, {"sentence": "Further , surface oxide films were fractured and dispersed by ultrasonic vibration , and metallurgical welding was achieved .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [10, 17]}, {"name": "oxide", "type": "material", "pos": [18, 23]}, {"name": "ultrasonic vibration", "type": "process parameter", "pos": [62, 82]}, {"name": "metallurgical", "type": "application", "pos": [89, 102]}]}, {"sentence": "304L stainless steel manufactured via LENS was characterized in its aB-deposited state in 3D using TriBeam tomography .", "entities": [{"name": "stainless steel", "type": "material", "pos": [5, 20]}, {"name": "manufactured", "type": "concept or principle", "pos": [21, 33]}, {"name": "LENS", "type": "manufacturing process", "pos": [38, 42]}, {"name": "3D", "type": "concept or principle", "pos": [90, 92]}]}, {"sentence": "Orientation gradients are linked to chemical segregation occurring during solidification .", "entities": [{"name": "Orientation", "type": "concept or principle", "pos": [0, 11]}, {"name": "segregation", "type": "concept or principle", "pos": [45, 56]}, {"name": "solidification", "type": "concept or principle", "pos": [74, 88]}]}, {"sentence": "A sample of 304L stainless steel manufactured by Laser Engineered Net Shaping ( LENS ) was characterized in 3D using TriBeam tomography .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [2, 8]}, {"name": "stainless steel", "type": "material", "pos": [17, 32]}, {"name": "manufactured", "type": "concept or principle", "pos": [33, 45]}, {"name": "Laser Engineered Net Shaping", "type": "manufacturing process", "pos": [49, 77]}, {"name": "LENS", "type": "manufacturing process", "pos": [80, 84]}, {"name": "3D", "type": "concept or principle", "pos": [108, 110]}]}, {"sentence": "The crystallographic , structural , and chemical properties of the aB-deposited microstructure have been studied in detail .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [49, 59]}, {"name": "microstructure", "type": "concept or principle", "pos": [80, 94]}]}, {"sentence": "3D characterization reveals complex grain morphologies and large orientation gradients , in excess of 10∘ , that are not easily interpreted from 2D crosB-sections alone .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [0, 2]}, {"name": "grain", "type": "concept or principle", "pos": [36, 41]}, {"name": "orientation", "type": "concept or principle", "pos": [65, 76]}, {"name": "2D", "type": "concept or principle", "pos": [145, 147]}]}, {"sentence": "Misorientations were calculated via a methodology that locates the initial location and orientation of grains that grow during the build process .", "entities": [{"name": "methodology", "type": "concept or principle", "pos": [38, 49]}, {"name": "orientation", "type": "concept or principle", "pos": [88, 99]}, {"name": "grains", "type": "concept or principle", "pos": [103, 109]}, {"name": "build", "type": "process parameter", "pos": [131, 136]}]}, {"sentence": "For larger grains , misorientation increased along the direction of solidification .", "entities": [{"name": "grains", "type": "concept or principle", "pos": [11, 17]}, {"name": "solidification", "type": "concept or principle", "pos": [68, 82]}]}, {"sentence": "For grains with complex morphologies , K-means clustering in orientation space is demonstrated as a useful approach for determining the initial growth orientation .", "entities": [{"name": "grains", "type": "concept or principle", "pos": [4, 10]}, {"name": "complex morphologies", "type": "concept or principle", "pos": [16, 36]}, {"name": "orientation", "type": "concept or principle", "pos": [61, 72]}, {"name": "as", "type": "material", "pos": [95, 97]}, {"name": "orientation", "type": "concept or principle", "pos": [151, 162]}]}, {"sentence": "The accumulation of misorientation is linked to the solutal and thermal solidification path , offering potential design pathways for novel alloys more suited for additive manufacturing .", "entities": [{"name": "solidification", "type": "concept or principle", "pos": [72, 86]}, {"name": "design", "type": "engineering feature", "pos": [113, 119]}, {"name": "alloys", "type": "material", "pos": [139, 145]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [162, 184]}]}, {"sentence": "In this study , Wire Arc Additive Manufacturing ( WAAM ) based Directed Energy Deposition ( DED ) process is used to build two parts , tube and wall from 2209 Duplex Stainless Steel .", "entities": [{"name": "Wire Arc Additive Manufacturing", "type": "manufacturing process", "pos": [16, 47]}, {"name": "WAAM", "type": "manufacturing process", "pos": [50, 54]}, {"name": "Directed Energy Deposition", "type": "manufacturing process", "pos": [63, 89]}, {"name": "DED", "type": "manufacturing process", "pos": [92, 95]}, {"name": "process", "type": "concept or principle", "pos": [98, 105]}, {"name": "build", "type": "process parameter", "pos": [117, 122]}, {"name": "Stainless Steel", "type": "material", "pos": [166, 181]}]}, {"sentence": "Duplex stainless steel is extremely effective against stress corrosion cracking due to existence of an equal portion of austenite and ferrite phases .", "entities": [{"name": "stainless steel", "type": "material", "pos": [7, 22]}, {"name": "stress corrosion cracking", "type": "concept or principle", "pos": [54, 79]}, {"name": "austenite", "type": "material", "pos": [120, 129]}, {"name": "ferrite", "type": "material", "pos": [134, 141]}]}, {"sentence": "The challenge is monitoring of the process parameters and cooling rate to promote ferrite phase formation .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [35, 53]}, {"name": "cooling rate", "type": "process parameter", "pos": [58, 70]}, {"name": "ferrite", "type": "material", "pos": [82, 89]}]}, {"sentence": "To this end , three-dimensional transient thermal models of the additive manufactured ( AM ) parts are presented and the simulated thermal cycles are verified with the experimental results .", "entities": [{"name": "three-dimensional", "type": "concept or principle", "pos": [14, 31]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [64, 85]}, {"name": "AM", "type": "manufacturing process", "pos": [88, 90]}, {"name": "thermal cycles", "type": "process parameter", "pos": [131, 145]}, {"name": "experimental", "type": "concept or principle", "pos": [168, 180]}]}, {"sentence": "The correlation between the calculated cooling rates and the phases formation in the WAAM parts is studied and revealed .", "entities": [{"name": "cooling rates", "type": "process parameter", "pos": [39, 52]}, {"name": "WAAM", "type": "manufacturing process", "pos": [85, 89]}]}, {"sentence": "The results highlight that slow cooling rate of the built layers at elevated temperatures promote austenite formation significantly in a ferrite matrix .", "entities": [{"name": "cooling rate", "type": "process parameter", "pos": [32, 44]}, {"name": "temperatures", "type": "process parameter", "pos": [77, 89]}, {"name": "austenite", "type": "material", "pos": [98, 107]}, {"name": "ferrite", "type": "material", "pos": [137, 144]}]}, {"sentence": "Furthermore , the experimental mechanical examinations will illustrate the quality of the WAAM-made parts and compare their mechanical properties with their wrought counter-parts .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [18, 30]}, {"name": "quality", "type": "concept or principle", "pos": [75, 82]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [124, 145]}, {"name": "wrought", "type": "concept or principle", "pos": [157, 164]}]}, {"sentence": "Beam-based processes are popularly used for metal additive manufacturing , but there are significant gaps between their capabilities and the demand from industry and society .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [11, 20]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [44, 72]}, {"name": "industry", "type": "application", "pos": [153, 161]}]}, {"sentence": "Examples include solidification issues , anisotropic mechanical properties , and restrictions on powder attributes .", "entities": [{"name": "solidification", "type": "concept or principle", "pos": [17, 31]}, {"name": "anisotropic", "type": "machanical property", "pos": [41, 52]}, {"name": "properties", "type": "concept or principle", "pos": [64, 74]}, {"name": "powder", "type": "material", "pos": [97, 103]}]}, {"sentence": "Non-beam-based additive processes are promising to bridge these gaps .", "entities": [{"name": "additive", "type": "material", "pos": [15, 23]}, {"name": "bridge", "type": "application", "pos": [51, 57]}]}, {"sentence": "In this viewpoint article , we introduce and discuss additive friction stir deposition , which is a fast , scalable , solid-state process that results in refined microstructures and has flexible options for feed materials .", "entities": [{"name": "additive", "type": "material", "pos": [53, 61]}, {"name": "deposition", "type": "concept or principle", "pos": [76, 86]}, {"name": "solid-state process", "type": "concept or principle", "pos": [118, 137]}, {"name": "microstructures", "type": "material", "pos": [162, 177]}, {"name": "feed", "type": "process parameter", "pos": [207, 211]}]}, {"sentence": "With comparisons to other additive processes , we discuss its benefits and limitations along with the pathways to widespread implementation of metal additive manufacturing .", "entities": [{"name": "additive", "type": "material", "pos": [26, 34]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [143, 171]}]}, {"sentence": "Metal additive manufacturing is nowadays a well-established technology for cutting edge applications in the automotive , aerospace , defense and medical sectors .", "entities": [{"name": "Metal additive manufacturing", "type": "manufacturing process", "pos": [0, 28]}, {"name": "technology", "type": "concept or principle", "pos": [60, 70]}, {"name": "cutting", "type": "manufacturing process", "pos": [75, 82]}, {"name": "automotive", "type": "application", "pos": [108, 118]}, {"name": "aerospace", "type": "application", "pos": [121, 130]}, {"name": "medical", "type": "application", "pos": [145, 152]}]}, {"sentence": "Since additive metal deposition is basically a welding method , which creates parts by successively adding layers of material , there is a chance for defects like pores , cracks , inclusions and lack of fusion to develop .", "entities": [{"name": "additive", "type": "material", "pos": [6, 14]}, {"name": "deposition", "type": "concept or principle", "pos": [21, 31]}, {"name": "welding", "type": "manufacturing process", "pos": [47, 54]}, {"name": "material", "type": "material", "pos": [117, 125]}, {"name": "defects", "type": "concept or principle", "pos": [150, 157]}, {"name": "pores", "type": "machanical property", "pos": [163, 168]}, {"name": "inclusions", "type": "material", "pos": [180, 190]}, {"name": "fusion", "type": "concept or principle", "pos": [203, 209]}]}, {"sentence": "As a matter of fact , interlayer and intralayer defects are often observed in additive manufactured components .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "defects", "type": "concept or principle", "pos": [48, 55]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [78, 99]}]}, {"sentence": "However , if one considers the typical end applications along with the high costs involved in metal additive manufactured components , a “ zero defect ” target is close to mandatory for this technology .", "entities": [{"name": "metal", "type": "material", "pos": [94, 99]}, {"name": "additive manufactured", "type": "manufacturing process", "pos": [100, 121]}, {"name": "defect", "type": "concept or principle", "pos": [144, 150]}, {"name": "technology", "type": "concept or principle", "pos": [191, 201]}]}, {"sentence": "Planning an inclusion of the integrity assessment right into the additive manufacturing process would allow for quick corrective actions to be performed before the component is completed .", "entities": [{"name": "Planning", "type": "manufacturing process", "pos": [0, 8]}, {"name": "inclusion", "type": "material", "pos": [12, 21]}, {"name": "integrity", "type": "concept or principle", "pos": [29, 38]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [65, 95]}, {"name": "be", "type": "material", "pos": [140, 142]}, {"name": "component", "type": "machine or equipment", "pos": [164, 173]}]}, {"sentence": "Some effort has been spent in the quest of an efficient in-process flaw inspection , however , no conventional nondestructive testing ( NDT ) approach has been fully satisfying yet .", "entities": [{"name": "flaw", "type": "concept or principle", "pos": [67, 71]}, {"name": "nondestructive testing", "type": "process characterization", "pos": [111, 133]}, {"name": "NDT", "type": "concept or principle", "pos": [136, 139]}]}, {"sentence": "This work suggests an experimental evaluation of the effectiveness of flying laser scanning thermography , when detecting flaws on an Additively Manufactured acetabular cup prosthesis made in titanium alloy , where some defects have been artificially created .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [22, 34]}, {"name": "effectiveness", "type": "concept or principle", "pos": [53, 66]}, {"name": "laser", "type": "enabling technology", "pos": [77, 82]}, {"name": "flaws", "type": "concept or principle", "pos": [122, 127]}, {"name": "Additively Manufactured", "type": "manufacturing process", "pos": [134, 157]}, {"name": "titanium alloy", "type": "material", "pos": [192, 206]}, {"name": "defects", "type": "concept or principle", "pos": [220, 227]}]}, {"sentence": "The rough surface scanned is what ’ s typically left by the additive manufacturing process , and has been left so in order to prove the efficacy of the NDT inspection in real conditions .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [10, 17]}, {"name": "s", "type": "material", "pos": [18, 19]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [60, 90]}, {"name": "NDT", "type": "concept or principle", "pos": [152, 155]}, {"name": "inspection", "type": "process characterization", "pos": [156, 166]}]}, {"sentence": "Robot assisted additive manufacturing is an emerging disruptive technology .", "entities": [{"name": "Robot", "type": "machine or equipment", "pos": [0, 5]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [15, 37]}, {"name": "technology", "type": "concept or principle", "pos": [64, 74]}]}, {"sentence": "Multiple robots can be used to produce multi-material large objects .", "entities": [{"name": "robots", "type": "machine or equipment", "pos": [9, 15]}, {"name": "be", "type": "material", "pos": [20, 22]}, {"name": "multi-material", "type": "concept or principle", "pos": [39, 53]}]}, {"sentence": "Robotic-systems can be used to develop hybrid systems where additive and subtractive process are combined .", "entities": [{"name": "be", "type": "material", "pos": [20, 22]}, {"name": "hybrid systems", "type": "enabling technology", "pos": [39, 53]}, {"name": "additive", "type": "material", "pos": [60, 68]}, {"name": "subtractive process", "type": "manufacturing process", "pos": [73, 92]}]}, {"sentence": "The additive manufacturing and the robotic applications are tremendously increasing in the manufacturing field .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [4, 26]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [91, 104]}]}, {"sentence": "This review paper discusses the concept of robotic-assisted additive manufacturing .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [60, 82]}]}, {"sentence": "The leading additive manufacturing methods that can be used with a robotic system are presented and discussed in detail .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [12, 34]}, {"name": "be", "type": "material", "pos": [52, 54]}]}, {"sentence": "The information flow required to produce an object from a CAD model through a robotic-assisted system , different from the traditional information flow in a conventional additive manufacturing approach is also detailed .", "entities": [{"name": "CAD model", "type": "enabling technology", "pos": [58, 67]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [170, 192]}]}, {"sentence": "Examples of the use of robotic-assisted additive manufacturing systems are presented .", "entities": [{"name": "additive manufacturing systems", "type": "machine or equipment", "pos": [40, 70]}]}, {"sentence": "130 mm thick welds were manufactured in a nuclear steel using gaB-tungsten arc , submerged-arc and electron beam welding .", "entities": [{"name": "mm", "type": "manufacturing process", "pos": [4, 6]}, {"name": "welds", "type": "engineering feature", "pos": [13, 18]}, {"name": "manufactured", "type": "concept or principle", "pos": [24, 36]}, {"name": "steel", "type": "material", "pos": [50, 55]}, {"name": "arc", "type": "concept or principle", "pos": [75, 78]}, {"name": "electron beam welding", "type": "manufacturing process", "pos": [99, 120]}]}, {"sentence": "Residual stresses were measured using the contour method and incremental deep-hole drilling , before and after PWHT .", "entities": [{"name": "Residual stresses", "type": "machanical property", "pos": [0, 17]}, {"name": "contour", "type": "engineering feature", "pos": [42, 49]}, {"name": "drilling", "type": "manufacturing process", "pos": [83, 91]}, {"name": "PWHT", "type": "concept or principle", "pos": [111, 115]}]}, {"sentence": "Results show that the effectiveness of PWHT is best assessed on large weld mock-ups .", "entities": [{"name": "effectiveness", "type": "concept or principle", "pos": [22, 35]}, {"name": "PWHT", "type": "concept or principle", "pos": [39, 43]}, {"name": "weld", "type": "engineering feature", "pos": [70, 74]}]}, {"sentence": "In this study we aim to determine how the choice of welding process might impact on the through-life performance of critical nuclear components such as the reactor pressure vessel , steam generators and pressuriser in a pressurised water reactor .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [52, 59]}, {"name": "process", "type": "concept or principle", "pos": [60, 67]}, {"name": "impact", "type": "concept or principle", "pos": [74, 80]}, {"name": "performance", "type": "concept or principle", "pos": [101, 112]}, {"name": "components", "type": "machine or equipment", "pos": [133, 143]}, {"name": "as", "type": "material", "pos": [149, 151]}, {"name": "pressure", "type": "concept or principle", "pos": [164, 172]}]}, {"sentence": "Attention is devoted to technologies that are currently employed in the fabrication of such components , i.e .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [24, 36]}, {"name": "fabrication", "type": "manufacturing process", "pos": [72, 83]}, {"name": "components", "type": "machine or equipment", "pos": [92, 102]}]}, {"sentence": "narrow-gap variants of gaB-tungsten arc welding ( GTAW ) and submerged arc welding ( SAW ) , as well as a technology that might be applied in the future ( electron beam welding ) .", "entities": [{"name": "arc welding", "type": "manufacturing process", "pos": [36, 47]}, {"name": "GTAW", "type": "manufacturing process", "pos": [50, 54]}, {"name": "submerged arc welding", "type": "manufacturing process", "pos": [61, 82]}, {"name": "SAW", "type": "manufacturing process", "pos": [85, 88]}, {"name": "as", "type": "material", "pos": [93, 95]}, {"name": "as", "type": "material", "pos": [101, 103]}, {"name": "technology", "type": "concept or principle", "pos": [106, 116]}, {"name": "be", "type": "material", "pos": [128, 130]}, {"name": "electron beam welding", "type": "manufacturing process", "pos": [155, 176]}]}, {"sentence": "The residual stresses that are introduced by welding operations will have an influence on the integrity of critical components over a design lifetime that exceeds 60 years .", "entities": [{"name": "residual stresses", "type": "machanical property", "pos": [4, 21]}, {"name": "welding", "type": "manufacturing process", "pos": [45, 52]}, {"name": "integrity", "type": "concept or principle", "pos": [94, 103]}, {"name": "components", "type": "machine or equipment", "pos": [116, 126]}, {"name": "design", "type": "engineering feature", "pos": [134, 140]}]}, {"sentence": "With a view to making an assessment based on residual stress as pertinent as possible , weld test pieces were manufactured with each process at a thickness that is representative for such components , i.e .", "entities": [{"name": "residual stress", "type": "machanical property", "pos": [45, 60]}, {"name": "as", "type": "material", "pos": [61, 63]}, {"name": "as", "type": "material", "pos": [74, 76]}, {"name": "weld", "type": "engineering feature", "pos": [88, 92]}, {"name": "manufactured", "type": "concept or principle", "pos": [110, 122]}, {"name": "process", "type": "concept or principle", "pos": [133, 140]}, {"name": "components", "type": "machine or equipment", "pos": [188, 198]}]}, {"sentence": "130 mm .", "entities": [{"name": "mm", "type": "manufacturing process", "pos": [4, 6]}]}, {"sentence": "Stability in robotic GTA additive manufacturing is detected by optical measurements .", "entities": [{"name": "Stability", "type": "machanical property", "pos": [0, 9]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [25, 47]}, {"name": "optical measurements", "type": "process characterization", "pos": [63, 83]}]}, {"sentence": "Deposition height is controlled with a feedback controller .", "entities": [{"name": "Deposition", "type": "concept or principle", "pos": [0, 10]}, {"name": "feedback", "type": "process parameter", "pos": [39, 47]}, {"name": "controller", "type": "machine or equipment", "pos": [48, 58]}]}, {"sentence": "Comparison between open and closed-loop control is conducted .", "entities": [{"name": "closed-loop control", "type": "machine or equipment", "pos": [28, 47]}]}, {"sentence": "Additive manufacturing employing Gas Tungsten Arc ( GTA ) as the heat source is capable of fabricating fully dense metal components layer upon layer .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "Gas", "type": "concept or principle", "pos": [33, 36]}, {"name": "Arc", "type": "concept or principle", "pos": [46, 49]}, {"name": "as", "type": "material", "pos": [58, 60]}, {"name": "heat source", "type": "concept or principle", "pos": [65, 76]}, {"name": "fabricating", "type": "manufacturing process", "pos": [91, 102]}, {"name": "metal", "type": "material", "pos": [115, 120]}, {"name": "components", "type": "machine or equipment", "pos": [121, 131]}, {"name": "layer", "type": "process parameter", "pos": [132, 137]}]}, {"sentence": "In this work , a visual sensor , comprising a camera and composite filters , is developed for automatically real-time sensing of the fabrication process .", "entities": [{"name": "sensor", "type": "machine or equipment", "pos": [24, 30]}, {"name": "camera", "type": "machine or equipment", "pos": [46, 52]}, {"name": "composite", "type": "material", "pos": [57, 66]}, {"name": "sensing", "type": "application", "pos": [118, 125]}, {"name": "fabrication", "type": "manufacturing process", "pos": [133, 144]}]}, {"sentence": "The aim is to keep stable manufacture , and the deviations of the deposited height are compensated by designing an integral separation PID controller to adjust the wire feed speed in the next layer .", "entities": [{"name": "manufacture", "type": "concept or principle", "pos": [26, 37]}, {"name": "controller", "type": "machine or equipment", "pos": [139, 149]}, {"name": "feed", "type": "process parameter", "pos": [169, 173]}, {"name": "layer", "type": "process parameter", "pos": [192, 197]}]}, {"sentence": "The optical measurement technique and the controller are estimated via building multi-layer single-pass walls .", "entities": [{"name": "optical measurement", "type": "process characterization", "pos": [4, 23]}, {"name": "controller", "type": "machine or equipment", "pos": [42, 52]}]}, {"sentence": "The results show that the process stability in GTA-based additive manufacturing is well controlled when the designed visual sensor and the proposed closed-loop controller are applied .", "entities": [{"name": "process", "type": "concept or principle", "pos": [26, 33]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [57, 79]}, {"name": "designed", "type": "engineering feature", "pos": [108, 116]}, {"name": "sensor", "type": "machine or equipment", "pos": [124, 130]}, {"name": "closed-loop controller", "type": "machine or equipment", "pos": [148, 170]}]}, {"sentence": "Titanium is one of the best suitable materials for manufacturing bio implants and its application areas are orthopedics , dentistry etc .", "entities": [{"name": "Titanium", "type": "material", "pos": [0, 8]}, {"name": "materials", "type": "concept or principle", "pos": [37, 46]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [51, 64]}, {"name": "implants", "type": "application", "pos": [69, 77]}, {"name": "areas", "type": "process parameter", "pos": [98, 103]}, {"name": "dentistry", "type": "application", "pos": [122, 131]}]}, {"sentence": "There are many features possess by titanium which make it appropriate are its biocompatibility , resistance to corrosion , wearing , osteoporosis etc .", "entities": [{"name": "titanium", "type": "material", "pos": [35, 43]}, {"name": "biocompatibility", "type": "machanical property", "pos": [78, 94]}, {"name": "resistance", "type": "machanical property", "pos": [97, 107]}, {"name": "corrosion", "type": "concept or principle", "pos": [111, 120]}]}, {"sentence": "The Cp- Titanium and titanium-based alloys are categorized in three ways depending upon its microstructure such as ( α + β ) , α- type , β-type and comparative analysis are done its behavior , stability through SEM .", "entities": [{"name": "Titanium", "type": "material", "pos": [8, 16]}, {"name": "alloys", "type": "material", "pos": [36, 42]}, {"name": "microstructure", "type": "concept or principle", "pos": [92, 106]}, {"name": "as", "type": "material", "pos": [112, 114]}, {"name": "stability", "type": "machanical property", "pos": [193, 202]}, {"name": "SEM", "type": "process characterization", "pos": [211, 214]}]}, {"sentence": "This review paper discussed the conventional and modern methods of fabricating the bio-implants and also summarizes the various additive manufacturing techniques .", "entities": [{"name": "fabricating", "type": "manufacturing process", "pos": [67, 78]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [128, 150]}]}, {"sentence": "Two NiCu alloys with various contents of Mn , Ti , Al and C were deposited in a shape of single-bead multi layered walls using wire arc additive manufacturing technology .", "entities": [{"name": "alloys", "type": "material", "pos": [9, 15]}, {"name": "Mn", "type": "material", "pos": [41, 43]}, {"name": "Ti", "type": "material", "pos": [46, 48]}, {"name": "Al", "type": "material", "pos": [51, 53]}, {"name": "C", "type": "material", "pos": [58, 59]}, {"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [127, 158]}, {"name": "technology", "type": "concept or principle", "pos": [159, 169]}]}, {"sentence": "To modify solute atom concentrations and particle number density values , the aB-welded alloys were subjected to annealing at 1100 °C and age-hardening heat treatment in the 610-480 °C temperature range .", "entities": [{"name": "solute atom", "type": "material", "pos": [10, 21]}, {"name": "particle", "type": "concept or principle", "pos": [41, 49]}, {"name": "density", "type": "machanical property", "pos": [57, 64]}, {"name": "alloys", "type": "material", "pos": [88, 94]}, {"name": "annealing", "type": "manufacturing process", "pos": [113, 122]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [152, 166]}, {"name": "temperature range", "type": "process parameter", "pos": [185, 202]}]}, {"sentence": "Microstructure characterisation was carried out using optical , scanning , conventional transmission and atomic resolution transmission electron microscopy .", "entities": [{"name": "Microstructure", "type": "concept or principle", "pos": [0, 14]}, {"name": "optical", "type": "process characterization", "pos": [54, 61]}, {"name": "scanning", "type": "concept or principle", "pos": [64, 72]}, {"name": "transmission", "type": "process characterization", "pos": [88, 100]}, {"name": "resolution", "type": "process parameter", "pos": [112, 122]}, {"name": "electron microscopy", "type": "process characterization", "pos": [136, 155]}]}, {"sentence": "Work hardening behaviour was studied using tensile testing .", "entities": [{"name": "Work hardening", "type": "manufacturing process", "pos": [0, 14]}, {"name": "tensile testing", "type": "process characterization", "pos": [43, 58]}]}, {"sentence": "For similar deposition and heat treatment conditions , an alloy with higher C and Al , and lower Mn contents exhibited a higher number density of > 20 nm TiC particles , higher number density of < 20 nm γ′-Ni3 ( Al , Ti ) particles , and , associated with these , superior hardness , tensile strength , strain hardening rate and toughness .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [12, 22]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [27, 41]}, {"name": "alloy", "type": "material", "pos": [58, 63]}, {"name": "C", "type": "material", "pos": [76, 77]}, {"name": "Al", "type": "material", "pos": [82, 84]}, {"name": "Mn", "type": "material", "pos": [97, 99]}, {"name": "density", "type": "machanical property", "pos": [135, 142]}, {"name": "particles", "type": "concept or principle", "pos": [158, 167]}, {"name": "density", "type": "machanical property", "pos": [184, 191]}, {"name": "Al", "type": "material", "pos": [212, 214]}, {"name": "Ti", "type": "material", "pos": [217, 219]}, {"name": "particles", "type": "concept or principle", "pos": [222, 231]}, {"name": "hardness", "type": "machanical property", "pos": [273, 281]}, {"name": "tensile strength", "type": "machanical property", "pos": [284, 300]}, {"name": "strain hardening", "type": "manufacturing process", "pos": [303, 319]}, {"name": "toughness", "type": "machanical property", "pos": [329, 338]}]}, {"sentence": "The comparative effect of solid solution and precipitation strengthening on work hardening behaviour and fracture mode is discussed .", "entities": [{"name": "solid solution", "type": "material", "pos": [26, 40]}, {"name": "precipitation", "type": "concept or principle", "pos": [45, 58]}, {"name": "work hardening", "type": "manufacturing process", "pos": [76, 90]}, {"name": "fracture", "type": "concept or principle", "pos": [105, 113]}]}, {"sentence": "PCA-RF was proposed for on-line defect detection in arc welding .", "entities": [{"name": "defect", "type": "concept or principle", "pos": [32, 38]}, {"name": "arc welding", "type": "manufacturing process", "pos": [52, 63]}]}, {"sentence": "The classification accuracy was improved from 79.3 % to 91.8 % .", "entities": [{"name": "classification", "type": "concept or principle", "pos": [4, 18]}, {"name": "accuracy", "type": "process characterization", "pos": [19, 27]}]}, {"sentence": "Feature importance was qualitatively evaluated and selection pattern was given .", "entities": [{"name": "Feature", "type": "engineering feature", "pos": [0, 7]}, {"name": "pattern", "type": "concept or principle", "pos": [61, 68]}]}, {"sentence": "Higher gradient of Fe might cause the greater change of Fe I ( 407.84 nm ) Accurate on-line weld defect detection in robotic arc welding manufacturing is still challenging , due to the complexity and diversity of weld defects .", "entities": [{"name": "Fe", "type": "material", "pos": [19, 21]}, {"name": "Fe", "type": "material", "pos": [56, 58]}, {"name": "Accurate", "type": "process characterization", "pos": [75, 83]}, {"name": "weld", "type": "engineering feature", "pos": [92, 96]}, {"name": "defect", "type": "concept or principle", "pos": [97, 103]}, {"name": "arc welding", "type": "manufacturing process", "pos": [125, 136]}, {"name": "complexity", "type": "concept or principle", "pos": [185, 195]}, {"name": "weld", "type": "engineering feature", "pos": [213, 217]}, {"name": "defects", "type": "concept or principle", "pos": [218, 225]}]}, {"sentence": "In this study , a new real-time defect identification method is proposed for Al alloys in robotic arc welding , using arc optical spectroscopy and an integrated learning method .", "entities": [{"name": "defect", "type": "concept or principle", "pos": [32, 38]}, {"name": "Al alloys", "type": "material", "pos": [77, 86]}, {"name": "arc welding", "type": "manufacturing process", "pos": [98, 109]}, {"name": "arc", "type": "concept or principle", "pos": [118, 121]}, {"name": "spectroscopy", "type": "concept or principle", "pos": [130, 142]}]}, {"sentence": "Spectrum feature was extracted , based on the absolute coefficients of the principal components .", "entities": [{"name": "feature", "type": "engineering feature", "pos": [9, 16]}, {"name": "extracted", "type": "concept or principle", "pos": [21, 30]}, {"name": "components", "type": "machine or equipment", "pos": [85, 95]}]}, {"sentence": "Feature importance was quantitatively evaluated using the mean decrease accuracy of Principal Component AnalysiB-Random Forest ( PCA-RF ) .", "entities": [{"name": "Feature", "type": "engineering feature", "pos": [0, 7]}, {"name": "quantitatively", "type": "concept or principle", "pos": [23, 37]}, {"name": "accuracy", "type": "process characterization", "pos": [72, 80]}, {"name": "Component", "type": "machine or equipment", "pos": [94, 103]}]}, {"sentence": "The proposed PCA-RF proved to effectively identify five classes of weld defects with better performance than support vector machine and back propagation neural network .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [67, 71]}, {"name": "defects", "type": "concept or principle", "pos": [72, 79]}, {"name": "performance", "type": "concept or principle", "pos": [92, 103]}, {"name": "support", "type": "application", "pos": [109, 116]}, {"name": "machine", "type": "machine or equipment", "pos": [124, 131]}, {"name": "neural network", "type": "concept or principle", "pos": [153, 167]}]}, {"sentence": "Finally , the selection pattern of spectrum feature subset was investigated , before revealing the correlation mechanism of the selected lines spectrum and weld process .", "entities": [{"name": "pattern", "type": "concept or principle", "pos": [24, 31]}, {"name": "feature", "type": "engineering feature", "pos": [44, 51]}, {"name": "mechanism", "type": "concept or principle", "pos": [111, 120]}, {"name": "weld", "type": "engineering feature", "pos": [156, 160]}, {"name": "process", "type": "concept or principle", "pos": [161, 168]}]}, {"sentence": "Barriers for the integration of additive manufacturing ( AM ) technologies in the commercial vehicle industry are identified .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [32, 54]}, {"name": "AM", "type": "manufacturing process", "pos": [57, 59]}, {"name": "technologies", "type": "concept or principle", "pos": [62, 74]}, {"name": "industry", "type": "application", "pos": [101, 109]}]}, {"sentence": "A cost model for estimating the manufacturing cost of a build task using selective laser melting is proposed in a cost estimation .", "entities": [{"name": "cost model", "type": "concept or principle", "pos": [2, 12]}, {"name": "manufacturing cost", "type": "concept or principle", "pos": [32, 50]}, {"name": "build", "type": "process parameter", "pos": [56, 61]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [73, 96]}, {"name": "cost estimation", "type": "concept or principle", "pos": [114, 129]}]}, {"sentence": "A general procedure and framework to develop a hybrid additive-subtractive process chain has been proposed .", "entities": [{"name": "framework", "type": "concept or principle", "pos": [24, 33]}, {"name": "process chain", "type": "enabling technology", "pos": [75, 88]}]}, {"sentence": "A closed-loop quality control model to realize a long-term product and process quality control with AM is developed .", "entities": [{"name": "quality control", "type": "concept or principle", "pos": [14, 29]}, {"name": "model", "type": "concept or principle", "pos": [30, 35]}, {"name": "process", "type": "concept or principle", "pos": [71, 78]}, {"name": "AM", "type": "manufacturing process", "pos": [100, 102]}]}, {"sentence": "Additive Manufacturing ( AM ) is the umbrella term for manufacturing processes that add materials layer by layer to create parts .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "manufacturing processes", "type": "manufacturing process", "pos": [55, 78]}, {"name": "materials", "type": "concept or principle", "pos": [88, 97]}, {"name": "layer by layer", "type": "concept or principle", "pos": [98, 112]}]}, {"sentence": "AM technologies show numerous potentials in terms of rapid prototyping , tooling and direct manufacturing of functional parts and imply revolutionary benefits for the manufacturing industry .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [0, 15]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [53, 70]}, {"name": "tooling", "type": "concept or principle", "pos": [73, 80]}, {"name": "direct manufacturing", "type": "concept or principle", "pos": [85, 105]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [167, 180]}, {"name": "industry", "type": "application", "pos": [181, 189]}]}, {"sentence": "Currently , many industrial areas are marching to a more comprehensive application of AM .", "entities": [{"name": "industrial", "type": "application", "pos": [17, 27]}, {"name": "areas", "type": "process parameter", "pos": [28, 33]}, {"name": "AM", "type": "manufacturing process", "pos": [86, 88]}]}, {"sentence": "Hence , the development of new tools , methods , and concepts for guiding companies to implement AM technologies requires more research attention .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [31, 36]}, {"name": "companies", "type": "application", "pos": [74, 83]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [97, 112]}, {"name": "research", "type": "concept or principle", "pos": [127, 135]}]}, {"sentence": "This paper introduces the results of a research project carried out by academic and industrial partners from the German commercial vehicle industry .", "entities": [{"name": "research", "type": "concept or principle", "pos": [39, 47]}, {"name": "industrial", "type": "application", "pos": [84, 94]}, {"name": "industry", "type": "application", "pos": [139, 147]}]}, {"sentence": "The research project addressed four issues for a long-term application of AM technologies : identification of barriers for AM applications , cost estimation for AM application , design of hybrid additive-subtractive process chains , and quality management with AM .", "entities": [{"name": "research", "type": "concept or principle", "pos": [4, 12]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [74, 89]}, {"name": "AM", "type": "manufacturing process", "pos": [123, 125]}, {"name": "cost estimation", "type": "concept or principle", "pos": [141, 156]}, {"name": "AM", "type": "manufacturing process", "pos": [161, 163]}, {"name": "design", "type": "engineering feature", "pos": [178, 184]}, {"name": "process chains", "type": "enabling technology", "pos": [216, 230]}, {"name": "quality", "type": "concept or principle", "pos": [237, 244]}, {"name": "AM", "type": "manufacturing process", "pos": [261, 263]}]}, {"sentence": "Wire and arc additive manufacturing ( WAAM ) is a competitive technology for fabricating metallic parts with complex structure and geometry .", "entities": [{"name": "Wire and arc additive manufacturing", "type": "manufacturing process", "pos": [0, 35]}, {"name": "WAAM", "type": "manufacturing process", "pos": [38, 42]}, {"name": "technology", "type": "concept or principle", "pos": [62, 72]}, {"name": "fabricating", "type": "manufacturing process", "pos": [77, 88]}, {"name": "complex structure", "type": "concept or principle", "pos": [109, 126]}, {"name": "geometry", "type": "concept or principle", "pos": [131, 139]}]}, {"sentence": "The basis of planning the deposition paths is the beads overlapping model ( BOM ) .", "entities": [{"name": "planning", "type": "manufacturing process", "pos": [13, 21]}, {"name": "deposition paths", "type": "process parameter", "pos": [26, 42]}, {"name": "beads", "type": "process characterization", "pos": [50, 55]}, {"name": "model", "type": "concept or principle", "pos": [68, 73]}]}, {"sentence": "The existing overlapping models consider only the geometric area of adjacent beads , but ignore the spreading of the melted weld beads .", "entities": [{"name": "area", "type": "process parameter", "pos": [60, 64]}, {"name": "beads", "type": "process characterization", "pos": [77, 82]}, {"name": "melted", "type": "concept or principle", "pos": [117, 123]}, {"name": "beads", "type": "process characterization", "pos": [129, 134]}]}, {"sentence": "The objective of the research was to develop an enhanced BOM ( E.BOM ) for WAAM , which takes the spreading of the weld beads into consideration .", "entities": [{"name": "research", "type": "concept or principle", "pos": [21, 29]}, {"name": "WAAM", "type": "manufacturing process", "pos": [75, 79]}, {"name": "weld beads", "type": "concept or principle", "pos": [115, 125]}]}, {"sentence": "A deposited bead spreads to the already deposited neighboring bead and as a consequence , its center point deviates from the center point of the fed ( to be melted ) wire .", "entities": [{"name": "deposited bead", "type": "process characterization", "pos": [2, 16]}, {"name": "bead", "type": "process characterization", "pos": [62, 66]}, {"name": "as", "type": "material", "pos": [71, 73]}, {"name": "be", "type": "material", "pos": [154, 156]}]}, {"sentence": "Experiments were designed to explore the relationships between the geometries of the beads , and the offset distance between the center of a weld bead and the center of the fed wire .", "entities": [{"name": "designed", "type": "engineering feature", "pos": [17, 25]}, {"name": "geometries", "type": "concept or principle", "pos": [67, 77]}, {"name": "beads", "type": "process characterization", "pos": [85, 90]}, {"name": "offset", "type": "concept or principle", "pos": [101, 107]}, {"name": "weld bead", "type": "concept or principle", "pos": [141, 150]}]}, {"sentence": "An artificial neural network was used to predict the offset distance of a certain weld bead based on the results of the experiments .", "entities": [{"name": "artificial neural network", "type": "enabling technology", "pos": [3, 28]}, {"name": "offset", "type": "concept or principle", "pos": [53, 59]}, {"name": "weld bead", "type": "concept or principle", "pos": [82, 91]}]}, {"sentence": "In addition , a reasoning algorithm was implemented to calculate the optimal distance between the centers of adjacent deposition paths in order to achieve a planned center distance between adjacent beads .", "entities": [{"name": "algorithm", "type": "concept or principle", "pos": [26, 35]}, {"name": "deposition paths", "type": "process parameter", "pos": [118, 134]}, {"name": "beads", "type": "process characterization", "pos": [198, 203]}]}, {"sentence": "The E.BOM has been tested by validation experiments .", "entities": [{"name": "validation", "type": "concept or principle", "pos": [29, 39]}]}, {"sentence": "On the one hand , it improves the surface flatness of layers of MLMB parts produced by WAAM .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [34, 41]}, {"name": "flatness", "type": "machanical property", "pos": [42, 50]}, {"name": "WAAM", "type": "manufacturing process", "pos": [87, 91]}]}, {"sentence": "Wire + Arc Additive Manufacture is a suitable technique to manufacture large-scale unalloyed tungsten components The orientation of the wire feeding influences the occurrence of defects as lack of fusion , pores and micro-cracks The orientation of the wire feeding influences the microstructure of the tungsten deposits Front wire feeding allowed to produce fully-dense crack-free unalloyed tungsten deposits The manufacturing of refractory-metals components presents some limitations induced by the materials ' characteristic low-temperature brittleness and high susceptibility to oxidation .", "entities": [{"name": "Wire + Arc Additive Manufacture", "type": "manufacturing process", "pos": [0, 31]}, {"name": "manufacture", "type": "concept or principle", "pos": [59, 70]}, {"name": "tungsten", "type": "material", "pos": [93, 101]}, {"name": "components", "type": "machine or equipment", "pos": [102, 112]}, {"name": "orientation", "type": "concept or principle", "pos": [117, 128]}, {"name": "wire feeding", "type": "process parameter", "pos": [136, 148]}, {"name": "defects", "type": "concept or principle", "pos": [178, 185]}, {"name": "as", "type": "material", "pos": [186, 188]}, {"name": "fusion", "type": "concept or principle", "pos": [197, 203]}, {"name": "pores", "type": "machanical property", "pos": [206, 211]}, {"name": "micro-cracks", "type": "concept or principle", "pos": [216, 228]}, {"name": "orientation", "type": "concept or principle", "pos": [233, 244]}, {"name": "wire feeding", "type": "process parameter", "pos": [252, 264]}, {"name": "microstructure", "type": "concept or principle", "pos": [280, 294]}, {"name": "tungsten", "type": "material", "pos": [302, 310]}, {"name": "wire feeding", "type": "process parameter", "pos": [326, 338]}, {"name": "tungsten", "type": "material", "pos": [391, 399]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [413, 426]}, {"name": "components", "type": "machine or equipment", "pos": [448, 458]}, {"name": "materials", "type": "concept or principle", "pos": [500, 509]}, {"name": "susceptibility", "type": "machanical property", "pos": [564, 578]}, {"name": "oxidation", "type": "manufacturing process", "pos": [582, 591]}]}, {"sentence": "Powder metallurgy is typically the manufacturing process of choice .", "entities": [{"name": "Powder metallurgy", "type": "manufacturing process", "pos": [0, 17]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [35, 56]}]}, {"sentence": "Recently , Wire + Arc Additive Manufacture has proven capable to produce fully-dense large-scale metal parts at relatively low cost , by using high-quality wire as feedstock .", "entities": [{"name": "Wire + Arc Additive Manufacture", "type": "manufacturing process", "pos": [11, 42]}, {"name": "metal", "type": "material", "pos": [97, 102]}, {"name": "as", "type": "material", "pos": [161, 163]}]}, {"sentence": "In this study , this technique has been used for the production of large-scale tungsten linear structures .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [53, 63]}, {"name": "tungsten", "type": "material", "pos": [79, 87]}]}, {"sentence": "The orientation of the wire feeding has been studied and optimised to obtain defect-free tungsten deposits .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [4, 15]}, {"name": "wire feeding", "type": "process parameter", "pos": [23, 35]}, {"name": "tungsten", "type": "material", "pos": [89, 97]}]}, {"sentence": "In particular , front wire feeding eliminated the occurrence of pores and micro-cracks , when compared to side wire feeding .", "entities": [{"name": "wire feeding", "type": "process parameter", "pos": [22, 34]}, {"name": "pores", "type": "machanical property", "pos": [64, 69]}, {"name": "micro-cracks", "type": "concept or principle", "pos": [74, 86]}, {"name": "wire feeding", "type": "process parameter", "pos": [111, 123]}]}, {"sentence": "The microstructure , the occurrence of defects and their relationship with the deposition process have also been discussed .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "defects", "type": "concept or principle", "pos": [39, 46]}, {"name": "deposition process", "type": "manufacturing process", "pos": [79, 97]}]}, {"sentence": "Despite the repetitive thermal cycles and the inherent brittleness of the material , the aB-deposited structures were free from internal cracks and the layer dimensions were stable during the entire deposition process .", "entities": [{"name": "thermal cycles", "type": "process parameter", "pos": [23, 37]}, {"name": "material", "type": "material", "pos": [74, 82]}, {"name": "layer", "type": "process parameter", "pos": [152, 157]}, {"name": "dimensions", "type": "engineering feature", "pos": [158, 168]}, {"name": "deposition process", "type": "manufacturing process", "pos": [199, 217]}]}, {"sentence": "This enabled the production of a relatively large-scale component , with the dimension of 210 × 75 × 12 mm .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [17, 27]}, {"name": "component", "type": "machine or equipment", "pos": [56, 65]}, {"name": "dimension", "type": "engineering feature", "pos": [77, 86]}, {"name": "mm", "type": "manufacturing process", "pos": [104, 106]}]}, {"sentence": "This study has demonstrated that Wire + Arc Additive Manufacture can be used to produce large-scale parts in unalloyed tungsten by complete fusion , presenting a potential alternative to the powder metallurgy manufacturing route .", "entities": [{"name": "Wire + Arc Additive Manufacture", "type": "manufacturing process", "pos": [33, 64]}, {"name": "be", "type": "material", "pos": [69, 71]}, {"name": "tungsten", "type": "material", "pos": [119, 127]}, {"name": "fusion", "type": "concept or principle", "pos": [140, 146]}, {"name": "powder metallurgy", "type": "manufacturing process", "pos": [191, 208]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [209, 222]}]}, {"sentence": "An innovative additive manufacturing ( AM ) system using low power pulsed laser assisted MIG arc welding ( L-M ) was proposed to manufacture metal products .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [14, 36]}, {"name": "AM", "type": "manufacturing process", "pos": [39, 41]}, {"name": "power", "type": "process parameter", "pos": [61, 66]}, {"name": "laser assisted MIG arc welding", "type": "manufacturing process", "pos": [74, 104]}, {"name": "manufacture", "type": "concept or principle", "pos": [129, 140]}]}, {"sentence": "With the purpose of revealing how width and height dimension of the manufactured thin-wall component are affected by the laser power , the present study has been carried out .", "entities": [{"name": "dimension", "type": "engineering feature", "pos": [51, 60]}, {"name": "manufactured", "type": "concept or principle", "pos": [68, 80]}, {"name": "component", "type": "machine or equipment", "pos": [91, 100]}, {"name": "laser power", "type": "process parameter", "pos": [121, 132]}]}, {"sentence": "The width decreased with the increasing of the laser power within a certain range of laser power , and the height increased proportionally under the equal deposition rate .", "entities": [{"name": "laser power", "type": "process parameter", "pos": [47, 58]}, {"name": "range", "type": "process parameter", "pos": [76, 81]}, {"name": "laser power", "type": "process parameter", "pos": [85, 96]}, {"name": "deposition rate", "type": "process parameter", "pos": [155, 170]}]}, {"sentence": "The width and height fluctuation reduced while adding the low power laser , both the standard deviation decreased by more than 50% when the laser power was 400 W. The coefficient of materials utilization was up to 91.12 % , and increased by more than 15 % while using L-M based AM to fabricate thin-wall parts with a proper laser power .", "entities": [{"name": "power", "type": "process parameter", "pos": [62, 67]}, {"name": "laser", "type": "enabling technology", "pos": [68, 73]}, {"name": "standard deviation", "type": "process characterization", "pos": [85, 103]}, {"name": "laser power", "type": "process parameter", "pos": [140, 151]}, {"name": "materials", "type": "concept or principle", "pos": [182, 191]}, {"name": "AM", "type": "manufacturing process", "pos": [278, 280]}, {"name": "fabricate", "type": "manufacturing process", "pos": [284, 293]}, {"name": "laser power", "type": "process parameter", "pos": [324, 335]}]}, {"sentence": "In comparison with the common GMAW-based AM method , the L-M based AM method shows feasibility to manufacture a narrower thin-wall component with better surface quality and higher stability , and also with higher deposition efficiency .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [41, 43]}, {"name": "AM", "type": "manufacturing process", "pos": [67, 69]}, {"name": "feasibility", "type": "concept or principle", "pos": [83, 94]}, {"name": "manufacture", "type": "concept or principle", "pos": [98, 109]}, {"name": "component", "type": "machine or equipment", "pos": [131, 140]}, {"name": "surface quality", "type": "process parameter", "pos": [153, 168]}, {"name": "stability", "type": "machanical property", "pos": [180, 189]}, {"name": "deposition", "type": "concept or principle", "pos": [213, 223]}]}, {"sentence": "Wire and Arc Additive Manufacturing ( WAAM ) is a metal 3D printing technique based on robotic welding .", "entities": [{"name": "Wire and Arc Additive Manufacturing", "type": "manufacturing process", "pos": [0, 35]}, {"name": "WAAM", "type": "manufacturing process", "pos": [38, 42]}, {"name": "metal", "type": "material", "pos": [50, 55]}, {"name": "3D printing", "type": "manufacturing process", "pos": [56, 67]}, {"name": "robotic welding", "type": "manufacturing process", "pos": [87, 102]}]}, {"sentence": "This technique yields potential in decreasing material consumption due to its high material efficiency and freedom of shape .", "entities": [{"name": "material", "type": "material", "pos": [46, 54]}, {"name": "material", "type": "material", "pos": [83, 91]}]}, {"sentence": "Empirical measurements of WAAM , using a deposition rate of 1 kg/h , were performed on site of MX3D .", "entities": [{"name": "Empirical", "type": "concept or principle", "pos": [0, 9]}, {"name": "WAAM", "type": "manufacturing process", "pos": [26, 30]}, {"name": "deposition rate", "type": "process parameter", "pos": [41, 56]}]}, {"sentence": "The measured power consumption per kg stainless steel is 2.72 kW , of which 1.74 is consumed by the welder , 0.44 by the robotic arm , and 0.54 by the ventilation .", "entities": [{"name": "power", "type": "process parameter", "pos": [13, 18]}, {"name": "stainless steel", "type": "material", "pos": [38, 53]}, {"name": "robotic arm", "type": "machine or equipment", "pos": [121, 132]}]}, {"sentence": "The material loss was 1.1 % .", "entities": [{"name": "material", "type": "material", "pos": [4, 12]}]}, {"sentence": "A 98 % argon 2 % CO2 welding gas was used with a flow of 12 l/min.A cradle-to-gate Life Cycle Assessment ( LCA ) was performed .", "entities": [{"name": "argon", "type": "material", "pos": [7, 12]}, {"name": "CO2", "type": "material", "pos": [17, 20]}, {"name": "gas", "type": "concept or principle", "pos": [29, 32]}, {"name": "Life Cycle", "type": "concept or principle", "pos": [83, 93]}]}, {"sentence": "To give this assessment context , green sand casting and CNC milling were additionally assessed , through literature and databases .", "entities": [{"name": "sand casting", "type": "manufacturing process", "pos": [40, 52]}, {"name": "CNC milling", "type": "manufacturing process", "pos": [57, 68]}, {"name": "databases", "type": "enabling technology", "pos": [121, 130]}]}, {"sentence": "The purpose of this study is to develop insight into the environmental impact of WAAM .", "entities": [{"name": "impact", "type": "concept or principle", "pos": [71, 77]}, {"name": "WAAM", "type": "manufacturing process", "pos": [81, 85]}]}, {"sentence": "Results indicate that , in terms of total ReCiPe endpoints , the environmental impact of producing a kg of stainless steel 308 l product using WAAM is comparable to green sand casting .", "entities": [{"name": "impact", "type": "concept or principle", "pos": [79, 85]}, {"name": "stainless steel", "type": "material", "pos": [107, 122]}, {"name": "WAAM", "type": "manufacturing process", "pos": [143, 147]}, {"name": "sand casting", "type": "manufacturing process", "pos": [171, 183]}]}, {"sentence": "It equals CNC milling with a material utilization fraction of 0.75 .", "entities": [{"name": "CNC milling", "type": "manufacturing process", "pos": [10, 21]}, {"name": "material utilization fraction", "type": "process parameter", "pos": [29, 58]}]}, {"sentence": "Stainless steel is the main cause of environmental damage in all three techniques , emphasizing the importance of WAAM 's mass reduction potential .", "entities": [{"name": "Stainless steel", "type": "material", "pos": [0, 15]}, {"name": "damage", "type": "machanical property", "pos": [51, 57]}, {"name": "WAAM", "type": "manufacturing process", "pos": [114, 118]}, {"name": "reduction", "type": "concept or principle", "pos": [127, 136]}]}, {"sentence": "When environmentally comparing the three techniques for fulfilling a certain function , optimized designs should be introduced for each manufacturing technique .", "entities": [{"name": "designs", "type": "engineering feature", "pos": [98, 105]}, {"name": "be", "type": "material", "pos": [113, 115]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [136, 149]}]}, {"sentence": "Results can vary significantly based on product shape , function , materials , and process settings .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [67, 76]}, {"name": "process settings", "type": "process parameter", "pos": [83, 99]}]}, {"sentence": "Method of tensile triangles was applied to weld shape design .", "entities": [{"name": "tensile", "type": "machanical property", "pos": [10, 17]}, {"name": "weld", "type": "engineering feature", "pos": [43, 47]}, {"name": "design", "type": "engineering feature", "pos": [54, 60]}]}, {"sentence": "Method of tensile triangles and low transformation temperature weld metal were combined for weld joint design .", "entities": [{"name": "tensile", "type": "machanical property", "pos": [10, 17]}, {"name": "temperature", "type": "process parameter", "pos": [51, 62]}, {"name": "metal", "type": "material", "pos": [68, 73]}, {"name": "weld joint", "type": "engineering feature", "pos": [92, 102]}, {"name": "design", "type": "engineering feature", "pos": [103, 109]}]}, {"sentence": "Effect of interpass temperature on residual stress in welded joint was investigated .", "entities": [{"name": "interpass temperature", "type": "process parameter", "pos": [10, 31]}, {"name": "residual stress", "type": "machanical property", "pos": [35, 50]}, {"name": "welded joint", "type": "engineering feature", "pos": [54, 66]}]}, {"sentence": "Stress concentration and residual stress have a significant influence on fatigue life of welded joints .", "entities": [{"name": "Stress concentration", "type": "process characterization", "pos": [0, 20]}, {"name": "residual stress", "type": "machanical property", "pos": [25, 40]}, {"name": "fatigue life", "type": "machanical property", "pos": [73, 85]}, {"name": "welded joints", "type": "engineering feature", "pos": [89, 102]}]}, {"sentence": "In order to reduce the stress concentration of welded joints , a mathematical design method of tensile triangles ( MTT ) based on bionics was applied to weld shape design .", "entities": [{"name": "stress concentration", "type": "process characterization", "pos": [23, 43]}, {"name": "welded joints", "type": "engineering feature", "pos": [47, 60]}, {"name": "mathematical", "type": "concept or principle", "pos": [65, 77]}, {"name": "design", "type": "engineering feature", "pos": [78, 84]}, {"name": "tensile", "type": "machanical property", "pos": [95, 102]}, {"name": "weld", "type": "engineering feature", "pos": [153, 157]}, {"name": "design", "type": "engineering feature", "pos": [164, 170]}]}, {"sentence": "Accordingly , the stress concentration of various weld beads in the corner boxing welded joint and the fillet welded T-joint was dissected using our in-house FEM software JWRIAN .", "entities": [{"name": "stress concentration", "type": "process characterization", "pos": [18, 38]}, {"name": "weld beads", "type": "concept or principle", "pos": [50, 60]}, {"name": "welded joint", "type": "engineering feature", "pos": [82, 94]}, {"name": "fillet", "type": "engineering feature", "pos": [103, 109]}, {"name": "T-joint", "type": "engineering feature", "pos": [117, 124]}, {"name": "FEM", "type": "concept or principle", "pos": [158, 161]}]}, {"sentence": "It was found that there existed a large stress concentration in the conventional welded joints , whereas those welded joints with elongated weld bead were accompanied by a lower stress concentration , especially for elongated weld bead with MTT design .", "entities": [{"name": "stress concentration", "type": "process characterization", "pos": [40, 60]}, {"name": "welded joints", "type": "engineering feature", "pos": [81, 94]}, {"name": "welded joints", "type": "engineering feature", "pos": [111, 124]}, {"name": "weld bead", "type": "concept or principle", "pos": [140, 149]}, {"name": "stress concentration", "type": "process characterization", "pos": [178, 198]}, {"name": "weld bead", "type": "concept or principle", "pos": [226, 235]}, {"name": "design", "type": "engineering feature", "pos": [245, 251]}]}, {"sentence": "Furthermore , among the weld shapes of the corner boxing fillet welded joint , the rectangle shape of weld bead had the minimum stress concentration factor ( 1.05 ) .", "entities": [{"name": "weld", "type": "engineering feature", "pos": [24, 28]}, {"name": "fillet", "type": "engineering feature", "pos": [57, 63]}, {"name": "joint", "type": "concept or principle", "pos": [71, 76]}, {"name": "weld bead", "type": "concept or principle", "pos": [102, 111]}, {"name": "stress concentration", "type": "process characterization", "pos": [128, 148]}]}, {"sentence": "For the fillet welded T-joint with MTT design , the stress concentration of weld toe decreased dramatically with the increase of the index of designed shape , but there was a minor difference of stress concentration at weld root between the weld beads with MTT design .", "entities": [{"name": "fillet", "type": "engineering feature", "pos": [8, 14]}, {"name": "T-joint", "type": "engineering feature", "pos": [22, 29]}, {"name": "design", "type": "engineering feature", "pos": [39, 45]}, {"name": "stress concentration", "type": "process characterization", "pos": [52, 72]}, {"name": "weld", "type": "engineering feature", "pos": [76, 80]}, {"name": "designed", "type": "engineering feature", "pos": [142, 150]}, {"name": "stress concentration", "type": "process characterization", "pos": [195, 215]}, {"name": "weld", "type": "engineering feature", "pos": [219, 223]}, {"name": "weld beads", "type": "concept or principle", "pos": [241, 251]}, {"name": "design", "type": "engineering feature", "pos": [261, 267]}]}, {"sentence": "In addition , application of low transformation temperature ( LTT ) weld metal utilizing martensitic transformation to the fillet welded T-joints can produce compressive residual stress at weld toe .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [48, 59]}, {"name": "weld metal", "type": "material", "pos": [68, 78]}, {"name": "fillet", "type": "engineering feature", "pos": [123, 129]}, {"name": "residual stress", "type": "machanical property", "pos": [170, 185]}, {"name": "weld", "type": "engineering feature", "pos": [189, 193]}]}, {"sentence": "Additive-manufactured AlSi10Mg boxes were studied under lateral crushing .", "entities": [{"name": "AlSi10Mg", "type": "material", "pos": [22, 30]}, {"name": "crushing", "type": "concept or principle", "pos": [64, 72]}]}, {"sentence": "Experimental tests and numerical simulations were conducted .", "entities": [{"name": "Experimental", "type": "concept or principle", "pos": [0, 12]}, {"name": "numerical simulations", "type": "enabling technology", "pos": [23, 44]}]}, {"sentence": "The constitutive model was calibrated using tensile tests in three directions .", "entities": [{"name": "model", "type": "concept or principle", "pos": [17, 22]}, {"name": "calibrated", "type": "concept or principle", "pos": [27, 37]}, {"name": "tensile tests", "type": "process characterization", "pos": [44, 57]}]}, {"sentence": "The influence of the yield surface , the adopted thickness and the element type were studied .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [27, 34]}, {"name": "element", "type": "material", "pos": [67, 74]}]}, {"sentence": "An experimental and numerical study on the quasi-static loading of AlSi10Mg square boxes produced by selective laser melting ( SLM ) was carried out .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [3, 15]}, {"name": "quasi-static", "type": "concept or principle", "pos": [43, 55]}, {"name": "AlSi10Mg", "type": "material", "pos": [67, 75]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [101, 124]}, {"name": "SLM", "type": "manufacturing process", "pos": [127, 130]}]}, {"sentence": "The goal was to evaluate the applicability of common finite element modelling techniques to 3D-printed parts at material and component scales , under large deformations and fracture .", "entities": [{"name": "finite element modelling", "type": "process characterization", "pos": [53, 77]}, {"name": "3D-printed parts", "type": "application", "pos": [92, 108]}, {"name": "material", "type": "material", "pos": [112, 120]}, {"name": "component", "type": "machine or equipment", "pos": [125, 134]}, {"name": "deformations", "type": "concept or principle", "pos": [156, 168]}, {"name": "fracture", "type": "concept or principle", "pos": [173, 181]}]}, {"sentence": "Uniaxial tensile specimens were extracted and tested at different orientations , and a hypo-elastic–plastic model with Voce hardening and Cockcroft–Latham ’ s fracture criterion was calibrated against the experimental results .", "entities": [{"name": "tensile specimens", "type": "machine or equipment", "pos": [9, 26]}, {"name": "extracted", "type": "concept or principle", "pos": [32, 41]}, {"name": "orientations", "type": "concept or principle", "pos": [66, 78]}, {"name": "model", "type": "concept or principle", "pos": [108, 113]}, {"name": "hardening", "type": "manufacturing process", "pos": [124, 133]}, {"name": "s", "type": "material", "pos": [157, 158]}, {"name": "fracture", "type": "concept or principle", "pos": [159, 167]}, {"name": "calibrated", "type": "concept or principle", "pos": [182, 192]}, {"name": "experimental", "type": "concept or principle", "pos": [205, 217]}]}, {"sentence": "The boxes were crushed laterally until failure using a spherical actuator .", "entities": [{"name": "failure", "type": "concept or principle", "pos": [39, 46]}, {"name": "spherical", "type": "concept or principle", "pos": [55, 64]}, {"name": "actuator", "type": "machine or equipment", "pos": [65, 73]}]}, {"sentence": "The considered material and finite element models were proved well suited for the prediction of the structural response of the additively manufactured components in the studied scenario .", "entities": [{"name": "material", "type": "material", "pos": [15, 23]}, {"name": "finite element models", "type": "concept or principle", "pos": [28, 49]}, {"name": "prediction", "type": "concept or principle", "pos": [82, 92]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [127, 150]}]}, {"sentence": "Wire and arc additive manufacturing ( WAAM ) is an efficient technique for fabricating large and complex components that are applied in the manufacturing industry .", "entities": [{"name": "Wire and arc additive manufacturing", "type": "manufacturing process", "pos": [0, 35]}, {"name": "WAAM", "type": "manufacturing process", "pos": [38, 42]}, {"name": "fabricating", "type": "manufacturing process", "pos": [75, 86]}, {"name": "components", "type": "machine or equipment", "pos": [105, 115]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [140, 153]}, {"name": "industry", "type": "application", "pos": [154, 162]}]}, {"sentence": "In this study , anisotropic mechanical properties of a low-carbon high-strength steel component fabricated by WAAM were investigated via mechanical testing , and the transversal and longitudinal deformation behavior of the component were studied using the digital image correlation ( DIC ) method .", "entities": [{"name": "anisotropic", "type": "machanical property", "pos": [16, 27]}, {"name": "properties", "type": "concept or principle", "pos": [39, 49]}, {"name": "steel", "type": "material", "pos": [80, 85]}, {"name": "component", "type": "machine or equipment", "pos": [86, 95]}, {"name": "WAAM", "type": "manufacturing process", "pos": [110, 114]}, {"name": "mechanical testing", "type": "process characterization", "pos": [137, 155]}, {"name": "deformation", "type": "concept or principle", "pos": [195, 206]}, {"name": "component", "type": "machine or equipment", "pos": [223, 232]}, {"name": "digital image correlation", "type": "concept or principle", "pos": [256, 281]}, {"name": "DIC", "type": "concept or principle", "pos": [284, 287]}]}, {"sentence": "Additionally , the features of microstructure , texture , and fracture mode of the inter-layer area and deposited area were also investigated to reveal the mechanism of anisotropy .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [31, 45]}, {"name": "texture", "type": "engineering feature", "pos": [48, 55]}, {"name": "fracture", "type": "concept or principle", "pos": [62, 70]}, {"name": "area", "type": "process parameter", "pos": [95, 99]}, {"name": "area", "type": "process parameter", "pos": [114, 118]}, {"name": "mechanism", "type": "concept or principle", "pos": [156, 165]}, {"name": "anisotropy", "type": "machanical property", "pos": [169, 179]}]}, {"sentence": "The results showed the mechanical properties of longitudinal specimens were inferior to that of the transversal specimens .", "entities": [{"name": "mechanical properties", "type": "concept or principle", "pos": [23, 44]}]}, {"sentence": "Several strain concentration zones in the longitudinal specimen were relevant to the inter-layer characteristics observed from the fracture surface and macrostructure , which was confirmed by the strain evolution recorded by DIC .", "entities": [{"name": "strain", "type": "machanical property", "pos": [8, 14]}, {"name": "fracture", "type": "concept or principle", "pos": [131, 139]}, {"name": "strain", "type": "machanical property", "pos": [196, 202]}, {"name": "evolution", "type": "concept or principle", "pos": [203, 212]}, {"name": "DIC", "type": "concept or principle", "pos": [225, 228]}]}, {"sentence": "The inter-layer areas were proved to be the weak link in the deposited component by scanning electron microscope ( SEM ) and electron backscatter diffraction ( EBSD ) analysis results , including various phase composition , phase morphology , misorientation angle , grain size , Schmid factor , and texture .", "entities": [{"name": "areas", "type": "process parameter", "pos": [16, 21]}, {"name": "be", "type": "material", "pos": [37, 39]}, {"name": "component", "type": "machine or equipment", "pos": [71, 80]}, {"name": "scanning electron microscope", "type": "machine or equipment", "pos": [84, 112]}, {"name": "SEM", "type": "process characterization", "pos": [115, 118]}, {"name": "electron backscatter diffraction", "type": "process characterization", "pos": [125, 157]}, {"name": "EBSD", "type": "process characterization", "pos": [160, 164]}, {"name": "phase composition", "type": "concept or principle", "pos": [204, 221]}, {"name": "phase morphology", "type": "concept or principle", "pos": [224, 240]}, {"name": "grain size", "type": "machanical property", "pos": [266, 276]}, {"name": "texture", "type": "engineering feature", "pos": [299, 306]}]}, {"sentence": "Finally , based on the fractography analysis , anisotropy resulted from inter-layer zones is also confirmed via the comparison of transversal and longitudinal fracture morphology .", "entities": [{"name": "fractography", "type": "process characterization", "pos": [23, 35]}, {"name": "anisotropy", "type": "machanical property", "pos": [47, 57]}, {"name": "fracture", "type": "concept or principle", "pos": [159, 167]}]}, {"sentence": "In the present work , a novel direct energy deposition method for metal additive manufacturing is developed employing laminar plasma as the heat source .", "entities": [{"name": "direct energy deposition", "type": "manufacturing process", "pos": [30, 54]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [66, 94]}, {"name": "plasma", "type": "concept or principle", "pos": [126, 132]}, {"name": "as", "type": "material", "pos": [133, 135]}, {"name": "heat source", "type": "concept or principle", "pos": [140, 151]}]}, {"sentence": "With a combination of modified process parameters , a high-performance 308L stainless steel component with four hollow straight walls is prepared .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [31, 49]}, {"name": "stainless steel", "type": "material", "pos": [76, 91]}, {"name": "component", "type": "machine or equipment", "pos": [92, 101]}]}, {"sentence": "The behavior of phase formation , microstructure , density and mechanical properties of the samples with different heights were investigated .", "entities": [{"name": "phase", "type": "concept or principle", "pos": [16, 21]}, {"name": "microstructure", "type": "concept or principle", "pos": [34, 48]}, {"name": "density", "type": "machanical property", "pos": [51, 58]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [63, 84]}, {"name": "samples", "type": "concept or principle", "pos": [92, 99]}]}, {"sentence": "Transformation from columnar to equiaxed dendrites can be observed as the height of wall increases from the substrate to about 30 mm .", "entities": [{"name": "dendrites", "type": "biomedical", "pos": [41, 50]}, {"name": "be", "type": "material", "pos": [55, 57]}, {"name": "as", "type": "material", "pos": [67, 69]}, {"name": "substrate", "type": "material", "pos": [108, 117]}, {"name": "mm", "type": "manufacturing process", "pos": [130, 132]}]}, {"sentence": "The average density of the sample reaches 98.3 % .", "entities": [{"name": "average", "type": "concept or principle", "pos": [4, 11]}, {"name": "sample", "type": "concept or principle", "pos": [27, 33]}]}, {"sentence": "Anisotropic property is observed in the bottom and middle regions , while the top region is isotropic .", "entities": [{"name": "Anisotropic", "type": "machanical property", "pos": [0, 11]}, {"name": "isotropic", "type": "machanical property", "pos": [92, 101]}]}, {"sentence": "Laser welding–brazing of Ti/Al butt joints was performed with coaxial Al–10Si–Mg powders feeding .", "entities": [{"name": "Laser", "type": "enabling technology", "pos": [0, 5]}, {"name": "powders", "type": "material", "pos": [81, 88]}]}, {"sentence": "The experimental results indicated that a sound Ti/Al butt joint could be obtained by an additive layer approach .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "joint", "type": "concept or principle", "pos": [59, 64]}, {"name": "be", "type": "material", "pos": [71, 73]}, {"name": "additive", "type": "material", "pos": [89, 97]}]}, {"sentence": "The influence of the laser melting deposition layers on the weld appearance , interfacial microstructure and tensile properties were investigated .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [21, 26]}, {"name": "deposition layers", "type": "process parameter", "pos": [35, 52]}, {"name": "weld", "type": "engineering feature", "pos": [60, 64]}, {"name": "microstructure", "type": "concept or principle", "pos": [90, 104]}, {"name": "tensile properties", "type": "machanical property", "pos": [109, 127]}]}, {"sentence": "The morphology and thickness distributions of the interfacial intermetallic compounds ( IMC ) at the brazing interface along the thickness direction of the joint varied with the number of deposition layers .", "entities": [{"name": "morphology", "type": "concept or principle", "pos": [4, 14]}, {"name": "distributions", "type": "concept or principle", "pos": [29, 42]}, {"name": "intermetallic compounds", "type": "material", "pos": [62, 85]}, {"name": "brazing", "type": "application", "pos": [101, 108]}, {"name": "joint", "type": "concept or principle", "pos": [156, 161]}, {"name": "deposition layers", "type": "process parameter", "pos": [188, 205]}]}, {"sentence": "Continuous serrated IMC was obtained in joints produced by seven deposition layers , and the IMC layer was distributed homogenously along the thickness direction .", "entities": [{"name": "deposition layers", "type": "process parameter", "pos": [65, 82]}, {"name": "layer", "type": "process parameter", "pos": [97, 102]}]}, {"sentence": "The microstructure of the IMC layer was composed of a nanosized granular Ti7Al5Si12 phase and serrated Ti ( Al , Si ) 3 phase .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "layer", "type": "process parameter", "pos": [30, 35]}, {"name": "Ti7Al5Si12", "type": "material", "pos": [73, 83]}, {"name": "phase", "type": "concept or principle", "pos": [84, 89]}, {"name": "Ti", "type": "material", "pos": [103, 105]}, {"name": "Al", "type": "material", "pos": [108, 110]}, {"name": "Si", "type": "material", "pos": [113, 115]}, {"name": "phase", "type": "concept or principle", "pos": [120, 125]}]}, {"sentence": "The maximum tensile joint strength reached 240 MPa , 80 % of that of the aluminum base metal , and the lower tensile strength of the other joints was caused by insufficient IMC layer or a porosity defect .", "entities": [{"name": "tensile", "type": "machanical property", "pos": [12, 19]}, {"name": "joint", "type": "concept or principle", "pos": [20, 25]}, {"name": "MPa", "type": "concept or principle", "pos": [47, 50]}, {"name": "aluminum", "type": "material", "pos": [73, 81]}, {"name": "metal", "type": "material", "pos": [87, 92]}, {"name": "tensile strength", "type": "machanical property", "pos": [109, 125]}, {"name": "layer", "type": "process parameter", "pos": [177, 182]}, {"name": "porosity", "type": "machanical property", "pos": [188, 196]}, {"name": "defect", "type": "concept or principle", "pos": [197, 203]}]}, {"sentence": "The bypasB-coupled wire arc additive manufacturing ( WAAM ) process was studied , and the arc characteristics and droplet transfer behavior during the deposition process were examined .", "entities": [{"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [19, 50]}, {"name": "WAAM", "type": "manufacturing process", "pos": [53, 57]}, {"name": "process", "type": "concept or principle", "pos": [60, 67]}, {"name": "arc", "type": "concept or principle", "pos": [90, 93]}, {"name": "droplet", "type": "concept or principle", "pos": [114, 121]}, {"name": "deposition process", "type": "manufacturing process", "pos": [151, 169]}]}, {"sentence": "The effects of the bypass current , wire feeding speed , wire feeding height , and wire feeding angle on the droplet transfer mode were investigated via a single variable experiment .", "entities": [{"name": "wire feeding", "type": "process parameter", "pos": [36, 48]}, {"name": "wire feeding", "type": "process parameter", "pos": [57, 69]}, {"name": "wire feeding", "type": "process parameter", "pos": [83, 95]}, {"name": "droplet", "type": "concept or principle", "pos": [109, 116]}, {"name": "experiment", "type": "concept or principle", "pos": [171, 181]}]}, {"sentence": "There are two primary modes of droplet transfer during the deposition process : free droplet transfer and bridging transfer .", "entities": [{"name": "droplet", "type": "concept or principle", "pos": [31, 38]}, {"name": "deposition process", "type": "manufacturing process", "pos": [59, 77]}, {"name": "droplet", "type": "concept or principle", "pos": [85, 92]}, {"name": "bridging", "type": "concept or principle", "pos": [106, 114]}]}, {"sentence": "When the transfer process is in the bridging transfer mode , a smooth deposition wall is obtained .", "entities": [{"name": "process", "type": "concept or principle", "pos": [18, 25]}, {"name": "bridging", "type": "concept or principle", "pos": [36, 44]}, {"name": "deposition", "type": "concept or principle", "pos": [70, 80]}]}, {"sentence": "As the wire feeding speed increases , the transfer mode of the droplet gradually changes from the free transfer mode to the bridging transfer mode .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "wire feeding", "type": "process parameter", "pos": [7, 19]}, {"name": "droplet", "type": "concept or principle", "pos": [63, 70]}, {"name": "bridging", "type": "concept or principle", "pos": [124, 132]}]}, {"sentence": "The larger the distance between the wire tip and the surface of the base metal , the higher the wire feed speed required to achieve bridging transfer .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [53, 60]}, {"name": "base metal", "type": "material", "pos": [68, 78]}, {"name": "feed", "type": "process parameter", "pos": [101, 105]}, {"name": "bridging", "type": "concept or principle", "pos": [132, 140]}]}, {"sentence": "There is a linear relationship between the droplet diameter and the cubic root of the wire feeding speed .", "entities": [{"name": "droplet", "type": "concept or principle", "pos": [43, 50]}, {"name": "diameter", "type": "concept or principle", "pos": [51, 59]}, {"name": "wire feeding", "type": "process parameter", "pos": [86, 98]}]}, {"sentence": "Finally , the droplet transfer behavior is discussed using droplet force analysis .", "entities": [{"name": "droplet", "type": "concept or principle", "pos": [14, 21]}, {"name": "droplet", "type": "concept or principle", "pos": [59, 66]}]}, {"sentence": "This article describes the results of the study of optimal conditions for welding alloy products - Inconel 718 , made with the method of layered laser growing ( SLM ) .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [74, 81]}, {"name": "alloy", "type": "material", "pos": [82, 87]}, {"name": "Inconel 718", "type": "material", "pos": [99, 110]}, {"name": "laser", "type": "enabling technology", "pos": [145, 150]}, {"name": "SLM", "type": "manufacturing process", "pos": [161, 164]}]}, {"sentence": "The results of the study of the influence of linear energy , rigid fixation of parts during welding and heat treatment on microhardness , welding deformation and the microstructure of the welded joint are presented .", "entities": [{"name": "welding", "type": "manufacturing process", "pos": [92, 99]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [104, 118]}, {"name": "microhardness", "type": "concept or principle", "pos": [122, 135]}, {"name": "welding", "type": "manufacturing process", "pos": [138, 145]}, {"name": "deformation", "type": "concept or principle", "pos": [146, 157]}, {"name": "microstructure", "type": "concept or principle", "pos": [166, 180]}, {"name": "welded joint", "type": "engineering feature", "pos": [188, 200]}]}, {"sentence": "An adaptive quadrature technique for calculating linear heat conduction in metal additive manufacturing was derived .", "entities": [{"name": "heat conduction", "type": "concept or principle", "pos": [56, 71]}, {"name": "metal additive manufacturing", "type": "manufacturing process", "pos": [75, 103]}]}, {"sentence": "A melt pool tracking algorithm is also described for improved calculation efficiency .", "entities": [{"name": "melt pool", "type": "material", "pos": [2, 11]}, {"name": "algorithm", "type": "concept or principle", "pos": [21, 30]}]}, {"sentence": "The adaptive algorithm was verified against an analytical solution and Riemann sum integration approach .", "entities": [{"name": "algorithm", "type": "concept or principle", "pos": [13, 22]}, {"name": "analytical solution", "type": "concept or principle", "pos": [47, 66]}]}, {"sentence": "The adaptive integration technique is demonstrated for a highly transient scan pattern at long length and time scales .", "entities": [{"name": "transient", "type": "concept or principle", "pos": [64, 73]}, {"name": "scan pattern", "type": "process parameter", "pos": [74, 86]}, {"name": "time scales", "type": "engineering feature", "pos": [106, 117]}]}, {"sentence": "Solidification dynamics are important for determining final microstructure in additively manufactured parts .", "entities": [{"name": "Solidification", "type": "concept or principle", "pos": [0, 14]}, {"name": "microstructure", "type": "concept or principle", "pos": [60, 74]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [78, 101]}]}, {"sentence": "Recently , researchers have adopted semi-analytical approaches for predicting heat conduction effects at length and time scales not accessible to complex multi-physics numerical models .", "entities": [{"name": "semi-analytical approaches", "type": "concept or principle", "pos": [36, 62]}, {"name": "heat conduction", "type": "concept or principle", "pos": [78, 93]}, {"name": "time scales", "type": "engineering feature", "pos": [116, 127]}]}, {"sentence": "The present work focuses on improving a semi-analytical heat conduction model for additive manufacturing by designing an adaptive integration technique .", "entities": [{"name": "heat conduction", "type": "concept or principle", "pos": [56, 71]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [82, 104]}]}, {"sentence": "The proposed scheme considers material properties , process conditions , and the inherent physical behavior of the transient heat conduction around both stationary and moving heat sources .", "entities": [{"name": "material properties", "type": "concept or principle", "pos": [30, 49]}, {"name": "process", "type": "concept or principle", "pos": [52, 59]}, {"name": "transient heat conduction", "type": "concept or principle", "pos": [115, 140]}, {"name": "heat sources", "type": "concept or principle", "pos": [175, 187]}]}, {"sentence": "The full algorithm is then implemented and compared against a simple Riemann sum integration scheme for a variety of cases that highlight process and material variations relevant to additive manufacturing .", "entities": [{"name": "algorithm", "type": "concept or principle", "pos": [9, 18]}, {"name": "simple", "type": "manufacturing process", "pos": [62, 68]}, {"name": "process", "type": "concept or principle", "pos": [138, 145]}, {"name": "material", "type": "material", "pos": [150, 158]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [182, 204]}]}, {"sentence": "The new scheme is shown to have significant improvements in computational efficiency , solution accuracy , and usability .", "entities": [{"name": "computational efficiency", "type": "concept or principle", "pos": [60, 84]}, {"name": "solution", "type": "concept or principle", "pos": [87, 95]}, {"name": "accuracy", "type": "process characterization", "pos": [96, 104]}]}, {"sentence": "WAAM was carried out to build a flange using robotic GMAW with AA5183 wire on an AA6082 support plate .", "entities": [{"name": "WAAM", "type": "manufacturing process", "pos": [0, 4]}, {"name": "build", "type": "process parameter", "pos": [24, 29]}, {"name": "GMAW", "type": "manufacturing process", "pos": [53, 57]}, {"name": "support", "type": "application", "pos": [88, 95]}]}, {"sentence": "Some intergranular hot cracking was found in the reheated areas close to the fusion boundary .", "entities": [{"name": "hot cracking", "type": "concept or principle", "pos": [19, 31]}, {"name": "areas", "type": "process parameter", "pos": [58, 63]}, {"name": "fusion boundary", "type": "concept or principle", "pos": [77, 92]}]}, {"sentence": "The hardness level was around 75 kg/mm2 and 70–75 kg/mm2 in the hoorisontal and vertical plane , respectively .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [4, 12]}, {"name": "vertical", "type": "concept or principle", "pos": [80, 88]}]}, {"sentence": "Reasonable isotropic yield and tensile strength of 145 and 293MPa were achieved , respectively .", "entities": [{"name": "isotropic", "type": "machanical property", "pos": [11, 20]}, {"name": "tensile strength", "type": "machanical property", "pos": [31, 47]}]}, {"sentence": "The present study addresses wire arc additive manufacturing of AA5183 aluminium alloy using conventional gas metal arc welding deposition on 20 mm thick AA6082-T6 plate as support material .", "entities": [{"name": "wire arc additive manufacturing", "type": "manufacturing process", "pos": [28, 59]}, {"name": "aluminium alloy", "type": "material", "pos": [70, 85]}, {"name": "gas metal arc welding", "type": "manufacturing process", "pos": [105, 126]}, {"name": "deposition", "type": "concept or principle", "pos": [127, 137]}, {"name": "mm", "type": "manufacturing process", "pos": [144, 146]}, {"name": "as", "type": "material", "pos": [169, 171]}, {"name": "material", "type": "material", "pos": [180, 188]}]}, {"sentence": "Microscopic examination demonstrates that the process is feasible , but can be further optimized to reduce gas porosity and hot cracking .", "entities": [{"name": "process", "type": "concept or principle", "pos": [46, 53]}, {"name": "be", "type": "material", "pos": [76, 78]}, {"name": "gas", "type": "concept or principle", "pos": [107, 110]}, {"name": "hot cracking", "type": "concept or principle", "pos": [124, 136]}]}, {"sentence": "Hardness measurements confirmed relative high hardness , i.e. , around 75 kg/mm2 in the horizontal plane , and between 70 and 75 kg/mm2 in the vertical plane down to the AA6082 support plate with 100 kg/mm2 .", "entities": [{"name": "Hardness", "type": "machanical property", "pos": [0, 8]}, {"name": "hardness", "type": "machanical property", "pos": [46, 54]}, {"name": "vertical", "type": "concept or principle", "pos": [143, 151]}, {"name": "support", "type": "application", "pos": [177, 184]}]}, {"sentence": "Mechanical testing resulted in yield and tensile strength of 145 and 293 MPa , respectively , with lowest value in the through thickness ( Z ) direction .", "entities": [{"name": "Mechanical testing", "type": "process characterization", "pos": [0, 18]}, {"name": "tensile strength", "type": "machanical property", "pos": [41, 57]}, {"name": "MPa", "type": "concept or principle", "pos": [73, 76]}]}, {"sentence": "The ductility was high for orientations parallel ( X ) with and perpendicular ( Y ) to the layer deposition direction .", "entities": [{"name": "ductility", "type": "machanical property", "pos": [4, 13]}, {"name": "orientations", "type": "concept or principle", "pos": [27, 39]}, {"name": "Y", "type": "material", "pos": [80, 81]}, {"name": "layer", "type": "process parameter", "pos": [91, 96]}, {"name": "deposition direction", "type": "process parameter", "pos": [97, 117]}]}, {"sentence": "The thickness of intermetallic compounds ( IMCs ) is one of the main factors affecting the weld quality .", "entities": [{"name": "intermetallic compounds", "type": "material", "pos": [17, 40]}, {"name": "weld quality", "type": "process parameter", "pos": [91, 103]}]}, {"sentence": "In addition , the IMC thickness will affect the product functionality , e.g. , the thermal or electrical conductivity of the IMC layer can be the limiting factor in the related applications .", "entities": [{"name": "product functionality", "type": "process characterization", "pos": [48, 69]}, {"name": "electrical conductivity", "type": "machanical property", "pos": [94, 117]}, {"name": "layer", "type": "process parameter", "pos": [129, 134]}, {"name": "be", "type": "material", "pos": [139, 141]}]}, {"sentence": "Modeling and prediction of the IMC thickness in the friction stir welding ( FSW ) process is an important role that has not been elaborated in the literature .", "entities": [{"name": "Modeling", "type": "enabling technology", "pos": [0, 8]}, {"name": "prediction", "type": "concept or principle", "pos": [13, 23]}, {"name": "friction stir welding", "type": "manufacturing process", "pos": [52, 73]}, {"name": "FSW", "type": "manufacturing process", "pos": [76, 79]}, {"name": "process", "type": "concept or principle", "pos": [82, 89]}]}, {"sentence": "That model is suitable for the pure ( intrinsic ) diffusion process and does not consider the main unique characteristic of FSW , i.e. , the stirring and subsequent linear velocity of particles ( that has an impact on the diffusion process ) .", "entities": [{"name": "model", "type": "concept or principle", "pos": [5, 10]}, {"name": "diffusion", "type": "concept or principle", "pos": [50, 59]}, {"name": "FSW", "type": "manufacturing process", "pos": [124, 127]}, {"name": "particles", "type": "concept or principle", "pos": [184, 193]}, {"name": "impact", "type": "concept or principle", "pos": [208, 214]}, {"name": "diffusion", "type": "concept or principle", "pos": [222, 231]}]}, {"sentence": "To address this research gap , first , we develop a new model for the IMC thickness that takes the velocity of particles into account .", "entities": [{"name": "research", "type": "concept or principle", "pos": [16, 24]}, {"name": "model", "type": "concept or principle", "pos": [56, 61]}, {"name": "particles", "type": "concept or principle", "pos": [111, 120]}]}, {"sentence": "Second , we provide an analysis on the velocity of particles in FSW based on vortex dynamics .", "entities": [{"name": "particles", "type": "concept or principle", "pos": [51, 60]}, {"name": "FSW", "type": "manufacturing process", "pos": [64, 67]}]}, {"sentence": "Third , we analyze the proposed IMC thickness model with experimental data from the literature , discuss the added values of our model , and finally examine a case study .", "entities": [{"name": "model", "type": "concept or principle", "pos": [46, 51]}, {"name": "experimental data", "type": "concept or principle", "pos": [57, 74]}, {"name": "model", "type": "concept or principle", "pos": [129, 134]}, {"name": "case study", "type": "concept or principle", "pos": [159, 169]}]}, {"sentence": "Understanding various manufacturing processes can further lead to the improvement of the existing processes and the development of novel processes .", "entities": [{"name": "manufacturing processes", "type": "manufacturing process", "pos": [22, 45]}, {"name": "lead", "type": "material", "pos": [58, 62]}, {"name": "processes", "type": "concept or principle", "pos": [98, 107]}, {"name": "processes", "type": "concept or principle", "pos": [137, 146]}]}, {"sentence": "Inconel 718 thin wall was fabricated by PPAAM .", "entities": [{"name": "Inconel 718", "type": "material", "pos": [0, 11]}, {"name": "fabricated", "type": "concept or principle", "pos": [26, 36]}]}, {"sentence": "Both CET and DCT can be found in the aB-built sample .", "entities": [{"name": "be", "type": "material", "pos": [21, 23]}, {"name": "sample", "type": "concept or principle", "pos": [46, 52]}]}, {"sentence": "Temperature gradient and SDA remelting contribute to grain structure transformation .", "entities": [{"name": "Temperature gradient", "type": "process parameter", "pos": [0, 20]}, {"name": "grain structure", "type": "concept or principle", "pos": [53, 68]}]}, {"sentence": "The morphology of Nb-rich phases is sensitive to the grain structure and cooling rate .", "entities": [{"name": "morphology", "type": "concept or principle", "pos": [4, 14]}, {"name": "grain structure", "type": "concept or principle", "pos": [53, 68]}, {"name": "cooling rate", "type": "process parameter", "pos": [73, 85]}]}, {"sentence": "Abundant γ′/γ″ phases precipitate during HT and enhance mechanical properties .", "entities": [{"name": "precipitate", "type": "material", "pos": [22, 33]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [56, 77]}]}, {"sentence": "Inconel 718 thin wall has been fabricated by pulsed plasma arc additive manufacturing ( PPAAM ) technology , which is more convenient and cost-saving in comparison with other high energy beam additive manufacturing technologies .", "entities": [{"name": "Inconel 718", "type": "material", "pos": [0, 11]}, {"name": "fabricated", "type": "concept or principle", "pos": [31, 41]}, {"name": "pulsed plasma arc additive manufacturing", "type": "manufacturing process", "pos": [45, 85]}, {"name": "technology", "type": "concept or principle", "pos": [96, 106]}, {"name": "beam", "type": "machine or equipment", "pos": [187, 191]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [192, 214]}]}, {"sentence": "During PPAAM , heat input was reduced layer by layer to decrease the heat accumulation .", "entities": [{"name": "heat", "type": "concept or principle", "pos": [15, 19]}, {"name": "layer by layer", "type": "concept or principle", "pos": [38, 52]}, {"name": "heat accumulation", "type": "machanical property", "pos": [69, 86]}]}, {"sentence": "The aB-fabricated sample exhibited diverse grain morphologies at different locations .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [18, 24]}, {"name": "grain", "type": "concept or principle", "pos": [43, 48]}]}, {"sentence": "Columnar dendrites , cellular dendrites , cells and equiaxial dendrites accompanying many Laves phases , MC particles in the interdendritic regions can be observed .", "entities": [{"name": "Columnar dendrites", "type": "material", "pos": [0, 18]}, {"name": "dendrites", "type": "biomedical", "pos": [30, 39]}, {"name": "cells", "type": "application", "pos": [42, 47]}, {"name": "dendrites", "type": "biomedical", "pos": [62, 71]}, {"name": "Laves phases", "type": "concept or principle", "pos": [90, 102]}, {"name": "MC", "type": "material", "pos": [105, 107]}, {"name": "be", "type": "material", "pos": [152, 154]}]}, {"sentence": "The largest primary dendritic arm spacing ( ∼41.7 μm ) and Nb-rich phases area fraction ( 3.68 % ) were found in the middle region of the aB-fabricated sample .", "entities": [{"name": "dendritic arm spacing", "type": "biomedical", "pos": [20, 41]}, {"name": "area", "type": "process parameter", "pos": [74, 78]}, {"name": "sample", "type": "concept or principle", "pos": [152, 158]}]}, {"sentence": "After standard heat treatment , Laves phases dissolved into the matrix so that a number of γ′ and γ″ phases were formed .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [6, 14]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [15, 29]}, {"name": "Laves phases", "type": "concept or principle", "pos": [32, 44]}]}, {"sentence": "Besides , some rod-like δ phases could also be found near grain boundaries .", "entities": [{"name": "be", "type": "material", "pos": [44, 46]}, {"name": "grain boundaries", "type": "concept or principle", "pos": [58, 74]}]}, {"sentence": "The mechanisms of microstructural evolution and phases precipitation were analyzed in detail .", "entities": [{"name": "microstructural evolution", "type": "concept or principle", "pos": [18, 43]}, {"name": "precipitation", "type": "concept or principle", "pos": [55, 68]}]}, {"sentence": "The test values of the aB-fabricated sample demonstrated a slightly higher tensile strength and dramatically outstanding ductility compared with cast Inconel 718 alloy .", "entities": [{"name": "sample", "type": "concept or principle", "pos": [37, 43]}, {"name": "tensile strength", "type": "machanical property", "pos": [75, 91]}, {"name": "ductility", "type": "machanical property", "pos": [121, 130]}, {"name": "cast", "type": "manufacturing process", "pos": [145, 149]}, {"name": "alloy", "type": "material", "pos": [162, 167]}]}, {"sentence": "Applying standard heat treatment could remarkably enhance the tensile strength but decrease the ductility and make them comparable with wrought Inconel 718 alloy due to the precipitation of strengthening phases .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [9, 17]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [18, 32]}, {"name": "tensile strength", "type": "machanical property", "pos": [62, 78]}, {"name": "ductility", "type": "machanical property", "pos": [96, 105]}, {"name": "wrought Inconel 718 alloy", "type": "material", "pos": [136, 161]}, {"name": "precipitation", "type": "concept or principle", "pos": [173, 186]}, {"name": "strengthening phases", "type": "concept or principle", "pos": [190, 210]}]}, {"sentence": "Maraging steel microlattice was printed by SLM , crushed , and simulated using FEM .", "entities": [{"name": "Maraging steel", "type": "material", "pos": [0, 14]}, {"name": "SLM", "type": "manufacturing process", "pos": [43, 46]}, {"name": "FEM", "type": "concept or principle", "pos": [79, 82]}]}, {"sentence": "SEM and micro-CT was performed on aB-built samples to verify structural integrity .", "entities": [{"name": "SEM", "type": "process characterization", "pos": [0, 3]}, {"name": "micro-CT", "type": "process characterization", "pos": [8, 16]}, {"name": "samples", "type": "concept or principle", "pos": [43, 50]}, {"name": "structural integrity", "type": "machanical property", "pos": [61, 81]}]}, {"sentence": "Two modeling techniques are presented based on aB-built and aB-designed geometries .", "entities": [{"name": "modeling", "type": "enabling technology", "pos": [4, 12]}, {"name": "geometries", "type": "concept or principle", "pos": [72, 82]}]}, {"sentence": "FESEM was performed on the crushed lattice for failure analysis .", "entities": [{"name": "FESEM", "type": "process characterization", "pos": [0, 5]}, {"name": "lattice", "type": "concept or principle", "pos": [35, 42]}, {"name": "failure", "type": "concept or principle", "pos": [47, 54]}]}, {"sentence": "Good agreement is found between the experiment and the simulations .", "entities": [{"name": "experiment", "type": "concept or principle", "pos": [36, 46]}, {"name": "simulations", "type": "enabling technology", "pos": [55, 66]}]}, {"sentence": "Additive metal manufacturing techniques , in particular laser-based powder bed fusion methods , are revolutionary in their capabilities to fabricating new classes of lightweight and complex materials called metallic microlattices .", "entities": [{"name": "Additive", "type": "material", "pos": [0, 8]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [15, 28]}, {"name": "powder bed fusion", "type": "manufacturing process", "pos": [68, 85]}, {"name": "fabricating", "type": "manufacturing process", "pos": [139, 150]}, {"name": "lightweight", "type": "concept or principle", "pos": [166, 177]}, {"name": "materials", "type": "concept or principle", "pos": [190, 199]}, {"name": "metallic", "type": "material", "pos": [207, 215]}]}, {"sentence": "In this paper , a microlattice structure was designed for energy absorption purposes and further additively manufactured using maraging steel ( Maraging300 ) powder through Laser-powder bed fusion ( L-PBF ) technique .", "entities": [{"name": "structure", "type": "concept or principle", "pos": [31, 40]}, {"name": "designed", "type": "engineering feature", "pos": [45, 53]}, {"name": "energy absorption", "type": "process characterization", "pos": [58, 75]}, {"name": "additively manufactured", "type": "manufacturing process", "pos": [97, 120]}, {"name": "maraging steel", "type": "material", "pos": [127, 141]}, {"name": "powder", "type": "material", "pos": [158, 164]}, {"name": "bed fusion", "type": "manufacturing process", "pos": [186, 196]}, {"name": "L-PBF", "type": "manufacturing process", "pos": [199, 204]}]}, {"sentence": "In addition , several cylindrical bars and cubes in horizontal and vertical directions were manufactured to perform uniaxial tensile and compression tests on bulk L-PBF Maraging300 .", "entities": [{"name": "cylindrical", "type": "concept or principle", "pos": [22, 33]}, {"name": "vertical", "type": "concept or principle", "pos": [67, 75]}, {"name": "manufactured", "type": "concept or principle", "pos": [92, 104]}, {"name": "tensile", "type": "machanical property", "pos": [125, 132]}, {"name": "compression tests", "type": "process characterization", "pos": [137, 154]}, {"name": "L-PBF", "type": "manufacturing process", "pos": [163, 168]}]}, {"sentence": "The manufactured microlattices were characterized using different electron microscopy techniques including scanning electron microscopy and micro-CT analysis to ensure that the desired structural integrity was achieved .", "entities": [{"name": "manufactured", "type": "concept or principle", "pos": [4, 16]}, {"name": "electron microscopy", "type": "process characterization", "pos": [66, 85]}, {"name": "scanning electron microscopy", "type": "process characterization", "pos": [107, 135]}, {"name": "micro-CT analysis", "type": "process characterization", "pos": [140, 157]}, {"name": "structural integrity", "type": "machanical property", "pos": [185, 205]}]}, {"sentence": "In addition , the microlattice was then crushed using a universal mechanical testing machine to evaluate its performance experimentally under quasi-static uniaxial compressive loading conditions .", "entities": [{"name": "mechanical testing", "type": "process characterization", "pos": [66, 84]}, {"name": "machine", "type": "machine or equipment", "pos": [85, 92]}, {"name": "performance", "type": "concept or principle", "pos": [109, 120]}, {"name": "quasi-static", "type": "concept or principle", "pos": [142, 154]}, {"name": "compressive loading", "type": "machanical property", "pos": [164, 183]}]}, {"sentence": "Along with the crush , a nonlinear finite element model with predictive capabilities was then developed using commercial package ( LB-DYNA ) for axial crush of the microlattice to compare its expected performance .", "entities": [{"name": "finite element model", "type": "concept or principle", "pos": [35, 55]}, {"name": "performance", "type": "concept or principle", "pos": [201, 212]}]}, {"sentence": "Two finite element models are developed using the aB-built geometry from the printed lattice , and the aB-designed geometry .", "entities": [{"name": "finite element models", "type": "concept or principle", "pos": [4, 25]}, {"name": "geometry", "type": "concept or principle", "pos": [59, 67]}, {"name": "lattice", "type": "concept or principle", "pos": [85, 92]}, {"name": "geometry", "type": "concept or principle", "pos": [115, 123]}]}, {"sentence": "The effect of model parameters is discussed and very good agreement between the experimental results and the finite element prediction was observed .", "entities": [{"name": "model", "type": "concept or principle", "pos": [14, 19]}, {"name": "experimental", "type": "concept or principle", "pos": [80, 92]}, {"name": "finite element", "type": "concept or principle", "pos": [109, 123]}]}, {"sentence": "Finally statistical analysis of the model and failure analysis of the crushed lattice is presented .", "entities": [{"name": "model", "type": "concept or principle", "pos": [36, 41]}, {"name": "failure", "type": "concept or principle", "pos": [46, 53]}, {"name": "lattice", "type": "concept or principle", "pos": [78, 85]}]}, {"sentence": "Hybrid Metal Extrusion and Bonding Additive Manufacturing ( HYB-AM ) is a new solid-state process for the production of 3D metal structures .", "entities": [{"name": "Metal", "type": "material", "pos": [7, 12]}, {"name": "Extrusion", "type": "manufacturing process", "pos": [13, 22]}, {"name": "Bonding", "type": "concept or principle", "pos": [27, 34]}, {"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [35, 57]}, {"name": "solid-state process", "type": "concept or principle", "pos": [78, 97]}, {"name": "production", "type": "manufacturing process", "pos": [106, 116]}, {"name": "3D metal structures", "type": "engineering feature", "pos": [120, 139]}]}, {"sentence": "In HYB-AM , the wire feedstock is continuously processed through an extruder and deposited in a stringer-by-stringer manner to form layers and eventually a near net-shape component .", "entities": [{"name": "feedstock", "type": "material", "pos": [21, 30]}, {"name": "processed", "type": "concept or principle", "pos": [47, 56]}, {"name": "extruder", "type": "machine or equipment", "pos": [68, 76]}, {"name": "component", "type": "machine or equipment", "pos": [171, 180]}]}, {"sentence": "In this work , the layer bonding of AA6082 samples produced by this process has been investigated by means of tensile testing , hardness measurements and microscope analyses .", "entities": [{"name": "layer", "type": "process parameter", "pos": [19, 24]}, {"name": "bonding", "type": "concept or principle", "pos": [25, 32]}, {"name": "samples", "type": "concept or principle", "pos": [43, 50]}, {"name": "process", "type": "concept or principle", "pos": [68, 75]}, {"name": "tensile testing", "type": "process characterization", "pos": [110, 125]}, {"name": "hardness", "type": "machanical property", "pos": [128, 136]}, {"name": "microscope", "type": "machine or equipment", "pos": [154, 164]}]}, {"sentence": "Furthermore , a novel method for the fabrication of miniature tensile specimens for assessing the bond strength across the layers is presented and applied .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [37, 48]}, {"name": "tensile specimens", "type": "machine or equipment", "pos": [62, 79]}, {"name": "bond strength", "type": "concept or principle", "pos": [98, 111]}]}, {"sentence": "The test results reveal that the ultimate tensile strength is approaching that of the substrate material of the same alloy , yet with a somewhat lower elongation prior to fracture .", "entities": [{"name": "ultimate tensile strength", "type": "machanical property", "pos": [33, 58]}, {"name": "substrate material", "type": "material", "pos": [86, 104]}, {"name": "alloy", "type": "material", "pos": [117, 122]}, {"name": "elongation", "type": "machanical property", "pos": [151, 161]}, {"name": "fracture", "type": "concept or principle", "pos": [171, 179]}]}, {"sentence": "Microscope analyses show that the bonded interfaces are fully dense ; however , the fracture surfaces reveal regions of kissing-bonds and lack of bonding .", "entities": [{"name": "Microscope", "type": "machine or equipment", "pos": [0, 10]}, {"name": "fully dense", "type": "process parameter", "pos": [56, 67]}, {"name": "fracture", "type": "concept or principle", "pos": [84, 92]}, {"name": "bonding", "type": "concept or principle", "pos": [146, 153]}]}, {"sentence": "Still , these preliminary investigations indicate that the HYB-AM process , upon further optimization , has the potential of processing high quality aluminum alloy components .", "entities": [{"name": "process", "type": "concept or principle", "pos": [66, 73]}, {"name": "optimization", "type": "concept or principle", "pos": [89, 101]}, {"name": "quality", "type": "concept or principle", "pos": [141, 148]}, {"name": "aluminum alloy", "type": "material", "pos": [149, 163]}]}, {"sentence": "Ferritic/martensitic ( FM ) steels are being targeted for use in a range of advanced reactor concepts as cladding and structural components .", "entities": [{"name": "steels", "type": "material", "pos": [28, 34]}, {"name": "range", "type": "process parameter", "pos": [67, 72]}, {"name": "as", "type": "material", "pos": [102, 104]}, {"name": "structural components", "type": "concept or principle", "pos": [118, 139]}]}, {"sentence": "FM steels for nuclear reactor applications have historically been produced using traditional methods ( e.g. , casting and forging ) , but recently , additive manufacturing processes have become of interest for making FM-based components .", "entities": [{"name": "steels", "type": "material", "pos": [3, 9]}, {"name": "casting", "type": "manufacturing process", "pos": [110, 117]}, {"name": "forging", "type": "manufacturing process", "pos": [122, 129]}, {"name": "additive manufacturing processes", "type": "manufacturing process", "pos": [149, 181]}, {"name": "components", "type": "machine or equipment", "pos": [226, 236]}]}, {"sentence": "Here , the laser-blown-powder additive manufacturing process was used to fabricate an FM steel , HT9 , followed by microstructural and mechanical performance evaluations to determine the viability of future use of additive manufacturing for FM-based component fabrication .", "entities": [{"name": "additive manufacturing process", "type": "manufacturing process", "pos": [30, 60]}, {"name": "fabricate", "type": "manufacturing process", "pos": [73, 82]}, {"name": "steel", "type": "material", "pos": [89, 94]}, {"name": "microstructural", "type": "concept or principle", "pos": [115, 130]}, {"name": "mechanical", "type": "application", "pos": [135, 145]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [214, 236]}, {"name": "component", "type": "machine or equipment", "pos": [250, 259]}]}, {"sentence": "Results showed that the aB-built condition formed a layered structure with alternating layers of δ-ferrite and martensite , which resulted in anisotropic engineering and true-stress , true-strain mechanical performance .", "entities": [{"name": "layered structure", "type": "concept or principle", "pos": [52, 69]}, {"name": "martensite", "type": "material", "pos": [111, 121]}, {"name": "anisotropic", "type": "machanical property", "pos": [142, 153]}, {"name": "mechanical", "type": "application", "pos": [196, 206]}]}, {"sentence": "Post-build normalizing and tempering treatments alerted the prior austenite grain size and precipitate distributions , and drove the mechanical performance to near-isotropic properties that mimic wrought-processed properties .", "entities": [{"name": "normalizing", "type": "concept or principle", "pos": [11, 22]}, {"name": "tempering", "type": "manufacturing process", "pos": [27, 36]}, {"name": "austenite", "type": "material", "pos": [66, 75]}, {"name": "precipitate", "type": "material", "pos": [91, 102]}, {"name": "distributions", "type": "concept or principle", "pos": [103, 116]}, {"name": "mechanical", "type": "application", "pos": [133, 143]}, {"name": "properties", "type": "concept or principle", "pos": [174, 184]}, {"name": "mimic", "type": "machine or equipment", "pos": [190, 195]}, {"name": "properties", "type": "concept or principle", "pos": [214, 224]}]}, {"sentence": "A new method to forming bulk metallic glass employed ultrasonic additive manufacturing is proposed .", "entities": [{"name": "forming", "type": "manufacturing process", "pos": [16, 23]}, {"name": "metallic glass", "type": "material", "pos": [29, 43]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [53, 86]}]}, {"sentence": "The bulk Ni-based metallic glass can be formed layer-by-layer with ultrasonic vibration energy .", "entities": [{"name": "metallic glass", "type": "material", "pos": [18, 32]}, {"name": "be", "type": "material", "pos": [37, 39]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [47, 61]}, {"name": "ultrasonic vibration", "type": "process parameter", "pos": [67, 87]}]}, {"sentence": "The internal hardness and modulus of the bulk metallic glass are higher with ultrasonic additive manufacturing .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [13, 21]}, {"name": "metallic glass", "type": "material", "pos": [46, 60]}, {"name": "ultrasonic additive manufacturing", "type": "manufacturing process", "pos": [77, 110]}]}, {"sentence": "It is difficult to produce bulk blanks directly from metallic glass , which limits its application .", "entities": [{"name": "metallic glass", "type": "material", "pos": [53, 67]}, {"name": "limits", "type": "concept or principle", "pos": [76, 82]}]}, {"sentence": "Ni-based metallic-glass thin strips that can be manufactured easily were used to manufacture bulk metallic glass additively by ultrasonic bonding .", "entities": [{"name": "be", "type": "material", "pos": [45, 47]}, {"name": "manufacture", "type": "concept or principle", "pos": [48, 59]}, {"name": "metallic glass", "type": "material", "pos": [98, 112]}, {"name": "ultrasonic bonding", "type": "manufacturing process", "pos": [127, 145]}]}, {"sentence": "The effects of ultrasonic vibration energy on the quality of the additive manufacturing of bulk Ni-based metallic glass were studied .", "entities": [{"name": "ultrasonic vibration", "type": "process parameter", "pos": [15, 35]}, {"name": "quality", "type": "concept or principle", "pos": [50, 57]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [65, 87]}, {"name": "metallic glass", "type": "material", "pos": [105, 119]}]}, {"sentence": "The experimental results showed that a fully amorphous structure of bulk Ni-based metallic glass can be obtained with an appropriate ultrasonic vibration energy .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "amorphous structure", "type": "concept or principle", "pos": [45, 64]}, {"name": "metallic glass", "type": "material", "pos": [82, 96]}, {"name": "be", "type": "material", "pos": [101, 103]}, {"name": "ultrasonic vibration", "type": "process parameter", "pos": [133, 153]}]}, {"sentence": "The thermal properties were almost unchanged , and the hardness and elastic modulus of the Ni-based metallic glass were improved compared with the original material .", "entities": [{"name": "thermal properties", "type": "concept or principle", "pos": [4, 22]}, {"name": "hardness", "type": "machanical property", "pos": [55, 63]}, {"name": "elastic modulus", "type": "machanical property", "pos": [68, 83]}, {"name": "metallic glass", "type": "material", "pos": [100, 114]}, {"name": "material", "type": "material", "pos": [156, 164]}]}, {"sentence": "Additive manufacturing of bulk metallic glass by ultrasonic bonding can broaden the application field of metallic glass .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "metallic glass", "type": "material", "pos": [31, 45]}, {"name": "ultrasonic bonding", "type": "manufacturing process", "pos": [49, 67]}, {"name": "metallic glass", "type": "material", "pos": [105, 119]}]}, {"sentence": "A key challenge for successful exploitation of additive manufacturing ( AM ) across a broad range of industries is the development of fundamental understanding of the relationships between process control and mechanical performance of manufactured components .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [47, 69]}, {"name": "AM", "type": "manufacturing process", "pos": [72, 74]}, {"name": "range", "type": "process parameter", "pos": [92, 97]}, {"name": "industries", "type": "application", "pos": [101, 111]}, {"name": "process control", "type": "concept or principle", "pos": [189, 204]}, {"name": "mechanical", "type": "application", "pos": [209, 219]}, {"name": "manufactured", "type": "concept or principle", "pos": [235, 247]}, {"name": "components", "type": "machine or equipment", "pos": [248, 258]}]}, {"sentence": "In particular , laser beam powder bed fusion ( PBF-LB ) is identified as a key process for manufacture of metallic AM components .", "entities": [{"name": "laser beam", "type": "concept or principle", "pos": [16, 26]}, {"name": "bed fusion", "type": "manufacturing process", "pos": [34, 44]}, {"name": "as", "type": "material", "pos": [70, 72]}, {"name": "process", "type": "concept or principle", "pos": [79, 86]}, {"name": "manufacture", "type": "concept or principle", "pos": [91, 102]}, {"name": "metallic AM", "type": "manufacturing process", "pos": [106, 117]}, {"name": "components", "type": "machine or equipment", "pos": [118, 128]}]}, {"sentence": "Ti-6Al-4V alloy is an important metal alloy for numerous high-performance applications , including the biomedical and aerospace industries .", "entities": [{"name": "Ti-6Al-4V alloy", "type": "material", "pos": [0, 15]}, {"name": "metal alloy", "type": "material", "pos": [32, 43]}, {"name": "biomedical", "type": "application", "pos": [103, 113]}, {"name": "aerospace industries", "type": "application", "pos": [118, 138]}]}, {"sentence": "This paper presents initial developments on a model for microstructure prediction in PBF-LB manufacturing of Ti-6Al-4V , primarily focused on solid-state phase transformation and dislocation density evolution .", "entities": [{"name": "model", "type": "concept or principle", "pos": [46, 51]}, {"name": "microstructure", "type": "concept or principle", "pos": [56, 70]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [92, 105]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [109, 118]}, {"name": "solid-state phase", "type": "concept or principle", "pos": [142, 159]}, {"name": "dislocation density", "type": "machanical property", "pos": [179, 198]}]}, {"sentence": "The motivation is to quantify microstructure variables which control mechanical behavior , including tensile strength and ductility .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [30, 44]}, {"name": "mechanical", "type": "application", "pos": [69, 79]}, {"name": "tensile strength", "type": "machanical property", "pos": [101, 117]}, {"name": "ductility", "type": "machanical property", "pos": [122, 131]}]}, {"sentence": "A finite element ( FE ) based model of the process is adopted for thermal history prediction .", "entities": [{"name": "finite element", "type": "concept or principle", "pos": [2, 16]}, {"name": "FE", "type": "material", "pos": [19, 21]}, {"name": "model", "type": "concept or principle", "pos": [30, 35]}, {"name": "process", "type": "concept or principle", "pos": [43, 50]}, {"name": "prediction", "type": "concept or principle", "pos": [82, 92]}]}, {"sentence": "Phase transformation kinetics for transient non-isothermal conditions are adopted and implemented within a stand-alone code , based on the FE-predicted thermal histories of sample material points .", "entities": [{"name": "Phase", "type": "concept or principle", "pos": [0, 5]}, {"name": "transient", "type": "concept or principle", "pos": [34, 43]}, {"name": "sample", "type": "concept or principle", "pos": [173, 179]}, {"name": "material", "type": "material", "pos": [180, 188]}]}, {"sentence": "The evolution and spatial variations of phase fractions , α lath width and dislocation density are presented , to provide an assessment of the resulting microstructure-sensitivity of mechanical properties .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [4, 13]}, {"name": "spatial variations", "type": "engineering feature", "pos": [18, 36]}, {"name": "phase fractions", "type": "concept or principle", "pos": [40, 55]}, {"name": "dislocation density", "type": "machanical property", "pos": [75, 94]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [183, 204]}]}, {"sentence": "Friction stir processing ( FSP ) is combined with additive manufacturing ( AM ) with selective laser melting to locally enhance the material properties of a metallic part .", "entities": [{"name": "Friction", "type": "concept or principle", "pos": [0, 8]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [50, 72]}, {"name": "AM", "type": "manufacturing process", "pos": [75, 77]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [85, 108]}, {"name": "material properties", "type": "concept or principle", "pos": [132, 151]}, {"name": "metallic part", "type": "machine or equipment", "pos": [157, 170]}]}, {"sentence": "A groove inside aluminium 1060 alloy sheet is filled with an aluminium 7075 alloy powder by AM .", "entities": [{"name": "aluminium", "type": "material", "pos": [16, 25]}, {"name": "alloy", "type": "material", "pos": [31, 36]}, {"name": "aluminium", "type": "material", "pos": [61, 70]}, {"name": "alloy", "type": "material", "pos": [76, 81]}, {"name": "AM", "type": "manufacturing process", "pos": [92, 94]}]}, {"sentence": "While the overall hardness of the stir zone ( SZ ) increases significantly , the heterogeneous microstructure results in a unique uneven hardness distribution in the SZ .", "entities": [{"name": "hardness", "type": "machanical property", "pos": [18, 26]}, {"name": "heterogeneous", "type": "concept or principle", "pos": [81, 94]}, {"name": "hardness", "type": "machanical property", "pos": [137, 145]}, {"name": "distribution", "type": "concept or principle", "pos": [146, 158]}]}, {"sentence": "Tensile tests confirm the effectiveness of the suggested technique .", "entities": [{"name": "Tensile tests", "type": "process characterization", "pos": [0, 13]}, {"name": "effectiveness", "type": "concept or principle", "pos": [26, 39]}]}, {"sentence": "In laser-foil-printing additive manufacturing , 3D metallic glass structures can be built by laser welding of amorphous foils , layer by layer , upon a crystalline metal substrate .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [23, 45]}, {"name": "3D", "type": "concept or principle", "pos": [48, 50]}, {"name": "glass", "type": "material", "pos": [60, 65]}, {"name": "be", "type": "material", "pos": [81, 83]}, {"name": "laser welding", "type": "manufacturing process", "pos": [93, 106]}, {"name": "layer by layer", "type": "concept or principle", "pos": [128, 142]}, {"name": "metal", "type": "material", "pos": [164, 169]}]}, {"sentence": "In this paper , weldability studies for laser welding of Zr52.5Ti5Al10Ni14.6Cu17.9 amorphous foils onto a Ti-6Al-4V ( Ti 6-4 ) or Zr 702 substrate are conducted .", "entities": [{"name": "weldability", "type": "machanical property", "pos": [16, 27]}, {"name": "laser welding", "type": "manufacturing process", "pos": [40, 53]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [106, 115]}, {"name": "Ti", "type": "material", "pos": [118, 120]}, {"name": "Zr", "type": "material", "pos": [130, 132]}, {"name": "substrate", "type": "material", "pos": [137, 146]}]}, {"sentence": "After laser welding , the weldments are analyzed using X-ray diffractometer , optical microscope , scanning electron microscope equipped with energy dispersive spectroscopy and micro-hardness tester .", "entities": [{"name": "laser welding", "type": "manufacturing process", "pos": [6, 19]}, {"name": "X-ray", "type": "process characterization", "pos": [55, 60]}, {"name": "optical", "type": "process characterization", "pos": [78, 85]}, {"name": "microscope", "type": "machine or equipment", "pos": [86, 96]}, {"name": "scanning electron microscope", "type": "machine or equipment", "pos": [99, 127]}, {"name": "energy dispersive spectroscopy", "type": "process characterization", "pos": [142, 172]}]}, {"sentence": "The results show that Zr 702 is a suitable substrate for Zr-based metallic glass structure since crack-free weld joints can be obtained owing to the formation of ductile α-Zr , while Ti 6-4 is not an appropriate substrate since it has high cracking susceptibility due to the formation of a large amount of hard and brittle intermetallics near the foil-substrate interface .", "entities": [{"name": "Zr", "type": "material", "pos": [22, 24]}, {"name": "substrate", "type": "material", "pos": [43, 52]}, {"name": "metallic glass", "type": "material", "pos": [66, 80]}, {"name": "crack-free weld", "type": "concept or principle", "pos": [97, 112]}, {"name": "be", "type": "material", "pos": [124, 126]}, {"name": "ductile", "type": "machanical property", "pos": [162, 169]}, {"name": "Ti", "type": "material", "pos": [183, 185]}, {"name": "substrate", "type": "material", "pos": [212, 221]}, {"name": "cracking", "type": "concept or principle", "pos": [240, 248]}, {"name": "brittle", "type": "machanical property", "pos": [315, 322]}, {"name": "interface", "type": "concept or principle", "pos": [362, 371]}]}, {"sentence": "It was found that the mixing between melted substrate and foil is not uniform but exhibits a distinct “ swirl ” pattern .", "entities": [{"name": "mixing", "type": "concept or principle", "pos": [22, 28]}, {"name": "melted", "type": "concept or principle", "pos": [37, 43]}, {"name": "foil", "type": "material", "pos": [58, 62]}, {"name": "pattern", "type": "concept or principle", "pos": [112, 119]}]}, {"sentence": "The swirl structure is more pronounced in Ti 6-4 than in Zr 702 substrate which may contribute to its high cracking susceptibility .", "entities": [{"name": "structure", "type": "concept or principle", "pos": [10, 19]}, {"name": "Ti", "type": "material", "pos": [42, 44]}, {"name": "Zr", "type": "material", "pos": [57, 59]}, {"name": "substrate", "type": "material", "pos": [64, 73]}, {"name": "cracking", "type": "concept or principle", "pos": [107, 115]}]}, {"sentence": "The aforementioned mixing leads to partial crystallization of the first amorphous layer ; however , fully amorphous is achieved in the additional welding layers .", "entities": [{"name": "mixing", "type": "concept or principle", "pos": [19, 25]}, {"name": "crystallization", "type": "concept or principle", "pos": [43, 58]}, {"name": "layer", "type": "process parameter", "pos": [82, 87]}, {"name": "welding", "type": "manufacturing process", "pos": [146, 153]}]}, {"sentence": "The deposition process of wire and arc additive manufacturing ( WAAM ) is usually planned based on a bead geometry model ( BGM ) , which represents the relationship between bead geometries ( e.g .", "entities": [{"name": "deposition process", "type": "manufacturing process", "pos": [4, 22]}, {"name": "wire and arc additive manufacturing", "type": "manufacturing process", "pos": [26, 61]}, {"name": "WAAM", "type": "manufacturing process", "pos": [64, 68]}, {"name": "bead geometry", "type": "process characterization", "pos": [101, 114]}, {"name": "bead geometries", "type": "process characterization", "pos": [173, 188]}]}, {"sentence": "width , height ) and required deposition parameters .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [30, 40]}]}, {"sentence": "However , the actual deposition situation may deviate from the one in which the BGM is built , such as varied heat dissipation conditions , resulting in morphological changes of deposited beads and geometrical errors in the formed parts .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [21, 31]}, {"name": "as", "type": "material", "pos": [100, 102]}, {"name": "heat dissipation", "type": "concept or principle", "pos": [110, 126]}, {"name": "deposited beads", "type": "process characterization", "pos": [178, 193]}, {"name": "errors", "type": "concept or principle", "pos": [210, 216]}]}, {"sentence": "In this paper , a novel control mechanism for enhancing the fabrication accuracy of WAAM based on fuzzy-logic inference is proposed .", "entities": [{"name": "mechanism", "type": "concept or principle", "pos": [32, 41]}, {"name": "fabrication", "type": "manufacturing process", "pos": [60, 71]}, {"name": "accuracy", "type": "process characterization", "pos": [72, 80]}, {"name": "WAAM", "type": "manufacturing process", "pos": [84, 88]}, {"name": "inference", "type": "concept or principle", "pos": [110, 119]}]}, {"sentence": "It considers the geometrical errors measured on already deposited layers and deposition context to adjust deposition parameters of beads in the subsequent layer , forming an interlayer closed-loop control ( ICLC ) mechanism .", "entities": [{"name": "errors", "type": "concept or principle", "pos": [29, 35]}, {"name": "deposited layers", "type": "process characterization", "pos": [56, 72]}, {"name": "deposition", "type": "concept or principle", "pos": [77, 87]}, {"name": "deposition", "type": "concept or principle", "pos": [106, 116]}, {"name": "beads", "type": "process characterization", "pos": [131, 136]}, {"name": "layer", "type": "process parameter", "pos": [155, 160]}, {"name": "forming", "type": "manufacturing process", "pos": [163, 170]}, {"name": "closed-loop control", "type": "machine or equipment", "pos": [185, 204]}, {"name": "mechanism", "type": "concept or principle", "pos": [214, 223]}]}, {"sentence": "This paper not only presents the theoretical fundamentals of the ICLC mechanism but also reports the technical details about utilizing this mechanism to control the forming height of multi-layer multi-bead ( MLMB ) components .", "entities": [{"name": "theoretical", "type": "concept or principle", "pos": [33, 44]}, {"name": "mechanism", "type": "concept or principle", "pos": [70, 79]}, {"name": "mechanism", "type": "concept or principle", "pos": [140, 149]}, {"name": "forming", "type": "manufacturing process", "pos": [165, 172]}, {"name": "components", "type": "machine or equipment", "pos": [215, 225]}]}, {"sentence": "A fuzzy-logic inference machine was applied as the core component for calculating speed change of bead deposition based on height error and previously applied change .", "entities": [{"name": "inference", "type": "concept or principle", "pos": [14, 23]}, {"name": "as", "type": "material", "pos": [33, 35]}, {"name": "core component", "type": "machine or equipment", "pos": [51, 65]}, {"name": "bead", "type": "process characterization", "pos": [98, 102]}, {"name": "error", "type": "concept or principle", "pos": [130, 135]}]}, {"sentence": "In terms of validation , the effectiveness of the proposed control mechanism and the implemented controller was investigated through both simulative studies and real-life experiments .", "entities": [{"name": "validation", "type": "concept or principle", "pos": [12, 22]}, {"name": "effectiveness", "type": "concept or principle", "pos": [29, 42]}, {"name": "mechanism", "type": "concept or principle", "pos": [67, 76]}, {"name": "controller", "type": "machine or equipment", "pos": [97, 107]}]}, {"sentence": "The fabricated cuboid blocks showed good accuracy in height with a maximum error of 0.20 mm .", "entities": [{"name": "fabricated", "type": "concept or principle", "pos": [4, 14]}, {"name": "accuracy", "type": "process characterization", "pos": [41, 49]}, {"name": "error", "type": "concept or principle", "pos": [75, 80]}, {"name": "mm", "type": "manufacturing process", "pos": [89, 91]}]}, {"sentence": "The experimental results implied that the proposed ICLC approach facilitates deposition continuity of WAAM , and thus enables process automation for robotic manufacturing .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [4, 16]}, {"name": "deposition", "type": "concept or principle", "pos": [77, 87]}, {"name": "WAAM", "type": "manufacturing process", "pos": [102, 106]}, {"name": "process automation", "type": "concept or principle", "pos": [126, 144]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [157, 170]}]}, {"sentence": "A hybrid additive manufacturing technology for fabricating functionally graded materials ( FGMs ) is proposed in this paper .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [9, 31]}, {"name": "fabricating", "type": "manufacturing process", "pos": [47, 58]}, {"name": "materials", "type": "concept or principle", "pos": [79, 88]}]}, {"sentence": "The new process represents a combination of two existing additive manufacturing processes , selective laser melting ( SLM ) and cold spraying ( CS ) .", "entities": [{"name": "process", "type": "concept or principle", "pos": [8, 15]}, {"name": "additive manufacturing processes", "type": "manufacturing process", "pos": [57, 89]}, {"name": "selective laser melting", "type": "manufacturing process", "pos": [92, 115]}, {"name": "SLM", "type": "manufacturing process", "pos": [118, 121]}]}, {"sentence": "The targeted experiment of Al and Al + Al2O3 deposited onto SLM Ti6Al4V via CS reveals that the hybrid additive manufacturing process can produce thick , dense and machinable FGMs composed of non-weldable metals without intermetallic phase formation at the multi-materials interface .", "entities": [{"name": "experiment", "type": "concept or principle", "pos": [13, 23]}, {"name": "Al", "type": "material", "pos": [27, 29]}, {"name": "Al", "type": "material", "pos": [34, 36]}, {"name": "Al2O3", "type": "material", "pos": [39, 44]}, {"name": "SLM", "type": "manufacturing process", "pos": [60, 63]}, {"name": "additive manufacturing process", "type": "manufacturing process", "pos": [103, 133]}, {"name": "metals", "type": "material", "pos": [205, 211]}, {"name": "intermetallic", "type": "material", "pos": [220, 233]}, {"name": "interface", "type": "concept or principle", "pos": [273, 282]}]}, {"sentence": "The SLM Ti6Al4V part exhibited fully acicular martensitic microstructure in contrast with α + β microstructure in the Ti6Al4V feedstock , while the grain structure of the CS Al part had no significant change as compared with the Al feedstock .", "entities": [{"name": "SLM", "type": "manufacturing process", "pos": [4, 7]}, {"name": "microstructure", "type": "concept or principle", "pos": [58, 72]}, {"name": "microstructure", "type": "concept or principle", "pos": [96, 110]}, {"name": "Ti6Al4V feedstock", "type": "material", "pos": [118, 135]}, {"name": "grain structure", "type": "concept or principle", "pos": [148, 163]}, {"name": "Al", "type": "material", "pos": [174, 176]}, {"name": "as", "type": "material", "pos": [208, 210]}, {"name": "Al", "type": "material", "pos": [229, 231]}]}, {"sentence": "Due to the phase transformation of the SLM part and work hardening of the CS part , the overall hardness of the FMGs was higher than that of the feedstock .", "entities": [{"name": "phase", "type": "concept or principle", "pos": [11, 16]}, {"name": "SLM", "type": "manufacturing process", "pos": [39, 42]}, {"name": "work hardening", "type": "manufacturing process", "pos": [52, 66]}, {"name": "hardness", "type": "machanical property", "pos": [96, 104]}, {"name": "feedstock", "type": "material", "pos": [145, 154]}]}, {"sentence": "The emerging trend of manufacturing is keenly focused on increasing the productivity .", "entities": [{"name": "trend", "type": "concept or principle", "pos": [13, 18]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [22, 35]}, {"name": "productivity", "type": "concept or principle", "pos": [72, 84]}]}, {"sentence": "Many alternatives to enhance the productivity of a manufacturing industry involves reformation of production cycle , increasing the life of cutting tool , reducing the design complexity , etc .", "entities": [{"name": "productivity", "type": "concept or principle", "pos": [33, 45]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [51, 64]}, {"name": "industry", "type": "application", "pos": [65, 73]}, {"name": "production", "type": "manufacturing process", "pos": [98, 108]}, {"name": "cutting tool", "type": "application", "pos": [140, 152]}, {"name": "design", "type": "engineering feature", "pos": [168, 174]}, {"name": "complexity", "type": "concept or principle", "pos": [175, 185]}]}, {"sentence": "However , the increasing nature of size reduction and complexion in design seeks alternate method of manufacturing .", "entities": [{"name": "reduction", "type": "concept or principle", "pos": [40, 49]}, {"name": "design", "type": "engineering feature", "pos": [68, 74]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [101, 114]}]}, {"sentence": "The additive manufacturing is an emerging methodology used for meeting the needs of growing demand .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [4, 26]}, {"name": "methodology", "type": "concept or principle", "pos": [42, 53]}]}, {"sentence": "It is a process of manufacturing parts by depositing materials which is contrary to that of conventional .", "entities": [{"name": "process", "type": "concept or principle", "pos": [8, 15]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [19, 32]}, {"name": "materials", "type": "concept or principle", "pos": [53, 62]}]}, {"sentence": "This work presents a complete investigational survey on various additive manufacturing techniques , integration of digital pre-processing procedures , and product-based process designing .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [64, 86]}, {"name": "process", "type": "concept or principle", "pos": [127, 134]}]}, {"sentence": "The process of creating models with reduced development and manufacturing time is discussed in an absolute manner .", "entities": [{"name": "process", "type": "concept or principle", "pos": [4, 11]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [60, 73]}]}, {"sentence": "Several application-based materials are described in details along with few properties at the end of rapid manufacturing .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [26, 35]}, {"name": "properties", "type": "concept or principle", "pos": [76, 86]}, {"name": "rapid manufacturing", "type": "manufacturing process", "pos": [101, 120]}]}, {"sentence": "Additive manufacturing ( AM ) processes such as Wire-Arc Additive Manufacturing ( WAAM ) are highly flexible and particularly suited for manufacturing complex geometries in small batch-sizes .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [25, 27]}, {"name": "processes", "type": "concept or principle", "pos": [30, 39]}, {"name": "as", "type": "material", "pos": [45, 47]}, {"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [57, 79]}, {"name": "WAAM", "type": "manufacturing process", "pos": [82, 86]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [137, 150]}, {"name": "complex geometries", "type": "concept or principle", "pos": [151, 169]}]}, {"sentence": "In the case of large batch-sizes , the low production rate of WAAM is a bottleneck , and therefore forming processes with higher production rates are more suitable .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [43, 53]}, {"name": "WAAM", "type": "manufacturing process", "pos": [62, 66]}, {"name": "bottleneck", "type": "concept or principle", "pos": [72, 82]}, {"name": "forming processes", "type": "manufacturing process", "pos": [99, 116]}, {"name": "production", "type": "manufacturing process", "pos": [129, 139]}]}, {"sentence": "However , forming processes such as closed die forging require dedicated tooling and hence lack the flexibility needed to produce product variants .", "entities": [{"name": "forming processes", "type": "manufacturing process", "pos": [10, 27]}, {"name": "as", "type": "material", "pos": [33, 35]}, {"name": "die", "type": "machine or equipment", "pos": [43, 46]}, {"name": "tooling", "type": "concept or principle", "pos": [73, 80]}, {"name": "flexibility", "type": "machanical property", "pos": [100, 111]}]}, {"sentence": "The current study proposes to combine additive manufacturing with forging to form hybrid components with high complexity and acceptable production rates .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [38, 60]}, {"name": "forging", "type": "manufacturing process", "pos": [66, 73]}, {"name": "components", "type": "machine or equipment", "pos": [89, 99]}, {"name": "complexity", "type": "concept or principle", "pos": [110, 120]}, {"name": "production", "type": "manufacturing process", "pos": [136, 146]}]}, {"sentence": "However , the main challenge in achieving a combination of these manufacturing technologies is the design of the process chain , ensuring that the final properties meet the specifications of the part .", "entities": [{"name": "manufacturing technologies", "type": "manufacturing process", "pos": [65, 91]}, {"name": "design", "type": "engineering feature", "pos": [99, 105]}, {"name": "process chain", "type": "enabling technology", "pos": [113, 126]}, {"name": "properties", "type": "concept or principle", "pos": [153, 163]}, {"name": "specifications", "type": "process parameter", "pos": [173, 187]}]}, {"sentence": "In this regard , the process sequence of forming followed by WAAM is investigated .", "entities": [{"name": "process", "type": "concept or principle", "pos": [21, 28]}, {"name": "forming", "type": "manufacturing process", "pos": [41, 48]}, {"name": "WAAM", "type": "manufacturing process", "pos": [61, 65]}]}, {"sentence": "The base material EN AW-6082 was formed to a preform by forging , followed by the deposition of different aluminum alloys by WAAM .", "entities": [{"name": "material", "type": "material", "pos": [9, 17]}, {"name": "forging", "type": "manufacturing process", "pos": [56, 63]}, {"name": "deposition", "type": "concept or principle", "pos": [82, 92]}, {"name": "aluminum alloys", "type": "material", "pos": [106, 121]}, {"name": "WAAM", "type": "manufacturing process", "pos": [125, 129]}]}, {"sentence": "The evolution of mechanical properties such as hardness and microstructure was analyzed .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [4, 13]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [17, 38]}, {"name": "as", "type": "material", "pos": [44, 46]}, {"name": "microstructure", "type": "concept or principle", "pos": [60, 74]}]}, {"sentence": "Based on the experimental observations , strategies to improve the performance of the hybrid components are presented .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [13, 25]}, {"name": "performance", "type": "concept or principle", "pos": [67, 78]}, {"name": "components", "type": "machine or equipment", "pos": [93, 103]}]}, {"sentence": "In order to achieve a polytropic expansion through a reciprocating machine , an extremely compact heat exchanger is designed .", "entities": [{"name": "machine", "type": "machine or equipment", "pos": [67, 74]}, {"name": "compact", "type": "manufacturing process", "pos": [90, 97]}, {"name": "designed", "type": "engineering feature", "pos": [116, 124]}]}, {"sentence": "It is a Mini Channel Heat Exchanger ( MCHE ) , crosB-flow configuration , aluminium made .", "entities": [{"name": "Channel", "type": "application", "pos": [13, 20]}, {"name": "configuration", "type": "concept or principle", "pos": [58, 71]}, {"name": "aluminium", "type": "material", "pos": [74, 83]}]}, {"sentence": "So , the additive manufacturing DMLS technique was used to make the exchanger .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [9, 31]}]}, {"sentence": "Then a simplified design calculation is used to roughly predict its performance .", "entities": [{"name": "design", "type": "engineering feature", "pos": [18, 24]}, {"name": "performance", "type": "concept or principle", "pos": [68, 79]}]}, {"sentence": "Finally , the experimental test rig and the experimental data are shown .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [14, 26]}, {"name": "experimental data", "type": "concept or principle", "pos": [44, 61]}]}, {"sentence": "The rapid prototyping has been developed from the 1980s to produce models and prototypes until the technologies evolution today .", "entities": [{"name": "rapid prototyping", "type": "enabling technology", "pos": [4, 21]}, {"name": "prototypes", "type": "concept or principle", "pos": [78, 88]}, {"name": "technologies evolution", "type": "concept or principle", "pos": [99, 121]}]}, {"sentence": "Nowadays , these technologies have other names such as 3D printing or additive manufacturing , and so forth , but they all have the same origins from rapid prototyping .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [17, 29]}, {"name": "as", "type": "material", "pos": [52, 54]}, {"name": "3D printing", "type": "manufacturing process", "pos": [55, 66]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [70, 92]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [150, 167]}]}, {"sentence": "The design and manufacturing process stood the same until new requirements such as a better integration on production line , a largest series of manufacturing or the reduce weight of products due to heavy costs of machines and materials .", "entities": [{"name": "design", "type": "engineering feature", "pos": [4, 10]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [15, 36]}, {"name": "as", "type": "material", "pos": [80, 82]}, {"name": "production line", "type": "manufacturing process", "pos": [107, 122]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [145, 158]}, {"name": "weight", "type": "process parameter", "pos": [173, 179]}, {"name": "machines", "type": "machine or equipment", "pos": [214, 222]}, {"name": "materials", "type": "concept or principle", "pos": [227, 236]}]}, {"sentence": "The ability to produce complex geometries allows proposing of design and manufacturing solutions in the industrial field in order to be ever more effective .", "entities": [{"name": "complex geometries", "type": "concept or principle", "pos": [23, 41]}, {"name": "design", "type": "engineering feature", "pos": [62, 68]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [73, 86]}, {"name": "industrial", "type": "application", "pos": [104, 114]}, {"name": "be", "type": "material", "pos": [133, 135]}]}, {"sentence": "The additive manufacturing ( AM ) technology develops rapidly with news solutions and markets which sometimes need to demonstrate their reliability .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [4, 26]}, {"name": "AM", "type": "manufacturing process", "pos": [29, 31]}, {"name": "technology", "type": "concept or principle", "pos": [34, 44]}, {"name": "reliability", "type": "process characterization", "pos": [136, 147]}]}, {"sentence": "The community needs to survey some evolutions such as the new exchange format , the faster 3D printing systems , the advanced numerical simulation or the emergence of new use .", "entities": [{"name": "evolutions", "type": "concept or principle", "pos": [35, 45]}, {"name": "as", "type": "material", "pos": [51, 53]}, {"name": "exchange format", "type": "concept or principle", "pos": [62, 77]}, {"name": "3D printing", "type": "manufacturing process", "pos": [91, 102]}, {"name": "numerical simulation", "type": "enabling technology", "pos": [126, 146]}]}, {"sentence": "We propose to review the different AM technologies and the new trends to get a global overview through the engineering and manufacturing process .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [35, 50]}, {"name": "trends", "type": "concept or principle", "pos": [63, 69]}, {"name": "engineering", "type": "application", "pos": [107, 118]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [123, 144]}]}, {"sentence": "This article describes the engineering and manufacturing cycle with the 3D model management and the most recent technologies from the evolution of additive manufacturing .", "entities": [{"name": "engineering", "type": "application", "pos": [27, 38]}, {"name": "manufacturing cycle", "type": "concept or principle", "pos": [43, 62]}, {"name": "3D model", "type": "application", "pos": [72, 80]}, {"name": "technologies", "type": "concept or principle", "pos": [112, 124]}, {"name": "evolution", "type": "concept or principle", "pos": [134, 143]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [147, 169]}]}, {"sentence": "Finally , the use of AM resulted in new trends that are exposed below with the description of some new economic activities .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [21, 23]}, {"name": "trends", "type": "concept or principle", "pos": [40, 46]}, {"name": "economic activities", "type": "concept or principle", "pos": [103, 122]}]}, {"sentence": "The first method to create a three-dimensional object layer by layer using computer-aided design ( CAD ) was rapid prototyping , developed in the 1980s to produce models and prototype parts .", "entities": [{"name": "three-dimensional", "type": "concept or principle", "pos": [29, 46]}, {"name": "layer by layer", "type": "concept or principle", "pos": [54, 68]}, {"name": "computer-aided design", "type": "enabling technology", "pos": [75, 96]}, {"name": "CAD", "type": "enabling technology", "pos": [99, 102]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [109, 126]}, {"name": "prototype", "type": "concept or principle", "pos": [174, 183]}]}, {"sentence": "The main advantage of the Additive Manufacturing ( AM ) is its ability to create almost any possible shape and this capacity is run by the layer-by-layer manufacturing .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [26, 48]}, {"name": "AM", "type": "manufacturing process", "pos": [51, 53]}, {"name": "capacity", "type": "concept or principle", "pos": [116, 124]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [139, 153]}]}, {"sentence": "AM technology is most commonly used for modelling , prototyping , tooling through an exclusive machine or 3D printer .", "entities": [{"name": "AM technology", "type": "manufacturing process", "pos": [0, 13]}, {"name": "modelling", "type": "enabling technology", "pos": [40, 49]}, {"name": "prototyping", "type": "concept or principle", "pos": [52, 63]}, {"name": "tooling", "type": "concept or principle", "pos": [66, 73]}, {"name": "machine", "type": "machine or equipment", "pos": [95, 102]}, {"name": "3D printer", "type": "machine or equipment", "pos": [106, 116]}]}, {"sentence": "AM is largely used for manufacturing short-term prototypes but it is also used for small-scale series production and tooling applications ( Rapid Tooling ) .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [23, 36]}, {"name": "prototypes", "type": "concept or principle", "pos": [48, 58]}, {"name": "production", "type": "manufacturing process", "pos": [102, 112]}, {"name": "tooling", "type": "concept or principle", "pos": [117, 124]}, {"name": "Rapid Tooling", "type": "manufacturing process", "pos": [140, 153]}]}, {"sentence": "This technology was created to help and support the engineers in their conceptualisation .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [5, 15]}, {"name": "support", "type": "application", "pos": [40, 47]}, {"name": "conceptualisation", "type": "concept or principle", "pos": [71, 88]}]}, {"sentence": "Among the major advances that this process presented to product development are the time and cost reduction , human interaction , and consequently the product cycle development .", "entities": [{"name": "process", "type": "concept or principle", "pos": [35, 42]}, {"name": "product development", "type": "concept or principle", "pos": [56, 75]}, {"name": "cost reduction", "type": "concept or principle", "pos": [93, 107]}, {"name": "human interaction", "type": "concept or principle", "pos": [110, 127]}, {"name": "product cycle", "type": "concept or principle", "pos": [151, 164]}]}, {"sentence": "Those shapes could indeed be very difficult to manufacture with other processes ( e.g .", "entities": [{"name": "be", "type": "material", "pos": [26, 28]}, {"name": "manufacture", "type": "concept or principle", "pos": [47, 58]}, {"name": "processes", "type": "concept or principle", "pos": [70, 79]}]}, {"sentence": "milling , moulding ) .", "entities": [{"name": "milling", "type": "manufacturing process", "pos": [0, 7]}, {"name": "moulding", "type": "concept or principle", "pos": [10, 18]}]}, {"sentence": "The complex geometries or the curved surfaces needed have to be maintained with a support material .", "entities": [{"name": "complex geometries", "type": "concept or principle", "pos": [4, 22]}, {"name": "curved surfaces", "type": "concept or principle", "pos": [30, 45]}, {"name": "be", "type": "material", "pos": [61, 63]}, {"name": "support material", "type": "material", "pos": [82, 98]}]}, {"sentence": "The feedback has a great influence on the quality or effectiveness of the manufactured model .", "entities": [{"name": "feedback", "type": "process parameter", "pos": [4, 12]}, {"name": "quality", "type": "concept or principle", "pos": [42, 49]}, {"name": "effectiveness", "type": "concept or principle", "pos": [53, 66]}, {"name": "manufactured", "type": "concept or principle", "pos": [74, 86]}]}, {"sentence": "From one technology to another , the manufacture direction , the model orientation and the material behaviour are important to get an accurate model and an efficient production .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [9, 19]}, {"name": "manufacture direction", "type": "concept or principle", "pos": [37, 58]}, {"name": "model orientation", "type": "concept or principle", "pos": [65, 82]}, {"name": "material", "type": "material", "pos": [91, 99]}, {"name": "accurate", "type": "process characterization", "pos": [134, 142]}, {"name": "production", "type": "manufacturing process", "pos": [166, 176]}]}, {"sentence": "Nowadays , these technologies have other names such as 3D printing , and so forth , but they all have the same origins from rapid prototyping .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [17, 29]}, {"name": "as", "type": "material", "pos": [52, 54]}, {"name": "3D printing", "type": "manufacturing process", "pos": [55, 66]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [124, 141]}]}, {"sentence": "The demand of AM machines is increasingly growing since the 1990s .", "entities": [{"name": "AM machines", "type": "machine or equipment", "pos": [14, 25]}]}, {"sentence": "Due to the evolution of rapid prototyping technologies , it has become possible to obtain parts representative of a mass production within a very short time .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [11, 20]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [24, 41]}, {"name": "mass production", "type": "concept or principle", "pos": [116, 131]}]}, {"sentence": "AM perfectly fits into the numerical design and manufacturing chain .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "fits", "type": "concept or principle", "pos": [13, 17]}, {"name": "numerical design", "type": "concept or principle", "pos": [27, 43]}, {"name": "manufacturing chain", "type": "concept or principle", "pos": [48, 67]}]}, {"sentence": "AM is very complementary with the reverse engineering to reproduce or repair a model .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "reverse engineering", "type": "concept or principle", "pos": [34, 53]}, {"name": "model", "type": "concept or principle", "pos": [79, 84]}]}, {"sentence": "Many rapid prototyping technologies have appeared on the market based on the same layers manufacturing approach .", "entities": [{"name": "rapid prototyping", "type": "enabling technology", "pos": [5, 22]}, {"name": "layers manufacturing", "type": "manufacturing process", "pos": [82, 102]}]}, {"sentence": "AM or 3D printing have strongly been developed and currently propose several solutions .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "3D printing", "type": "manufacturing process", "pos": [6, 17]}]}, {"sentence": "Use of AM leads to new practices in different domains which push the manufacturer to adapt .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [7, 9]}, {"name": "manufacturer", "type": "concept or principle", "pos": [69, 81]}]}, {"sentence": "The evolution of AM technologies also leads to news solutions driven by very strong demand .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [4, 13]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [17, 32]}]}, {"sentence": "Use and evolution change gradually the product life cycle in order to reducing the manufacturing cost and time while increasing reliability .", "entities": [{"name": "evolution", "type": "concept or principle", "pos": [8, 17]}, {"name": "product life cycle", "type": "concept or principle", "pos": [39, 57]}, {"name": "manufacturing cost", "type": "concept or principle", "pos": [83, 101]}, {"name": "reliability", "type": "process characterization", "pos": [128, 139]}]}, {"sentence": "We propose to realise a technologic review of manufacturing processes followed by their illustrative scheme .", "entities": [{"name": "technologic", "type": "concept or principle", "pos": [24, 35]}, {"name": "manufacturing processes", "type": "manufacturing process", "pos": [46, 69]}]}, {"sentence": "We have chosen to classify the AM by manufacturing technologies to explain them .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [31, 33]}, {"name": "manufacturing technologies", "type": "manufacturing process", "pos": [37, 63]}]}, {"sentence": "First of all , we will describe the design process before the technologies description while involving some industrial and academic trends .", "entities": [{"name": "design process", "type": "concept or principle", "pos": [36, 50]}, {"name": "technologies", "type": "concept or principle", "pos": [62, 74]}, {"name": "industrial", "type": "application", "pos": [108, 118]}, {"name": "trends", "type": "concept or principle", "pos": [132, 138]}]}, {"sentence": "The stages involved to the product design and the rapid prototyping show that the cycle development is specific .", "entities": [{"name": "product design", "type": "engineering feature", "pos": [27, 41]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [50, 67]}, {"name": "cycle development", "type": "concept or principle", "pos": [82, 99]}]}, {"sentence": "These rapid prototyping processes generally consist of a substance , such as fluids , waxes , powders or laminates , which serve as basis for model construction as well as sophisticated computer-automated equipment to control the processing techniques such as deposition , sintering , lasing , etc .", "entities": [{"name": "rapid prototyping", "type": "enabling technology", "pos": [6, 23]}, {"name": "processes", "type": "concept or principle", "pos": [24, 33]}, {"name": "substance", "type": "concept or principle", "pos": [57, 66]}, {"name": "as", "type": "material", "pos": [74, 76]}, {"name": "waxes", "type": "material", "pos": [86, 91]}, {"name": "powders", "type": "material", "pos": [94, 101]}, {"name": "laminates", "type": "concept or principle", "pos": [105, 114]}, {"name": "as", "type": "material", "pos": [129, 131]}, {"name": "model construction", "type": "manufacturing process", "pos": [142, 160]}, {"name": "as", "type": "material", "pos": [161, 163]}, {"name": "as", "type": "material", "pos": [169, 171]}, {"name": "computer-automated equipment", "type": "machine or equipment", "pos": [186, 214]}, {"name": "processing techniques", "type": "concept or principle", "pos": [230, 251]}, {"name": "as", "type": "material", "pos": [257, 259]}, {"name": "sintering", "type": "manufacturing process", "pos": [273, 282]}, {"name": "lasing", "type": "enabling technology", "pos": [285, 291]}]}, {"sentence": "There exist two possibilities to start an AM cycle , begin with a virtual model or a physical model .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [42, 44]}, {"name": "virtual model", "type": "enabling technology", "pos": [66, 79]}, {"name": "physical model", "type": "concept or principle", "pos": [85, 99]}]}, {"sentence": "The virtual model created by a CAD software can be either a surface or a solid model .", "entities": [{"name": "virtual model", "type": "enabling technology", "pos": [4, 17]}, {"name": "CAD", "type": "enabling technology", "pos": [31, 34]}, {"name": "be", "type": "material", "pos": [48, 50]}, {"name": "surface", "type": "concept or principle", "pos": [60, 67]}, {"name": "solid model", "type": "concept or principle", "pos": [73, 84]}]}, {"sentence": "On the other hand , 3D data from the physical model is not at all straightforward and it requires data acquisition through a method known as a reverse engineering .", "entities": [{"name": "3D data", "type": "concept or principle", "pos": [20, 27]}, {"name": "physical model", "type": "concept or principle", "pos": [37, 51]}, {"name": "data acquisition", "type": "process characterization", "pos": [98, 114]}, {"name": "as", "type": "material", "pos": [138, 140]}, {"name": "reverse engineering", "type": "concept or principle", "pos": [143, 162]}]}, {"sentence": "The process begins with a 3D model in CAD software before converting it in STL format file .", "entities": [{"name": "process", "type": "concept or principle", "pos": [4, 11]}, {"name": "3D model", "type": "application", "pos": [26, 34]}, {"name": "CAD", "type": "enabling technology", "pos": [38, 41]}, {"name": "STL format", "type": "manufacturing standard", "pos": [75, 85]}, {"name": "file", "type": "manufacturing standard", "pos": [86, 90]}]}, {"sentence": "This format is treated by specific software , own to the AM technology , which cuts the piece in slices to get a new file containing the information for each layer .", "entities": [{"name": "software", "type": "concept or principle", "pos": [35, 43]}, {"name": "AM technology", "type": "manufacturing process", "pos": [57, 70]}, {"name": "slices", "type": "concept or principle", "pos": [97, 103]}, {"name": "file", "type": "manufacturing standard", "pos": [117, 121]}, {"name": "layer", "type": "process parameter", "pos": [158, 163]}]}, {"sentence": "The specific software generates the hold to maintain the complex geometries automatically with sometimes the possibility to choose some parameters .", "entities": [{"name": "software", "type": "concept or principle", "pos": [13, 21]}, {"name": "complex geometries", "type": "concept or principle", "pos": [57, 75]}, {"name": "parameters", "type": "concept or principle", "pos": [136, 146]}]}, {"sentence": "We can decompose the engineering and manufacturing cycle by Part design in CAD or reverse engineering by 3D scanning .", "entities": [{"name": "engineering", "type": "application", "pos": [21, 32]}, {"name": "manufacturing cycle", "type": "concept or principle", "pos": [37, 56]}, {"name": "design", "type": "engineering feature", "pos": [65, 71]}, {"name": "CAD", "type": "enabling technology", "pos": [75, 78]}, {"name": "reverse engineering", "type": "concept or principle", "pos": [82, 101]}, {"name": "3D scanning", "type": "process characterization", "pos": [105, 116]}]}, {"sentence": "Skills optimisation in CAE to adapt the part to the manufacturing technology chosen .", "entities": [{"name": "CAE", "type": "enabling technology", "pos": [23, 26]}, {"name": "manufacturing technology", "type": "manufacturing process", "pos": [52, 76]}]}, {"sentence": "Conversion of part geometry in exchange format ( STL ) .", "entities": [{"name": "geometry", "type": "concept or principle", "pos": [19, 27]}, {"name": "exchange format", "type": "concept or principle", "pos": [31, 46]}, {"name": "STL", "type": "manufacturing standard", "pos": [49, 52]}]}, {"sentence": "Exchange file implementation into the specific software of the AM machine .", "entities": [{"name": "file", "type": "manufacturing standard", "pos": [9, 13]}, {"name": "software", "type": "concept or principle", "pos": [47, 55]}, {"name": "AM machine", "type": "machine or equipment", "pos": [63, 73]}]}, {"sentence": "Configuration and orientation of the set ( parts and supports ) .", "entities": [{"name": "Configuration", "type": "concept or principle", "pos": [0, 13]}, {"name": "orientation", "type": "concept or principle", "pos": [18, 29]}, {"name": "set", "type": "application", "pos": [37, 40]}, {"name": "supports", "type": "application", "pos": [53, 61]}]}, {"sentence": "Slicing of the part by the specific software .", "entities": [{"name": "Slicing", "type": "concept or principle", "pos": [0, 7]}, {"name": "software", "type": "concept or principle", "pos": [36, 44]}]}, {"sentence": "Computation and layers manufacturing .", "entities": [{"name": "Computation", "type": "concept or principle", "pos": [0, 11]}, {"name": "layers manufacturing", "type": "manufacturing process", "pos": [16, 36]}]}, {"sentence": "Post-processing .", "entities": [{"name": "Post-processing", "type": "concept or principle", "pos": [0, 15]}]}, {"sentence": "This new file is often proprietary of the machine manufacturer .", "entities": [{"name": "file", "type": "manufacturing standard", "pos": [9, 13]}, {"name": "machine", "type": "machine or equipment", "pos": [42, 49]}]}, {"sentence": "Rapid manufacturing machine implement the last file to realise the layer-by-layer manufacturing .", "entities": [{"name": "Rapid manufacturing", "type": "manufacturing process", "pos": [0, 19]}, {"name": "machine", "type": "machine or equipment", "pos": [20, 27]}, {"name": "file", "type": "manufacturing standard", "pos": [47, 51]}, {"name": "layer-by-layer", "type": "concept or principle", "pos": [67, 81]}]}, {"sentence": "The operator has to prepare the machine with its raw material ( powder , resin cartridge ( s ) , polymer spool ( s ) , etc ) and the manufacturing source ( laser , printing head ( s ) , binder cartridge ( s ) , etc ) .", "entities": [{"name": "machine", "type": "machine or equipment", "pos": [32, 39]}, {"name": "raw material", "type": "material", "pos": [49, 61]}, {"name": "powder", "type": "material", "pos": [64, 70]}, {"name": "resin", "type": "material", "pos": [73, 78]}, {"name": "cartridge", "type": "machine or equipment", "pos": [79, 88]}, {"name": "s", "type": "material", "pos": [91, 92]}, {"name": "polymer", "type": "material", "pos": [97, 104]}, {"name": "s", "type": "material", "pos": [105, 106]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [133, 146]}, {"name": "laser", "type": "enabling technology", "pos": [156, 161]}, {"name": "printing head", "type": "machine or equipment", "pos": [164, 177]}, {"name": "s", "type": "material", "pos": [180, 181]}, {"name": "binder", "type": "material", "pos": [186, 192]}, {"name": "s", "type": "material", "pos": [205, 206]}]}, {"sentence": "For the manufacturing , the support material maintains the external and internal surfaces to keep a steady geometry with a structure using scaffolding .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [8, 21]}, {"name": "support material", "type": "material", "pos": [28, 44]}, {"name": "surfaces", "type": "concept or principle", "pos": [81, 89]}, {"name": "geometry", "type": "concept or principle", "pos": [107, 115]}, {"name": "structure", "type": "concept or principle", "pos": [123, 132]}, {"name": "scaffolding", "type": "enabling technology", "pos": [139, 150]}]}, {"sentence": "In most cases , the support material is cleaned during the finishing ( ex .", "entities": [{"name": "support material", "type": "material", "pos": [20, 36]}, {"name": "finishing", "type": "manufacturing process", "pos": [59, 68]}]}, {"sentence": "MJM Technology ) or recycled during the post-processing ( e.g .", "entities": [{"name": "MJM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "recycled", "type": "concept or principle", "pos": [20, 28]}, {"name": "post-processing", "type": "concept or principle", "pos": [40, 55]}]}, {"sentence": "SLS , SLM , CJD/3DP Technologies ) .", "entities": [{"name": "SLS", "type": "manufacturing process", "pos": [0, 3]}, {"name": "SLM", "type": "manufacturing process", "pos": [6, 9]}, {"name": "CJD/3DP", "type": "manufacturing process", "pos": [12, 19]}]}, {"sentence": "This step depends on the complex geometry fabricated and if there is need an additional hold resulting in a loss of material .", "entities": [{"name": "step", "type": "concept or principle", "pos": [5, 9]}, {"name": "complex geometry", "type": "concept or principle", "pos": [25, 41]}, {"name": "material", "type": "material", "pos": [116, 124]}]}, {"sentence": "Some technologies allow extracting of the main material , thanks to holes inside closed geometry .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [5, 17]}, {"name": "extracting", "type": "concept or principle", "pos": [24, 34]}, {"name": "material", "type": "material", "pos": [47, 55]}, {"name": "geometry", "type": "concept or principle", "pos": [88, 96]}]}, {"sentence": "The post-processing step sometimes includes a hardening or infiltration of the main material to obtain the final piece .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [4, 19]}, {"name": "hardening", "type": "manufacturing process", "pos": [46, 55]}, {"name": "infiltration", "type": "concept or principle", "pos": [59, 71]}, {"name": "material", "type": "material", "pos": [84, 92]}]}, {"sentence": "Several manufacturing constraints require a feedback while involving rules to get a precisely and compliant model .", "entities": [{"name": "manufacturing constraints", "type": "concept or principle", "pos": [8, 33]}, {"name": "feedback", "type": "process parameter", "pos": [44, 52]}, {"name": "model", "type": "concept or principle", "pos": [108, 113]}]}, {"sentence": "Rapid prototyping techniques are classified in two categories : subtractive , and additive .", "entities": [{"name": "Rapid prototyping", "type": "enabling technology", "pos": [0, 17]}, {"name": "subtractive", "type": "manufacturing process", "pos": [64, 75]}, {"name": "additive", "type": "material", "pos": [82, 90]}]}, {"sentence": "Subtractive technologies work by removing raw material out of a workpiece until the desired shape is obtained .", "entities": [{"name": "Subtractive", "type": "manufacturing process", "pos": [0, 11]}, {"name": "raw material", "type": "material", "pos": [42, 54]}, {"name": "workpiece", "type": "concept or principle", "pos": [64, 73]}]}, {"sentence": "They include cutting ( laser-cutting or water-jet cutting ) and machining ( lathing and milling ) .", "entities": [{"name": "cutting", "type": "manufacturing process", "pos": [13, 20]}, {"name": "laser-cutting", "type": "manufacturing process", "pos": [23, 36]}, {"name": "water-jet cutting", "type": "manufacturing process", "pos": [40, 57]}, {"name": "machining", "type": "manufacturing process", "pos": [64, 73]}, {"name": "lathing", "type": "manufacturing process", "pos": [76, 83]}, {"name": "milling", "type": "manufacturing process", "pos": [88, 95]}]}, {"sentence": "Conversely , the additive technologies work by adding of the raw material .", "entities": [{"name": "additive technologies", "type": "enabling technology", "pos": [17, 38]}, {"name": "raw material", "type": "material", "pos": [61, 73]}]}, {"sentence": "Modelling is a very important step in AM because it shapes the product but it also must take in account some knowledge since the experiments and equipment are costly .", "entities": [{"name": "Modelling", "type": "enabling technology", "pos": [0, 9]}, {"name": "step", "type": "concept or principle", "pos": [30, 34]}, {"name": "AM", "type": "manufacturing process", "pos": [38, 40]}, {"name": "equipment", "type": "machine or equipment", "pos": [145, 154]}]}, {"sentence": "Various potential empirical modelling techniques coexist so that the choice of an appropriate modelling technique for a given AM process can be made .", "entities": [{"name": "empirical", "type": "concept or principle", "pos": [18, 27]}, {"name": "modelling", "type": "enabling technology", "pos": [28, 37]}, {"name": "AM process", "type": "manufacturing process", "pos": [126, 136]}, {"name": "be", "type": "material", "pos": [141, 143]}]}, {"sentence": "To develop models based on only given data , several well-known statistical methods such as regression analysis or response surface methodology can be applied .", "entities": [{"name": "data", "type": "concept or principle", "pos": [38, 42]}, {"name": "statistical methods", "type": "concept or principle", "pos": [64, 83]}, {"name": "as", "type": "material", "pos": [89, 91]}, {"name": "response surface methodology", "type": "concept or principle", "pos": [115, 143]}, {"name": "be", "type": "material", "pos": [148, 150]}]}, {"sentence": "The formulation of the physicB-based models requires in-depth understanding of the process and is not an easy task in presence of partial information about the process .", "entities": [{"name": "physicB-based models", "type": "concept or principle", "pos": [23, 43]}, {"name": "process", "type": "concept or principle", "pos": [83, 90]}, {"name": "partial information", "type": "concept or principle", "pos": [130, 149]}, {"name": "process", "type": "concept or principle", "pos": [160, 167]}]}, {"sentence": "Few research studies have been conducted to improve the prediction ability of the GP ( Genetic Programming ) and the MGGP ( Multi-Gene Genetic Programming ) models by hybridising them with the other potential computational intelligence methods such as artificial neural network ( ANN ) , fuzzy logic , M5 ’ regression trees and support vector regression .", "entities": [{"name": "research", "type": "concept or principle", "pos": [4, 12]}, {"name": "prediction", "type": "concept or principle", "pos": [56, 66]}, {"name": "GP", "type": "concept or principle", "pos": [82, 84]}, {"name": "Genetic Programming", "type": "enabling technology", "pos": [87, 106]}, {"name": "MGGP", "type": "enabling technology", "pos": [117, 121]}, {"name": "Multi-Gene Genetic Programming", "type": "enabling technology", "pos": [124, 154]}, {"name": "hybridising", "type": "concept or principle", "pos": [167, 178]}, {"name": "computational intelligence", "type": "concept or principle", "pos": [209, 235]}, {"name": "as", "type": "material", "pos": [249, 251]}, {"name": "artificial neural network", "type": "enabling technology", "pos": [252, 277]}, {"name": "ANN", "type": "enabling technology", "pos": [280, 283]}, {"name": "fuzzy logic", "type": "concept or principle", "pos": [288, 299]}, {"name": "regression", "type": "concept or principle", "pos": [307, 317]}, {"name": "support vector regression", "type": "concept or principle", "pos": [328, 353]}]}, {"sentence": "MGGP is the most popular variant of GP used recently .", "entities": [{"name": "MGGP", "type": "enabling technology", "pos": [0, 4]}, {"name": "GP", "type": "concept or principle", "pos": [36, 38]}]}, {"sentence": "Those approaches provide a model in the form of a mathematical equation reflecting the relationship between the mechanical behaviours and the given input parameters .", "entities": [{"name": "model", "type": "concept or principle", "pos": [27, 32]}, {"name": "mathematical equation", "type": "concept or principle", "pos": [50, 71]}, {"name": "mechanical behaviours", "type": "concept or principle", "pos": [112, 133]}, {"name": "parameters", "type": "concept or principle", "pos": [154, 164]}]}, {"sentence": "The performance of ANN is found to be better than those of GP and regression , showing the effectiveness of ANN in predicting the performance characteristics of prototype .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [4, 15]}, {"name": "ANN", "type": "enabling technology", "pos": [19, 22]}, {"name": "be", "type": "material", "pos": [35, 37]}, {"name": "GP", "type": "concept or principle", "pos": [59, 61]}, {"name": "regression", "type": "concept or principle", "pos": [66, 76]}, {"name": "effectiveness", "type": "concept or principle", "pos": [91, 104]}, {"name": "ANN", "type": "enabling technology", "pos": [108, 111]}, {"name": "performance", "type": "concept or principle", "pos": [130, 141]}, {"name": "prototype", "type": "concept or principle", "pos": [161, 170]}]}, {"sentence": "The STL ( STereoLithography or Standard Tessellation Language ) file format was created by 3D Systems in 1987 and became a standard for the additive manufacturing .", "entities": [{"name": "STL", "type": "manufacturing standard", "pos": [4, 7]}, {"name": "STereoLithography", "type": "manufacturing process", "pos": [10, 27]}, {"name": "Standard Tessellation Language", "type": "manufacturing standard", "pos": [31, 61]}, {"name": "file", "type": "manufacturing standard", "pos": [64, 68]}, {"name": "3D Systems", "type": "application", "pos": [91, 101]}, {"name": "standard", "type": "concept or principle", "pos": [123, 131]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [140, 162]}]}, {"sentence": "The STL file creation process mainly converts the continuous geometry in the CAD file into a header , small triangles or coordinates triplet list of x , y and z coordinates and the normal vector to the triangles .", "entities": [{"name": "STL", "type": "manufacturing standard", "pos": [4, 7]}, {"name": "file", "type": "manufacturing standard", "pos": [8, 12]}, {"name": "process", "type": "concept or principle", "pos": [22, 29]}, {"name": "geometry", "type": "concept or principle", "pos": [61, 69]}, {"name": "CAD file", "type": "manufacturing standard", "pos": [77, 85]}, {"name": "header", "type": "concept or principle", "pos": [93, 99]}, {"name": "coordinates triplet", "type": "concept or principle", "pos": [121, 140]}, {"name": "y", "type": "material", "pos": [153, 154]}, {"name": "coordinates", "type": "process parameter", "pos": [161, 172]}, {"name": "normal vector", "type": "concept or principle", "pos": [181, 194]}]}, {"sentence": "Each facet is uniquely identified by a normal vector and three vertices .", "entities": [{"name": "facet", "type": "concept or principle", "pos": [5, 10]}, {"name": "normal vector", "type": "concept or principle", "pos": [39, 52]}, {"name": "vertices", "type": "process parameter", "pos": [63, 71]}]}, {"sentence": "The facets define the surfaces of a 3D object .", "entities": [{"name": "facets", "type": "concept or principle", "pos": [4, 10]}, {"name": "surfaces", "type": "concept or principle", "pos": [22, 30]}, {"name": "3D object", "type": "application", "pos": [36, 45]}]}, {"sentence": "Each facet is part of the boundary between the interior and the exterior of the object and each triangle facet must share two vertices with each of its adjacent triangles .", "entities": [{"name": "facet", "type": "concept or principle", "pos": [5, 10]}, {"name": "boundary", "type": "engineering feature", "pos": [26, 34]}, {"name": "facet", "type": "concept or principle", "pos": [105, 110]}, {"name": "vertices", "type": "process parameter", "pos": [126, 134]}, {"name": "adjacent triangles", "type": "concept or principle", "pos": [152, 170]}]}, {"sentence": "The surface creation can generate errors because of holes or intersecting triangles and it is sometimes necessary to repair the STL model .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [4, 11]}, {"name": "errors", "type": "concept or principle", "pos": [34, 40]}, {"name": "STL", "type": "manufacturing standard", "pos": [128, 131]}, {"name": "model", "type": "concept or principle", "pos": [132, 137]}]}, {"sentence": "The slicing process also introduces inaccuracy to the file because here the algorithm replaces the continuous contour with discrete stair steps .", "entities": [{"name": "slicing process", "type": "concept or principle", "pos": [4, 19]}, {"name": "file", "type": "manufacturing standard", "pos": [54, 58]}, {"name": "algorithm", "type": "concept or principle", "pos": [76, 85]}, {"name": "contour", "type": "engineering feature", "pos": [110, 117]}, {"name": "discrete stair steps", "type": "concept or principle", "pos": [123, 143]}]}, {"sentence": "Edges are added after the slicing process .", "entities": [{"name": "slicing process", "type": "concept or principle", "pos": [26, 41]}]}, {"sentence": "Today , the computation data and the mesh generation is no longer an obstacle to process models .", "entities": [{"name": "computation", "type": "concept or principle", "pos": [12, 23]}, {"name": "mesh generation", "type": "concept or principle", "pos": [37, 52]}, {"name": "process models", "type": "concept or principle", "pos": [81, 95]}]}, {"sentence": "The computer power used is sufficient to get a refined STL file with many triangles .", "entities": [{"name": "computer", "type": "enabling technology", "pos": [4, 12]}, {"name": "STL", "type": "manufacturing standard", "pos": [55, 58]}, {"name": "file", "type": "manufacturing standard", "pos": [59, 63]}]}, {"sentence": "More the 3D model refined is high , the clearer the details are and the bigger the file size is .", "entities": [{"name": "3D model", "type": "application", "pos": [9, 17]}, {"name": "file size", "type": "process parameter", "pos": [83, 92]}]}, {"sentence": "According to the 2014 Wohlers Report , consumers of 3D printers are classified as those that cost less than $ 5000 .", "entities": [{"name": "3D printers", "type": "machine or equipment", "pos": [52, 63]}, {"name": "as", "type": "material", "pos": [70, 72]}]}, {"sentence": "The Cornell University and the University of Bath have designed the first open-source 3D printers which are widely recognised in the area : Fab @ home and RepRap .", "entities": [{"name": "designed", "type": "engineering feature", "pos": [55, 63]}, {"name": "open-source", "type": "concept or principle", "pos": [74, 85]}, {"name": "3D printers", "type": "machine or equipment", "pos": [86, 97]}, {"name": "area", "type": "process parameter", "pos": [133, 137]}, {"name": "RepRap", "type": "application", "pos": [155, 161]}]}, {"sentence": "The entered range 3D printers are predominantly based on Fused Deposition Modeling ( FDM ) technology , but more recently machines derived from stereolithography have entered the market due to expiring patents .", "entities": [{"name": "range", "type": "process parameter", "pos": [12, 17]}, {"name": "3D printers", "type": "machine or equipment", "pos": [18, 29]}, {"name": "Fused Deposition Modeling", "type": "manufacturing process", "pos": [57, 82]}, {"name": "FDM", "type": "manufacturing process", "pos": [85, 88]}, {"name": "technology", "type": "concept or principle", "pos": [91, 101]}, {"name": "machines", "type": "machine or equipment", "pos": [122, 130]}, {"name": "stereolithography", "type": "manufacturing process", "pos": [144, 161]}, {"name": "patents", "type": "concept or principle", "pos": [202, 209]}]}, {"sentence": "It is typically to demonstrate that low-cost machines have a low performance .", "entities": [{"name": "machines", "type": "machine or equipment", "pos": [45, 53]}, {"name": "performance", "type": "concept or principle", "pos": [65, 76]}]}, {"sentence": "For example , the FDM consumer technology suffers from anisotropic mechanical properties as well as a limited selection of thermoplastic materials .", "entities": [{"name": "FDM", "type": "manufacturing process", "pos": [18, 21]}, {"name": "technology", "type": "concept or principle", "pos": [31, 41]}, {"name": "anisotropic", "type": "machanical property", "pos": [55, 66]}, {"name": "properties", "type": "concept or principle", "pos": [78, 88]}, {"name": "as", "type": "material", "pos": [89, 91]}, {"name": "as", "type": "material", "pos": [97, 99]}, {"name": "thermoplastic materials", "type": "material", "pos": [123, 146]}]}, {"sentence": "A FDM professional printer costs between $ 10,000 and $ 300,000 .", "entities": [{"name": "FDM", "type": "manufacturing process", "pos": [2, 5]}, {"name": "printer", "type": "machine or equipment", "pos": [19, 26]}]}, {"sentence": "Typical laser and electron beam-based systems can cost anywhere between $ 500,000 and $ 1 M. While these machines are typically high in performance , they come at a high cost .", "entities": [{"name": "laser", "type": "enabling technology", "pos": [8, 13]}, {"name": "electron beam-based", "type": "enabling technology", "pos": [18, 37]}, {"name": "machines", "type": "machine or equipment", "pos": [105, 113]}, {"name": "performance", "type": "concept or principle", "pos": [136, 147]}]}, {"sentence": "The commercial 3D printers that use more advanced techniques to print objects are usually equipped with proprietary software which slice the 3D model and command the machine .", "entities": [{"name": "3D printers", "type": "machine or equipment", "pos": [15, 26]}, {"name": "print", "type": "manufacturing process", "pos": [64, 69]}, {"name": "software", "type": "concept or principle", "pos": [116, 124]}, {"name": "slice", "type": "concept or principle", "pos": [131, 136]}, {"name": "3D model", "type": "application", "pos": [141, 149]}, {"name": "machine", "type": "machine or equipment", "pos": [166, 173]}]}, {"sentence": "Companies that sell professional 3D printers include 3D Systems , Stratasys , Solido LTD , Voxeljet and ExOne .", "entities": [{"name": "Companies", "type": "application", "pos": [0, 9]}, {"name": "3D printers", "type": "machine or equipment", "pos": [33, 44]}, {"name": "3D Systems", "type": "application", "pos": [53, 63]}, {"name": "Stratasys", "type": "application", "pos": [66, 75]}, {"name": "Solido LTD", "type": "application", "pos": [78, 88]}]}, {"sentence": "Both Hewlett Packard and Xerox ‘ are investing in 3D printing research and technology development .", "entities": [{"name": "Hewlett Packard", "type": "application", "pos": [5, 20]}, {"name": "Xerox", "type": "application", "pos": [25, 30]}, {"name": "3D printing", "type": "manufacturing process", "pos": [50, 61]}, {"name": "technology", "type": "concept or principle", "pos": [75, 85]}]}, {"sentence": "Each AM technologies have manufacturing constraints linked by printing technology , used material and expected functions ( aesthetic , mechanical , use , etc ) .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [5, 20]}, {"name": "manufacturing constraints", "type": "concept or principle", "pos": [26, 51]}, {"name": "printing technology", "type": "enabling technology", "pos": [62, 81]}, {"name": "material", "type": "material", "pos": [89, 97]}, {"name": "aesthetic", "type": "concept or principle", "pos": [123, 132]}, {"name": "mechanical", "type": "application", "pos": [135, 145]}]}, {"sentence": "Areas of interest which have used 3D printing to create objects include aeronautics , architecture , automotive industries , art , dentistry , fashion , food , jewellery , medicine , pharmaceuticals , robotics and toys .", "entities": [{"name": "Areas of interest", "type": "concept or principle", "pos": [0, 17]}, {"name": "3D printing", "type": "manufacturing process", "pos": [34, 45]}, {"name": "aeronautics", "type": "application", "pos": [72, 83]}, {"name": "architecture", "type": "application", "pos": [86, 98]}, {"name": "automotive industries", "type": "application", "pos": [101, 122]}, {"name": "art", "type": "application", "pos": [125, 128]}, {"name": "dentistry", "type": "application", "pos": [131, 140]}, {"name": "fashion", "type": "concept or principle", "pos": [143, 150]}, {"name": "jewellery", "type": "concept or principle", "pos": [160, 169]}, {"name": "medicine", "type": "concept or principle", "pos": [172, 180]}, {"name": "pharmaceuticals", "type": "application", "pos": [183, 198]}, {"name": "robotics", "type": "application", "pos": [201, 209]}, {"name": "toys", "type": "machine or equipment", "pos": [214, 218]}]}, {"sentence": "Automotive manufacturers exploited the technology because of the ability to help new products get quickly to the market and in a predictable manner .", "entities": [{"name": "Automotive", "type": "application", "pos": [0, 10]}, {"name": "technology", "type": "concept or principle", "pos": [39, 49]}, {"name": "predictable", "type": "concept or principle", "pos": [129, 140]}]}, {"sentence": "Aerospace companies are interested in these technologies because of the ability to realise highly complex and high-performance products .", "entities": [{"name": "Aerospace", "type": "application", "pos": [0, 9]}, {"name": "technologies", "type": "concept or principle", "pos": [44, 56]}]}, {"sentence": "Integrating mechanical functionality , eliminating assembly features and making it possible to create internal functionality ( like cooling channels ) , internal honeycomb style structures , new topological optimisation structure etc .", "entities": [{"name": "mechanical functionality", "type": "concept or principle", "pos": [12, 36]}, {"name": "assembly", "type": "manufacturing process", "pos": [51, 59]}, {"name": "cooling channels", "type": "machine or equipment", "pos": [132, 148]}, {"name": "honeycomb", "type": "concept or principle", "pos": [162, 171]}, {"name": "topological optimisation", "type": "engineering feature", "pos": [195, 219]}, {"name": "structure", "type": "concept or principle", "pos": [220, 229]}]}, {"sentence": "combine to create lightweight structures .", "entities": [{"name": "lightweight structures", "type": "machine or equipment", "pos": [18, 40]}]}, {"sentence": "Medical industries are particularly interested in AM technology because of the ease in which 3D medical imaging data can be converted into solid objects .", "entities": [{"name": "Medical industries", "type": "application", "pos": [0, 18]}, {"name": "AM technology", "type": "manufacturing process", "pos": [50, 63]}, {"name": "3D medical imaging", "type": "enabling technology", "pos": [93, 111]}, {"name": "be", "type": "material", "pos": [121, 123]}]}, {"sentence": "Thus , each AM technology have advantages and disadvantages for own applications and we propose to review them .", "entities": [{"name": "AM technology", "type": "manufacturing process", "pos": [12, 25]}]}, {"sentence": "Authors have chosen to classify the technologies according to hardening system or melting system which are characterised by a laser , a flashing source , an extrusion or a jetting .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [36, 48]}, {"name": "hardening system", "type": "machine or equipment", "pos": [62, 78]}, {"name": "melting system", "type": "machine or equipment", "pos": [82, 96]}, {"name": "laser", "type": "enabling technology", "pos": [126, 131]}, {"name": "flashing source", "type": "concept or principle", "pos": [136, 151]}, {"name": "extrusion", "type": "manufacturing process", "pos": [157, 166]}, {"name": "jetting", "type": "manufacturing process", "pos": [172, 179]}]}, {"sentence": "SLA – Stereolithography is the first of the technologies developed originally and simultaneously in France and in the USA to tackle rapid prototyping bottlenecks , as well as faster and better design needs ( CAD induced ) .", "entities": [{"name": "SLA", "type": "machine or equipment", "pos": [0, 3]}, {"name": "Stereolithography", "type": "manufacturing process", "pos": [6, 23]}, {"name": "technologies", "type": "concept or principle", "pos": [44, 56]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [132, 149]}, {"name": "bottlenecks", "type": "concept or principle", "pos": [150, 161]}, {"name": "as", "type": "material", "pos": [164, 166]}, {"name": "as", "type": "material", "pos": [172, 174]}, {"name": "design", "type": "engineering feature", "pos": [193, 199]}, {"name": "CAD", "type": "enabling technology", "pos": [208, 211]}]}, {"sentence": "In 1986 , 3D Systems was founded by Chuck Hull to commercialise this process .", "entities": [{"name": "3D Systems", "type": "application", "pos": [10, 20]}, {"name": "Chuck", "type": "machine or equipment", "pos": [36, 41]}, {"name": "process", "type": "concept or principle", "pos": [69, 76]}]}, {"sentence": "Photolithographic systems build shapes using light to selectively solidify photosensitive resins .", "entities": [{"name": "Photolithographic systems", "type": "manufacturing process", "pos": [0, 25]}, {"name": "build", "type": "process parameter", "pos": [26, 31]}, {"name": "solidify", "type": "concept or principle", "pos": [66, 74]}, {"name": "photosensitive resins", "type": "material", "pos": [75, 96]}]}, {"sentence": "The laser lithography approach is currently one of the most used AM technologies .", "entities": [{"name": "laser lithography", "type": "manufacturing process", "pos": [4, 21]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [65, 80]}]}, {"sentence": "Models are defined by scanning a laser beam over a photopolymer surface .", "entities": [{"name": "scanning", "type": "concept or principle", "pos": [22, 30]}, {"name": "laser beam", "type": "concept or principle", "pos": [33, 43]}, {"name": "photopolymer", "type": "material", "pos": [51, 63]}]}, {"sentence": "For a few years , researchers have developed techniques to apply SLA to directly make ceramics .", "entities": [{"name": "SLA", "type": "machine or equipment", "pos": [65, 68]}, {"name": "ceramics", "type": "material", "pos": [86, 94]}]}, {"sentence": "Ceramic powder ( silica and alumina ) is dispersed in a fluid UV curable monomer to prepare a ceramic–UV curable monomer suspension .", "entities": [{"name": "Ceramic powder", "type": "material", "pos": [0, 14]}, {"name": "silica", "type": "material", "pos": [17, 23]}, {"name": "alumina", "type": "material", "pos": [28, 35]}, {"name": "fluid UV curable monomer", "type": "material", "pos": [56, 80]}, {"name": "monomer", "type": "material", "pos": [113, 120]}]}, {"sentence": "The building process is the same as conventional SLA and the monomer solution is cured forming a ceramic–polymer composite layer .", "entities": [{"name": "building process", "type": "process characterization", "pos": [4, 20]}, {"name": "as", "type": "material", "pos": [33, 35]}, {"name": "SLA", "type": "machine or equipment", "pos": [49, 52]}, {"name": "monomer solution", "type": "material", "pos": [61, 77]}, {"name": "cured", "type": "manufacturing process", "pos": [81, 86]}, {"name": "composite", "type": "material", "pos": [113, 122]}]}, {"sentence": "The prototypes have higher stiffness than a standard workpiece and their temperature resistance over 200 °C .", "entities": [{"name": "prototypes", "type": "concept or principle", "pos": [4, 14]}, {"name": "stiffness", "type": "machanical property", "pos": [27, 36]}, {"name": "standard", "type": "concept or principle", "pos": [44, 52]}, {"name": "temperature resistance", "type": "machanical property", "pos": [73, 95]}]}, {"sentence": "A higher resolution machine has been developed and called microstereolithography and it can print a layer with thickness of less than 10 μm .", "entities": [{"name": "higher resolution", "type": "process parameter", "pos": [2, 19]}, {"name": "microstereolithography", "type": "manufacturing process", "pos": [58, 80]}, {"name": "print", "type": "manufacturing process", "pos": [92, 97]}, {"name": "layer", "type": "process parameter", "pos": [100, 105]}]}, {"sentence": "The microstereolithography shares the same principle with its macro scale counterpart , but in different dimensions .", "entities": [{"name": "microstereolithography", "type": "manufacturing process", "pos": [4, 26]}, {"name": "macro scale", "type": "concept or principle", "pos": [62, 73]}, {"name": "dimensions", "type": "engineering feature", "pos": [105, 115]}]}, {"sentence": "In microstereolithography , an UV laser beam is focused to 1–2 μm to solidify a thin layer of 1–10 μm in thickness .", "entities": [{"name": "microstereolithography", "type": "manufacturing process", "pos": [3, 25]}, {"name": "UV laser beam", "type": "concept or principle", "pos": [31, 44]}, {"name": "solidify", "type": "concept or principle", "pos": [69, 77]}, {"name": "layer", "type": "process parameter", "pos": [85, 90]}]}, {"sentence": "Submicron resolution of the x–y–z translation stages and the fine UV beam spot enable precise fabrication of real 3D complex microstructures .", "entities": [{"name": "Submicron resolution", "type": "process parameter", "pos": [0, 20]}, {"name": "UV beam", "type": "concept or principle", "pos": [66, 73]}, {"name": "precise fabrication", "type": "manufacturing process", "pos": [86, 105]}, {"name": "3D", "type": "concept or principle", "pos": [114, 116]}, {"name": "microstructures", "type": "material", "pos": [125, 140]}]}, {"sentence": "SLM – Selective Laser Melting – the system starts by applying a thin layer of the powder material spread by a roller on the building platform .", "entities": [{"name": "SLM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "Selective Laser Melting", "type": "manufacturing process", "pos": [6, 29]}, {"name": "layer", "type": "process parameter", "pos": [69, 74]}, {"name": "powder material", "type": "material", "pos": [82, 97]}, {"name": "roller", "type": "machine or equipment", "pos": [110, 116]}, {"name": "building platform", "type": "machine or equipment", "pos": [124, 141]}]}, {"sentence": "A powerful laser beam then fuses the powder at exactly the points defined by the computer-generated component design data .", "entities": [{"name": "laser beam", "type": "concept or principle", "pos": [11, 21]}, {"name": "fuses", "type": "manufacturing process", "pos": [27, 32]}, {"name": "powder", "type": "material", "pos": [37, 43]}, {"name": "computer-generated", "type": "concept or principle", "pos": [81, 99]}, {"name": "component", "type": "machine or equipment", "pos": [100, 109]}, {"name": "data", "type": "concept or principle", "pos": [117, 121]}]}, {"sentence": "The platform is then lowered and another layer of powder is applied .", "entities": [{"name": "platform", "type": "machine or equipment", "pos": [4, 12]}, {"name": "layer", "type": "process parameter", "pos": [41, 46]}, {"name": "powder", "type": "material", "pos": [50, 56]}]}, {"sentence": "Once again the material is fused so as to bond with the layer below at the predefined points .", "entities": [{"name": "material", "type": "material", "pos": [15, 23]}, {"name": "fused", "type": "concept or principle", "pos": [27, 32]}, {"name": "as", "type": "material", "pos": [36, 38]}, {"name": "layer", "type": "process parameter", "pos": [56, 61]}, {"name": "predefined points", "type": "concept or principle", "pos": [75, 92]}]}, {"sentence": "During the process , successive layers of metal powder are fully melted and consolidated on top of each other .", "entities": [{"name": "process", "type": "concept or principle", "pos": [11, 18]}, {"name": "metal powder", "type": "material", "pos": [42, 54]}, {"name": "melted", "type": "concept or principle", "pos": [65, 71]}]}, {"sentence": "Today , the 3D printer manufacturers propose machines with powerful double or multi laser technology with layers from 75 to 150 μm in thickness .", "entities": [{"name": "3D printer", "type": "machine or equipment", "pos": [12, 22]}, {"name": "machines", "type": "machine or equipment", "pos": [45, 53]}, {"name": "multi laser technology", "type": "concept or principle", "pos": [78, 100]}]}, {"sentence": "The material types that can be processed include steel , stainless steel , cobalt chrome , titanium and aluminium .", "entities": [{"name": "material", "type": "material", "pos": [4, 12]}, {"name": "be", "type": "material", "pos": [28, 30]}, {"name": "steel", "type": "material", "pos": [49, 54]}, {"name": "stainless steel", "type": "material", "pos": [57, 72]}, {"name": "cobalt chrome", "type": "material", "pos": [75, 88]}, {"name": "titanium", "type": "material", "pos": [91, 99]}, {"name": "aluminium", "type": "material", "pos": [104, 113]}]}, {"sentence": "Electron Beam Melting is a powder process which distinguishes by its superior accuracy and high-power electron beam ( up to 3000 W while maintaining a scan speed ) that generates the energy needed for high melting capacity and high productivity .", "entities": [{"name": "Electron Beam Melting", "type": "manufacturing process", "pos": [0, 21]}, {"name": "powder process", "type": "manufacturing process", "pos": [27, 41]}, {"name": "accuracy", "type": "process characterization", "pos": [78, 86]}, {"name": "electron beam", "type": "concept or principle", "pos": [102, 115]}, {"name": "scan speed", "type": "process parameter", "pos": [151, 161]}, {"name": "melting capacity", "type": "concept or principle", "pos": [206, 222]}, {"name": "productivity", "type": "concept or principle", "pos": [232, 244]}]}, {"sentence": "Selective Laser Sintering ( SLS ) – use a high-power laser to fuse small particles ( polyamide , steel , titanium , alloys , ceramic powders , etc ) .", "entities": [{"name": "Selective Laser Sintering", "type": "manufacturing process", "pos": [0, 25]}, {"name": "SLS", "type": "manufacturing process", "pos": [28, 31]}, {"name": "high-power laser", "type": "concept or principle", "pos": [42, 58]}, {"name": "fuse", "type": "manufacturing process", "pos": [62, 66]}, {"name": "particles", "type": "concept or principle", "pos": [73, 82]}, {"name": "polyamide", "type": "material", "pos": [85, 94]}, {"name": "steel", "type": "material", "pos": [97, 102]}, {"name": "titanium", "type": "material", "pos": [105, 113]}, {"name": "alloys", "type": "material", "pos": [116, 122]}, {"name": "ceramic powders", "type": "material", "pos": [125, 140]}]}, {"sentence": "As the SLM , the powder bed is lowered by one layer thickness , a new layer of powder is applied on top , and the process is repeated until the model is completed .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "SLM", "type": "manufacturing process", "pos": [7, 10]}, {"name": "powder bed", "type": "machine or equipment", "pos": [17, 27]}, {"name": "layer thickness", "type": "process parameter", "pos": [46, 61]}, {"name": "layer", "type": "process parameter", "pos": [70, 75]}, {"name": "powder", "type": "material", "pos": [79, 85]}, {"name": "process", "type": "concept or principle", "pos": [114, 121]}, {"name": "model", "type": "concept or principle", "pos": [144, 149]}]}, {"sentence": "But what sets sintering apart from melting is that the sintering processes do not fully melt the powder , but heat it to the point that the powder can fuse together on a molecular level .", "entities": [{"name": "sintering", "type": "manufacturing process", "pos": [14, 23]}, {"name": "melting", "type": "manufacturing process", "pos": [35, 42]}, {"name": "sintering", "type": "manufacturing process", "pos": [55, 64]}, {"name": "processes", "type": "concept or principle", "pos": [65, 74]}, {"name": "melt", "type": "concept or principle", "pos": [88, 92]}, {"name": "powder", "type": "material", "pos": [97, 103]}, {"name": "heat", "type": "concept or principle", "pos": [110, 114]}, {"name": "powder", "type": "material", "pos": [140, 146]}, {"name": "fuse", "type": "manufacturing process", "pos": [151, 155]}]}, {"sentence": "The latest SLS machines offer laser powers from 30 W to 200 W in a CO² chamber controlled ( in range ProX and sPro ) .", "entities": [{"name": "SLS", "type": "manufacturing process", "pos": [11, 14]}, {"name": "machines", "type": "machine or equipment", "pos": [15, 23]}, {"name": "laser powers", "type": "process parameter", "pos": [30, 42]}, {"name": "chamber controlled", "type": "machine or equipment", "pos": [71, 89]}, {"name": "range", "type": "process parameter", "pos": [95, 100]}]}, {"sentence": "The porosity of the material can be controlled .", "entities": [{"name": "porosity", "type": "machanical property", "pos": [4, 12]}, {"name": "material", "type": "material", "pos": [20, 28]}, {"name": "be", "type": "material", "pos": [33, 35]}]}, {"sentence": "This porosity requests a post-treatment by infiltration to harden the final model like the bronze use to the steel .", "entities": [{"name": "porosity", "type": "machanical property", "pos": [5, 13]}, {"name": "post-treatment", "type": "manufacturing process", "pos": [25, 39]}, {"name": "infiltration", "type": "concept or principle", "pos": [43, 55]}, {"name": "harden", "type": "concept or principle", "pos": [59, 65]}, {"name": "model", "type": "concept or principle", "pos": [76, 81]}, {"name": "bronze", "type": "material", "pos": [91, 97]}, {"name": "steel", "type": "material", "pos": [109, 114]}]}, {"sentence": "The SLS prototypes have a greater dimensional accuracy than the PolyJet and 3DP models .", "entities": [{"name": "SLS prototypes", "type": "concept or principle", "pos": [4, 18]}, {"name": "dimensional accuracy", "type": "process characterization", "pos": [34, 54]}, {"name": "PolyJet", "type": "concept or principle", "pos": [64, 71]}, {"name": "3DP", "type": "manufacturing process", "pos": [76, 79]}]}, {"sentence": "Direct Metal Laser Sintering ( DMLS ) – is similar to SLS with some differences .", "entities": [{"name": "Direct Metal Laser Sintering", "type": "manufacturing process", "pos": [0, 28]}, {"name": "DMLS", "type": "manufacturing process", "pos": [31, 35]}, {"name": "SLS", "type": "manufacturing process", "pos": [54, 57]}]}, {"sentence": "The technology is a powder bed fusion process by melting the metal powder locally using the focused laser beam .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [4, 14]}, {"name": "powder bed fusion process", "type": "manufacturing process", "pos": [20, 45]}, {"name": "melting", "type": "manufacturing process", "pos": [49, 56]}, {"name": "metal powder", "type": "material", "pos": [61, 73]}, {"name": "focused laser beam", "type": "concept or principle", "pos": [92, 110]}]}, {"sentence": "A product is manufactured layer by layer along the Z axis and the powder is deposited via a scraper moving in the XY plane .", "entities": [{"name": "manufactured", "type": "concept or principle", "pos": [13, 25]}, {"name": "layer by layer", "type": "concept or principle", "pos": [26, 40]}, {"name": "powder", "type": "material", "pos": [66, 72]}, {"name": "scraper", "type": "machine or equipment", "pos": [92, 99]}]}, {"sentence": "The DMLS process from EOS© is well established for the net shape fabrication of prototype and short series tooling for plastic injection moulding .", "entities": [{"name": "DMLS", "type": "manufacturing process", "pos": [4, 8]}, {"name": "net shape", "type": "manufacturing process", "pos": [55, 64]}, {"name": "fabrication", "type": "manufacturing process", "pos": [65, 76]}, {"name": "prototype", "type": "concept or principle", "pos": [80, 89]}, {"name": "short series tooling", "type": "concept or principle", "pos": [94, 114]}, {"name": "plastic injection moulding", "type": "manufacturing process", "pos": [119, 145]}]}, {"sentence": "The first generation of EOS machine includes a 200-W laser source when the second generation ( EOSINT M280 ) was launched with a 400-W fibre laser .", "entities": [{"name": "EOS", "type": "application", "pos": [24, 27]}, {"name": "laser source", "type": "machine or equipment", "pos": [53, 65]}, {"name": "fibre laser", "type": "concept or principle", "pos": [135, 146]}]}, {"sentence": "The trend shows an increase in laser power and also an increase in work chamber .", "entities": [{"name": "trend", "type": "concept or principle", "pos": [4, 9]}, {"name": "laser power", "type": "process parameter", "pos": [31, 42]}]}, {"sentence": "DMLS often refers to the process that is applied to metal alloys for the manufacturing direct parts in the industry including aerospace , dental , medical and other industry that have small to medium size , highly complex parts and the tooling industry to make direct tooling inserts .", "entities": [{"name": "DMLS", "type": "manufacturing process", "pos": [0, 4]}, {"name": "process", "type": "concept or principle", "pos": [25, 32]}, {"name": "metal alloys", "type": "material", "pos": [52, 64]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [73, 86]}, {"name": "industry", "type": "application", "pos": [107, 115]}, {"name": "aerospace", "type": "application", "pos": [126, 135]}, {"name": "dental", "type": "application", "pos": [138, 144]}, {"name": "medical", "type": "application", "pos": [147, 154]}, {"name": "industry", "type": "application", "pos": [165, 173]}, {"name": "tooling industry", "type": "application", "pos": [236, 252]}, {"name": "tooling inserts", "type": "machine or equipment", "pos": [268, 283]}]}, {"sentence": "Today , recent developments in the powders coupled with the durability of the materials are extending its reach to the direct manufacturing of functional prototypes for powder metallurgical and cast components .", "entities": [{"name": "powders", "type": "material", "pos": [35, 42]}, {"name": "durability", "type": "machanical property", "pos": [60, 70]}, {"name": "materials", "type": "concept or principle", "pos": [78, 87]}, {"name": "direct manufacturing", "type": "concept or principle", "pos": [119, 139]}, {"name": "functional prototypes", "type": "concept or principle", "pos": [143, 164]}, {"name": "powder metallurgical", "type": "manufacturing process", "pos": [169, 189]}, {"name": "cast", "type": "manufacturing process", "pos": [194, 198]}]}, {"sentence": "Support structures are required for most geometry because the powder alone is not sufficient to hold in place the liquid phase created when the laser is scanning the powder .", "entities": [{"name": "Support structures", "type": "engineering feature", "pos": [0, 18]}, {"name": "geometry", "type": "concept or principle", "pos": [41, 49]}, {"name": "powder", "type": "material", "pos": [62, 68]}, {"name": "liquid phase", "type": "machanical property", "pos": [114, 126]}, {"name": "laser", "type": "enabling technology", "pos": [144, 149]}, {"name": "scanning", "type": "concept or principle", "pos": [153, 161]}, {"name": "powder", "type": "material", "pos": [166, 172]}]}, {"sentence": "The rapid manufacturing of parts by the DMLS process requires the use of a powder , which is composed of two types of particles .", "entities": [{"name": "rapid manufacturing", "type": "manufacturing process", "pos": [4, 23]}, {"name": "DMLS", "type": "manufacturing process", "pos": [40, 44]}, {"name": "powder", "type": "material", "pos": [75, 81]}, {"name": "particles", "type": "concept or principle", "pos": [118, 127]}]}, {"sentence": "One type has a low melting point , and the other a high melting point .", "entities": [{"name": "melting point", "type": "machanical property", "pos": [19, 32]}, {"name": "melting point", "type": "machanical property", "pos": [56, 69]}]}, {"sentence": "The high-melting point particles generate a solid matrix , while the particles with the low melting point bind the matrix after being melted by the laser energy input .", "entities": [{"name": "high-melting point", "type": "machanical property", "pos": [4, 22]}, {"name": "solid matrix", "type": "concept or principle", "pos": [44, 56]}, {"name": "particles", "type": "concept or principle", "pos": [69, 78]}, {"name": "melting point", "type": "machanical property", "pos": [92, 105]}, {"name": "bind", "type": "manufacturing process", "pos": [106, 110]}, {"name": "melted", "type": "concept or principle", "pos": [134, 140]}, {"name": "laser energy", "type": "concept or principle", "pos": [148, 160]}]}, {"sentence": "In order to reduce lead time and increase in build speed , a new technology has emerged derivative from SLA .", "entities": [{"name": "lead time", "type": "process parameter", "pos": [19, 28]}, {"name": "build speed", "type": "process parameter", "pos": [45, 56]}, {"name": "technology", "type": "concept or principle", "pos": [65, 75]}, {"name": "SLA", "type": "machine or equipment", "pos": [104, 107]}]}, {"sentence": "On the same principle proposed by Pomerantz a photomask system ( masking technology ) to produce 3D models , the DLP – Digital Light Processing , also known as FTI – Film Transfer Imaging , use the UV photopolymerised materials .", "entities": [{"name": "photomask", "type": "material", "pos": [46, 55]}, {"name": "masking", "type": "concept or principle", "pos": [65, 72]}, {"name": "3D models", "type": "application", "pos": [97, 106]}, {"name": "DLP", "type": "manufacturing process", "pos": [113, 116]}, {"name": "Digital Light Processing", "type": "manufacturing process", "pos": [119, 143]}, {"name": "as", "type": "material", "pos": [157, 159]}, {"name": "Film Transfer Imaging", "type": "manufacturing process", "pos": [166, 187]}, {"name": "UV", "type": "concept or principle", "pos": [198, 200]}, {"name": "photopolymerised materials", "type": "material", "pos": [201, 227]}]}, {"sentence": "A film is coated in resin which is then cured by a UV flash of light from a projector for each slice of product .", "entities": [{"name": "coated", "type": "application", "pos": [10, 16]}, {"name": "resin", "type": "material", "pos": [20, 25]}, {"name": "cured", "type": "manufacturing process", "pos": [40, 45]}, {"name": "UV flash", "type": "concept or principle", "pos": [51, 59]}, {"name": "projector", "type": "machine or equipment", "pos": [76, 85]}, {"name": "slice", "type": "concept or principle", "pos": [95, 100]}]}, {"sentence": "Unlike the 3D laser printer , the DLP projector projects the entire layer , and not only of lines or points .", "entities": [{"name": "3D laser printer", "type": "machine or equipment", "pos": [11, 27]}, {"name": "DLP", "type": "manufacturing process", "pos": [34, 37]}, {"name": "layer", "type": "process parameter", "pos": [68, 73]}]}, {"sentence": "This method allows building much quicker than other methods of rapid prototyping by substituting scanning time of a laser .", "entities": [{"name": "rapid prototyping", "type": "enabling technology", "pos": [63, 80]}, {"name": "scanning time", "type": "process parameter", "pos": [97, 110]}, {"name": "laser", "type": "enabling technology", "pos": [116, 121]}]}, {"sentence": "With SLA , the part descends downward into the resin , whereas it is pulled upward out of the resin in a DLP printer .", "entities": [{"name": "SLA", "type": "machine or equipment", "pos": [5, 8]}, {"name": "resin", "type": "material", "pos": [47, 52]}, {"name": "resin", "type": "material", "pos": [94, 99]}, {"name": "DLP printer", "type": "machine or equipment", "pos": [105, 116]}]}, {"sentence": "SLA process is gentler on the forming implant than the DLP process because , in DLP , the part must attach much more firmly to the build platform to prevent damage when newly formed layers are peeled from the basement plate after each exposure .", "entities": [{"name": "SLA", "type": "machine or equipment", "pos": [0, 3]}, {"name": "process", "type": "concept or principle", "pos": [4, 11]}, {"name": "forming implant", "type": "machine or equipment", "pos": [30, 45]}, {"name": "DLP", "type": "manufacturing process", "pos": [55, 58]}, {"name": "DLP", "type": "manufacturing process", "pos": [80, 83]}, {"name": "build platform", "type": "machine or equipment", "pos": [131, 145]}, {"name": "damage", "type": "machanical property", "pos": [157, 163]}, {"name": "basement plate", "type": "machine or equipment", "pos": [209, 223]}, {"name": "exposure", "type": "concept or principle", "pos": [235, 243]}]}, {"sentence": "The building platform can be angled upward and the light source down in some masking machines ( e.g .", "entities": [{"name": "building platform", "type": "machine or equipment", "pos": [4, 21]}, {"name": "be", "type": "material", "pos": [26, 28]}, {"name": "light source", "type": "machine or equipment", "pos": [51, 63]}, {"name": "masking machines", "type": "machine or equipment", "pos": [77, 93]}]}, {"sentence": "Phidias technologies with Prodways 3D printer ) .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [8, 20]}, {"name": "3D printer", "type": "machine or equipment", "pos": [35, 45]}]}, {"sentence": "The DLP technology is known for its high resolution , typically able to reach a layer thickness of down to 30 μm .", "entities": [{"name": "DLP", "type": "manufacturing process", "pos": [4, 7]}, {"name": "high resolution", "type": "process parameter", "pos": [36, 51]}, {"name": "layer thickness", "type": "process parameter", "pos": [80, 95]}]}, {"sentence": "A new innovation in mask-image-projection based on the stereolithography process has been developed to produce objects with digital materials .", "entities": [{"name": "mask-image-projection", "type": "concept or principle", "pos": [20, 41]}, {"name": "stereolithography", "type": "manufacturing process", "pos": [55, 72]}, {"name": "process", "type": "concept or principle", "pos": [73, 80]}, {"name": "digital materials", "type": "concept or principle", "pos": [124, 141]}]}, {"sentence": "The proposed approach is based on projecting mask images with a new two-channel system design which reduces the separation force between a cured layer and the resin vat .", "entities": [{"name": "mask images", "type": "concept or principle", "pos": [45, 56]}, {"name": "two-channel", "type": "concept or principle", "pos": [68, 79]}, {"name": "design", "type": "engineering feature", "pos": [87, 93]}, {"name": "separation force", "type": "concept or principle", "pos": [112, 128]}, {"name": "cured layer", "type": "concept or principle", "pos": [139, 150]}, {"name": "resin vat", "type": "machine or equipment", "pos": [159, 168]}]}, {"sentence": "The fabrication results demonstrate that the developed dual-material process can successfully produce 3D objects with spatial control over placement of both material and structure .", "entities": [{"name": "fabrication", "type": "manufacturing process", "pos": [4, 15]}, {"name": "dual-material", "type": "concept or principle", "pos": [55, 68]}, {"name": "3D objects", "type": "application", "pos": [102, 112]}, {"name": "spatial control", "type": "concept or principle", "pos": [118, 133]}, {"name": "material", "type": "material", "pos": [157, 165]}, {"name": "structure", "type": "concept or principle", "pos": [170, 179]}]}, {"sentence": "Close to DLP principle , the Continuous Liquid Interface Production ( CLIP ) production is a new type of AM that uses photopolymerisation working in continuous , thanks to a projector and the ability to control oxygen levels throughout an oxygen-permeable membrane .", "entities": [{"name": "DLP", "type": "manufacturing process", "pos": [9, 12]}, {"name": "Continuous Liquid Interface Production", "type": "manufacturing process", "pos": [29, 67]}, {"name": "CLIP", "type": "manufacturing process", "pos": [70, 74]}, {"name": "production", "type": "manufacturing process", "pos": [77, 87]}, {"name": "AM", "type": "manufacturing process", "pos": [105, 107]}, {"name": "photopolymerisation", "type": "concept or principle", "pos": [118, 137]}, {"name": "projector", "type": "machine or equipment", "pos": [174, 183]}, {"name": "oxygen", "type": "material", "pos": [211, 217]}, {"name": "oxygen-permeable membrane", "type": "material", "pos": [239, 264]}]}, {"sentence": "This latter process is 30 times faster than the SLS or the MJM .", "entities": [{"name": "process", "type": "concept or principle", "pos": [12, 19]}, {"name": "SLS", "type": "manufacturing process", "pos": [48, 51]}, {"name": "MJM", "type": "manufacturing process", "pos": [59, 62]}]}, {"sentence": "Extrusion technologieB- Fused Deposition Modeling ( FDM ) is a layer AM process that uses a thermoplastic filament by fused depositing .", "entities": [{"name": "Extrusion", "type": "manufacturing process", "pos": [0, 9]}, {"name": "Fused Deposition Modeling", "type": "manufacturing process", "pos": [24, 49]}, {"name": "FDM", "type": "manufacturing process", "pos": [52, 55]}, {"name": "layer", "type": "process parameter", "pos": [63, 68]}, {"name": "AM process", "type": "manufacturing process", "pos": [69, 79]}, {"name": "thermoplastic filament", "type": "material", "pos": [92, 114]}, {"name": "fused depositing", "type": "manufacturing process", "pos": [118, 134]}]}, {"sentence": "FDM is trademarked by Stratasys Inc in the late 1980s and the equivalent term is Fused Filament Fabrication ( FFF ) .", "entities": [{"name": "FDM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "Stratasys", "type": "application", "pos": [22, 31]}, {"name": "Fused Filament Fabrication", "type": "manufacturing process", "pos": [81, 107]}, {"name": "FFF", "type": "manufacturing process", "pos": [110, 113]}]}, {"sentence": "The filament is extruded through a nozzle to print one cross section of an object , then moving up vertically to repeat the process for a new layer .", "entities": [{"name": "filament", "type": "material", "pos": [4, 12]}, {"name": "extruded", "type": "manufacturing process", "pos": [16, 24]}, {"name": "nozzle", "type": "machine or equipment", "pos": [35, 41]}, {"name": "print", "type": "manufacturing process", "pos": [45, 50]}, {"name": "cross section", "type": "concept or principle", "pos": [55, 68]}, {"name": "process", "type": "concept or principle", "pos": [124, 131]}, {"name": "layer", "type": "process parameter", "pos": [142, 147]}]}, {"sentence": "The most used materials in FDM are ABS , PLA and PC ( Polycarbonate ) but you can find out new blends containing wood and stone as well as filaments with rubbery characteristics .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [14, 23]}, {"name": "FDM", "type": "manufacturing process", "pos": [27, 30]}, {"name": "ABS", "type": "material", "pos": [35, 38]}, {"name": "PLA", "type": "material", "pos": [41, 44]}, {"name": "PC", "type": "material", "pos": [49, 51]}, {"name": "Polycarbonate", "type": "material", "pos": [54, 67]}, {"name": "blends", "type": "material", "pos": [95, 101]}, {"name": "wood", "type": "material", "pos": [113, 117]}, {"name": "stone", "type": "material", "pos": [122, 127]}, {"name": "as", "type": "material", "pos": [128, 130]}, {"name": "as", "type": "material", "pos": [136, 138]}, {"name": "rubbery characteristics", "type": "concept or principle", "pos": [154, 177]}]}, {"sentence": "Compared to ABS , PLA responds differently to moisture , to ageing UV with a discoloration and to withdrawal of material .", "entities": [{"name": "ABS", "type": "material", "pos": [12, 15]}, {"name": "PLA", "type": "material", "pos": [18, 21]}, {"name": "ageing UV", "type": "enabling technology", "pos": [60, 69]}, {"name": "discoloration", "type": "concept or principle", "pos": [77, 90]}, {"name": "material", "type": "material", "pos": [112, 120]}]}, {"sentence": "To predict the mechanical behaviour of FDM parts , it is critical to understand the material properties of the raw FDM process material , and the effect that FDM build parameters have on anisotropic material properties .", "entities": [{"name": "mechanical behaviour", "type": "concept or principle", "pos": [15, 35]}, {"name": "FDM", "type": "manufacturing process", "pos": [39, 42]}, {"name": "material properties", "type": "concept or principle", "pos": [84, 103]}, {"name": "FDM", "type": "manufacturing process", "pos": [115, 118]}, {"name": "material", "type": "material", "pos": [127, 135]}, {"name": "FDM", "type": "manufacturing process", "pos": [158, 161]}, {"name": "build parameters", "type": "process parameter", "pos": [162, 178]}, {"name": "anisotropic material properties", "type": "machanical property", "pos": [187, 218]}]}, {"sentence": "The support material is often made of another material and is detachable or soluble from the actual part at the end of the manufacturing process ( except for the low-cost solutions , which use the same raw material ) .", "entities": [{"name": "support material", "type": "material", "pos": [4, 20]}, {"name": "material", "type": "material", "pos": [46, 54]}, {"name": "detachable", "type": "concept or principle", "pos": [62, 72]}, {"name": "soluble", "type": "concept or principle", "pos": [76, 83]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [123, 144]}, {"name": "raw material", "type": "material", "pos": [202, 214]}]}, {"sentence": "The disadvantages are that the resolution on the z axis is low compared to other AM process ( 0.25 mm ) , so if a smooth surface is needed a finishing process is required and it is a slow process sometimes taking days to build large complex parts .", "entities": [{"name": "resolution", "type": "process parameter", "pos": [31, 41]}, {"name": "AM process", "type": "manufacturing process", "pos": [81, 91]}, {"name": "mm", "type": "manufacturing process", "pos": [99, 101]}, {"name": "smooth surface", "type": "concept or principle", "pos": [114, 128]}, {"name": "finishing process", "type": "manufacturing process", "pos": [141, 158]}, {"name": "process", "type": "concept or principle", "pos": [188, 195]}, {"name": "build", "type": "process parameter", "pos": [221, 226]}]}, {"sentence": "FDM technology is the most popular of desktop 3D printers and the less expensive professional printers .", "entities": [{"name": "FDM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "desktop 3D printers", "type": "machine or equipment", "pos": [38, 57]}, {"name": "printers", "type": "machine or equipment", "pos": [94, 102]}]}, {"sentence": "Directed Energy Deposition ( DED ) – covers a range of terminology : Laser Engineered Net Shaping ( LENS ) , directed light fabrication ( IFF – Ion Fusion Formation ) , Direct Metal Deposition ( DMD ) , 3D laser cladding .", "entities": [{"name": "Directed Energy Deposition", "type": "manufacturing process", "pos": [0, 26]}, {"name": "DED", "type": "manufacturing process", "pos": [29, 32]}, {"name": "range", "type": "process parameter", "pos": [46, 51]}, {"name": "Laser Engineered Net Shaping", "type": "manufacturing process", "pos": [69, 97]}, {"name": "LENS", "type": "manufacturing process", "pos": [100, 104]}, {"name": "directed light fabrication", "type": "manufacturing process", "pos": [109, 135]}, {"name": "IFF", "type": "manufacturing process", "pos": [138, 141]}, {"name": "Ion Fusion Formation", "type": "manufacturing process", "pos": [144, 164]}, {"name": "Direct Metal Deposition", "type": "manufacturing process", "pos": [169, 192]}, {"name": "DMD", "type": "manufacturing process", "pos": [195, 198]}, {"name": "3D laser cladding", "type": "manufacturing process", "pos": [203, 220]}]}, {"sentence": "It is a more complex printing process commonly used to repair or add additional material to existing components .", "entities": [{"name": "printing process", "type": "manufacturing process", "pos": [21, 37]}, {"name": "material", "type": "material", "pos": [80, 88]}, {"name": "components", "type": "machine or equipment", "pos": [101, 111]}]}, {"sentence": "LENS is used to melt the surface of the target point while a stream of powdered metal is delivered onto the small targeted point .", "entities": [{"name": "LENS", "type": "manufacturing process", "pos": [0, 4]}, {"name": "melt", "type": "concept or principle", "pos": [16, 20]}, {"name": "surface", "type": "concept or principle", "pos": [25, 32]}, {"name": "powdered metal", "type": "material", "pos": [71, 85]}]}, {"sentence": "IFF melts a metal wire or powder with a plasma welding torch to form an object .", "entities": [{"name": "IFF", "type": "manufacturing process", "pos": [0, 3]}, {"name": "metal wire", "type": "material", "pos": [12, 22]}, {"name": "powder", "type": "material", "pos": [26, 32]}, {"name": "plasma welding torch", "type": "machine or equipment", "pos": [40, 60]}]}, {"sentence": "This is a near-net-shape manufacturing process that uses a very hot ionised gas to deposit a metal in small amounts .", "entities": [{"name": "near-net-shape manufacturing", "type": "manufacturing process", "pos": [10, 38]}, {"name": "ionised gas", "type": "concept or principle", "pos": [68, 79]}, {"name": "metal", "type": "material", "pos": [93, 98]}]}, {"sentence": "DMD melts metal wire by electron beam as feedstock used to form an object within a vacuum chamber .", "entities": [{"name": "DMD", "type": "manufacturing process", "pos": [0, 3]}, {"name": "metal wire", "type": "material", "pos": [10, 20]}, {"name": "electron beam", "type": "concept or principle", "pos": [24, 37]}, {"name": "as", "type": "material", "pos": [38, 40]}, {"name": "vacuum chamber", "type": "machine or equipment", "pos": [83, 97]}]}, {"sentence": "The objects created in DED can be larger , even up to several feet long .", "entities": [{"name": "DED", "type": "manufacturing process", "pos": [23, 26]}, {"name": "be", "type": "material", "pos": [31, 33]}]}, {"sentence": "Dough Deposition Modeling ( DDM ) – groups the marginal processes which file different doughs ( Figure 6 ) .", "entities": [{"name": "Dough Deposition Modeling", "type": "concept or principle", "pos": [0, 25]}, {"name": "DDM", "type": "concept or principle", "pos": [28, 31]}, {"name": "processes", "type": "concept or principle", "pos": [56, 65]}, {"name": "file", "type": "manufacturing standard", "pos": [72, 76]}, {"name": "doughs", "type": "material", "pos": [87, 93]}]}, {"sentence": "Some technologies based on FDM printers use a syringe to deposit a dough material like silicone , food dough , chocolate , etc .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [5, 17]}, {"name": "FDM printers", "type": "machine or equipment", "pos": [27, 39]}, {"name": "syringe", "type": "machine or equipment", "pos": [46, 53]}, {"name": "dough material", "type": "material", "pos": [67, 81]}, {"name": "silicone", "type": "material", "pos": [87, 95]}, {"name": "food dough", "type": "material", "pos": [98, 108]}, {"name": "chocolate", "type": "material", "pos": [111, 120]}]}, {"sentence": "A syringe-based extrusion tool which uses a linear stepper motor to control the syringe plunger position .", "entities": [{"name": "syringe-based extrusion tool", "type": "machine or equipment", "pos": [2, 30]}, {"name": "linear stepper motor", "type": "machine or equipment", "pos": [44, 64]}, {"name": "syringe plunger position", "type": "process parameter", "pos": [80, 104]}]}, {"sentence": "The medical research uses the deposition of biomaterial and cells to realise a tissue structure .", "entities": [{"name": "medical", "type": "application", "pos": [4, 11]}, {"name": "deposition", "type": "concept or principle", "pos": [30, 40]}, {"name": "biomaterial", "type": "material", "pos": [44, 55]}, {"name": "cells", "type": "application", "pos": [60, 65]}, {"name": "tissue structure", "type": "concept or principle", "pos": [79, 95]}]}, {"sentence": "It presents a novel method for the deposition of biopolymers in high-resolution structures , using a pressure-activated microsyringe .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [35, 45]}, {"name": "biopolymers", "type": "material", "pos": [49, 60]}, {"name": "high-resolution", "type": "process parameter", "pos": [64, 79]}, {"name": "pressure-activated microsyringe", "type": "machine or equipment", "pos": [101, 132]}]}, {"sentence": "Other works show applications to extrude a bio-based material to reconstitute a model and preserve the ecological environment .", "entities": [{"name": "extrude", "type": "manufacturing process", "pos": [33, 40]}, {"name": "bio-based material", "type": "material", "pos": [43, 61]}, {"name": "model", "type": "concept or principle", "pos": [80, 85]}, {"name": "ecological environment", "type": "concept or principle", "pos": [103, 125]}]}, {"sentence": "Experimentation uses a piston and 3D printer head adapted on a CNC machine to deposit a pulpwood based on wood flour to create a reconstituted wood product .", "entities": [{"name": "piston", "type": "application", "pos": [23, 29]}, {"name": "3D printer head", "type": "machine or equipment", "pos": [34, 49]}, {"name": "CNC machine", "type": "machine or equipment", "pos": [63, 74]}, {"name": "pulpwood", "type": "material", "pos": [88, 96]}, {"name": "wood flour", "type": "material", "pos": [106, 116]}, {"name": "reconstituted wood product", "type": "concept or principle", "pos": [129, 155]}]}, {"sentence": "Jet technologies - MJM – Multi Jet Modeling – deposits droplets of photopolymer materials with multi jets on a building platform in ultra-thin layers until the part is completed .", "entities": [{"name": "Jet technologies", "type": "manufacturing process", "pos": [0, 16]}, {"name": "MJM", "type": "manufacturing process", "pos": [19, 22]}, {"name": "Multi Jet Modeling", "type": "manufacturing process", "pos": [25, 43]}, {"name": "droplets", "type": "concept or principle", "pos": [55, 63]}, {"name": "photopolymer materials", "type": "material", "pos": [67, 89]}, {"name": "multi jets", "type": "machine or equipment", "pos": [95, 105]}, {"name": "building platform", "type": "machine or equipment", "pos": [111, 128]}, {"name": "ultra-thin layers", "type": "concept or principle", "pos": [132, 149]}]}, {"sentence": "Two different photopolymer materials are used for building , one for the actual model and another gel like material for supporting .", "entities": [{"name": "photopolymer materials", "type": "material", "pos": [14, 36]}, {"name": "model", "type": "concept or principle", "pos": [80, 85]}, {"name": "gel", "type": "material", "pos": [98, 101]}, {"name": "material", "type": "material", "pos": [107, 115]}]}, {"sentence": "The photopolymer layers are cured by UV lamps and a gel-like polymer supports the complexity of geometry in wrapping it .", "entities": [{"name": "photopolymer layers", "type": "material", "pos": [4, 23]}, {"name": "cured", "type": "manufacturing process", "pos": [28, 33]}, {"name": "UV lamps", "type": "machine or equipment", "pos": [37, 45]}, {"name": "gel-like polymer", "type": "material", "pos": [52, 68]}, {"name": "complexity", "type": "concept or principle", "pos": [82, 92]}, {"name": "geometry", "type": "concept or principle", "pos": [96, 104]}, {"name": "wrapping", "type": "concept or principle", "pos": [108, 116]}]}, {"sentence": "The soluble gel-like ( support material ) is then removed by a water jet .", "entities": [{"name": "soluble", "type": "concept or principle", "pos": [4, 11]}, {"name": "gel-like", "type": "material", "pos": [12, 20]}, {"name": "support material", "type": "material", "pos": [23, 39]}, {"name": "water jet", "type": "manufacturing process", "pos": [63, 72]}]}, {"sentence": "The PolyJet technique reproduced details more accurately with a very good surface finish and smoothness .", "entities": [{"name": "PolyJet technique", "type": "manufacturing process", "pos": [4, 21]}, {"name": "accurately", "type": "process characterization", "pos": [46, 56]}, {"name": "surface finish", "type": "engineering feature", "pos": [74, 88]}, {"name": "smoothness", "type": "concept or principle", "pos": [93, 103]}]}, {"sentence": "The accuracy of a PolyJet machine can reach thickness from 50 to 25 μm , besides the parts have a higher resolution .", "entities": [{"name": "accuracy", "type": "process characterization", "pos": [4, 12]}, {"name": "PolyJet machine", "type": "machine or equipment", "pos": [18, 33]}, {"name": "higher resolution", "type": "process parameter", "pos": [98, 115]}]}, {"sentence": "Also known as Thermojet , some systems can produce wax models in jetting tiny droplets of melted liquid material which cool and harden on impact to form the solid object .", "entities": [{"name": "as", "type": "material", "pos": [11, 13]}, {"name": "wax", "type": "material", "pos": [51, 54]}, {"name": "jetting", "type": "manufacturing process", "pos": [65, 72]}, {"name": "droplets", "type": "concept or principle", "pos": [78, 86]}, {"name": "melted liquid material", "type": "material", "pos": [90, 112]}, {"name": "harden", "type": "concept or principle", "pos": [128, 134]}, {"name": "impact", "type": "concept or principle", "pos": [138, 144]}]}, {"sentence": "3DP – three-dimensional printing , also known as CJP – Colour Jet Printing , combines powders and binders .", "entities": [{"name": "3DP", "type": "manufacturing process", "pos": [0, 3]}, {"name": "three-dimensional printing", "type": "manufacturing process", "pos": [6, 32]}, {"name": "as", "type": "material", "pos": [46, 48]}, {"name": "Colour Jet Printing", "type": "manufacturing process", "pos": [55, 74]}, {"name": "powders", "type": "material", "pos": [86, 93]}, {"name": "binders", "type": "material", "pos": [98, 105]}]}, {"sentence": "3DP has been developed by the MIT .", "entities": [{"name": "3DP", "type": "manufacturing process", "pos": [0, 3]}]}, {"sentence": "Each layer is created by spreading a thin powder layer with a roller and the powder is selectively linked by inkjet printing of a binder .", "entities": [{"name": "layer", "type": "process parameter", "pos": [5, 10]}, {"name": "powder", "type": "material", "pos": [42, 48]}, {"name": "layer", "type": "process parameter", "pos": [49, 54]}, {"name": "roller", "type": "machine or equipment", "pos": [62, 68]}, {"name": "powder", "type": "material", "pos": [77, 83]}, {"name": "inkjet printing", "type": "manufacturing process", "pos": [109, 124]}, {"name": "binder", "type": "material", "pos": [130, 136]}]}, {"sentence": "The build tray goes down to create the next layer .", "entities": [{"name": "build tray", "type": "machine or equipment", "pos": [4, 14]}, {"name": "layer", "type": "process parameter", "pos": [44, 49]}]}, {"sentence": "This process has been used to fabricate numerous metal , ceramic , silica and polymeric components of any geometry for a wide array of applications .", "entities": [{"name": "process", "type": "concept or principle", "pos": [5, 12]}, {"name": "fabricate", "type": "manufacturing process", "pos": [30, 39]}, {"name": "metal", "type": "material", "pos": [49, 54]}, {"name": "ceramic", "type": "material", "pos": [57, 64]}, {"name": "silica", "type": "material", "pos": [67, 73]}, {"name": "polymeric components", "type": "material", "pos": [78, 98]}, {"name": "geometry", "type": "concept or principle", "pos": [106, 114]}]}, {"sentence": "Other powders have been tested to realise green products in wood .", "entities": [{"name": "powders", "type": "material", "pos": [6, 13]}, {"name": "green products", "type": "machanical property", "pos": [42, 56]}, {"name": "wood", "type": "material", "pos": [60, 64]}]}, {"sentence": "3DP can print in multicolour directly into the part during the build process from a colour cartridge .", "entities": [{"name": "3DP", "type": "manufacturing process", "pos": [0, 3]}, {"name": "print", "type": "manufacturing process", "pos": [8, 13]}, {"name": "build", "type": "process parameter", "pos": [63, 68]}, {"name": "cartridge", "type": "machine or equipment", "pos": [91, 100]}]}, {"sentence": "The final model is extracted from the powder bed to realise infiltration with liquid glue .", "entities": [{"name": "model", "type": "concept or principle", "pos": [10, 15]}, {"name": "extracted", "type": "concept or principle", "pos": [19, 28]}, {"name": "powder bed", "type": "machine or equipment", "pos": [38, 48]}, {"name": "infiltration", "type": "concept or principle", "pos": [60, 72]}, {"name": "liquid glue", "type": "material", "pos": [78, 89]}]}, {"sentence": "The infiltrate improves the colour definition and the mechanical behaviours .", "entities": [{"name": "mechanical behaviours", "type": "concept or principle", "pos": [54, 75]}]}, {"sentence": "3DP can provide architects a useful tool to quickly create a realistic model .", "entities": [{"name": "3DP", "type": "manufacturing process", "pos": [0, 3]}, {"name": "tool", "type": "machine or equipment", "pos": [36, 40]}, {"name": "model", "type": "concept or principle", "pos": [71, 76]}]}, {"sentence": "Prometal is a 3D printing process to build rapid tools and dies .", "entities": [{"name": "Prometal", "type": "manufacturing process", "pos": [0, 8]}, {"name": "3D printing", "type": "manufacturing process", "pos": [14, 25]}, {"name": "build", "type": "process parameter", "pos": [37, 42]}, {"name": "tools", "type": "machine or equipment", "pos": [49, 54]}, {"name": "dies", "type": "machine or equipment", "pos": [59, 63]}]}, {"sentence": "This is a powder-based process in which stainless steel is used .", "entities": [{"name": "process", "type": "concept or principle", "pos": [23, 30]}, {"name": "stainless steel", "type": "material", "pos": [40, 55]}]}, {"sentence": "The printing process occurs when a liquid binder is spurt out in jets to steel powder .", "entities": [{"name": "printing process", "type": "manufacturing process", "pos": [4, 20]}, {"name": "liquid binder", "type": "material", "pos": [35, 48]}, {"name": "steel powder", "type": "material", "pos": [73, 85]}]}, {"sentence": "A final treatment is required to solidify the part like sintering , infiltration and finishing processes .", "entities": [{"name": "solidify", "type": "concept or principle", "pos": [33, 41]}, {"name": "sintering", "type": "manufacturing process", "pos": [56, 65]}, {"name": "infiltration", "type": "concept or principle", "pos": [68, 80]}, {"name": "finishing processes", "type": "manufacturing process", "pos": [85, 104]}]}, {"sentence": "Liquid Metal Jetting ( LMJ ) involves the jetting of molten metal in a process similar to inkjet printing , whereby individual molten droplets are ejected and connected to each other .", "entities": [{"name": "Liquid Metal Jetting", "type": "manufacturing process", "pos": [0, 20]}, {"name": "LMJ", "type": "manufacturing process", "pos": [23, 26]}, {"name": "jetting", "type": "manufacturing process", "pos": [42, 49]}, {"name": "molten metal", "type": "material", "pos": [53, 65]}, {"name": "process", "type": "concept or principle", "pos": [71, 78]}, {"name": "inkjet printing", "type": "manufacturing process", "pos": [90, 105]}, {"name": "droplets", "type": "concept or principle", "pos": [134, 142]}]}, {"sentence": "This process is not commercially available yet .", "entities": [{"name": "process", "type": "concept or principle", "pos": [5, 12]}]}, {"sentence": "LOM – Laminated Objet Manufacturing – is a rapid prototyping process where a part is sequentially built from layers of paper .", "entities": [{"name": "LOM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "Manufacturing", "type": "manufacturing process", "pos": [22, 35]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [43, 60]}, {"name": "process", "type": "concept or principle", "pos": [61, 68]}]}, {"sentence": "The process consists of the thermal adhesive bonding and laser patterning of uniformly-thick paper layers .", "entities": [{"name": "process", "type": "concept or principle", "pos": [4, 11]}, {"name": "adhesive bonding", "type": "concept or principle", "pos": [36, 52]}, {"name": "laser patterning", "type": "concept or principle", "pos": [57, 73]}]}, {"sentence": "The system includes an x-y plotter device positioned above a work table vertically movable .", "entities": [{"name": "plotter device", "type": "machine or equipment", "pos": [27, 41]}, {"name": "work table", "type": "machine or equipment", "pos": [61, 71]}]}, {"sentence": "The x-y plotter device includes a forming tool to create a layer from a sheet of material positioned on the work table .", "entities": [{"name": "plotter device", "type": "machine or equipment", "pos": [8, 22]}, {"name": "forming", "type": "manufacturing process", "pos": [34, 41]}, {"name": "layer", "type": "process parameter", "pos": [59, 64]}, {"name": "sheet", "type": "material", "pos": [72, 77]}, {"name": "material", "type": "material", "pos": [81, 89]}, {"name": "work table", "type": "machine or equipment", "pos": [108, 118]}]}, {"sentence": "The layers are bonded to each other with heat-sensitive adhesives provided on one side thereof .", "entities": [{"name": "heat-sensitive adhesives", "type": "material", "pos": [41, 65]}]}, {"sentence": "A bonding tool or fuser is mounted to translate across the work table and apply a lamination force and heat to each of the layers .", "entities": [{"name": "bonding", "type": "concept or principle", "pos": [2, 9]}, {"name": "fuser", "type": "machine or equipment", "pos": [18, 23]}, {"name": "work table", "type": "machine or equipment", "pos": [59, 69]}, {"name": "lamination force", "type": "process parameter", "pos": [82, 98]}, {"name": "heat", "type": "concept or principle", "pos": [103, 107]}]}, {"sentence": "The layers are superimposed to give the final object and the layer resolution is defined by the thickness of the paper sheet .", "entities": [{"name": "layer resolution", "type": "process parameter", "pos": [61, 77]}, {"name": "paper sheet", "type": "material", "pos": [113, 124]}]}, {"sentence": "3D printers can print in full colours ( Mcor Technologies ) .", "entities": [{"name": "3D printers", "type": "machine or equipment", "pos": [0, 11]}, {"name": "print", "type": "manufacturing process", "pos": [16, 21]}, {"name": "Technologies", "type": "concept or principle", "pos": [45, 57]}]}, {"sentence": "Stratoconception is a rapid prototyping process with layers of sheets .", "entities": [{"name": "Stratoconception", "type": "concept or principle", "pos": [0, 16]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [22, 39]}, {"name": "process", "type": "concept or principle", "pos": [40, 47]}, {"name": "sheets", "type": "material", "pos": [63, 69]}]}, {"sentence": "It consists in the decomposition of a model by calculating a set of elementary layers called ‘ strata ’ and by placing reinforcing pieces and inserts in strata .", "entities": [{"name": "decomposition", "type": "machanical property", "pos": [19, 32]}, {"name": "model", "type": "concept or principle", "pos": [38, 43]}, {"name": "set", "type": "application", "pos": [61, 64]}, {"name": "strata", "type": "concept or principle", "pos": [95, 101]}, {"name": "reinforcing pieces", "type": "machine or equipment", "pos": [119, 137]}, {"name": "inserts", "type": "machine or equipment", "pos": [142, 149]}, {"name": "strata", "type": "concept or principle", "pos": [153, 159]}]}, {"sentence": "The elementary layer are displayed and manufactured by rapid milling or laser-cutting .", "entities": [{"name": "layer", "type": "process parameter", "pos": [15, 20]}, {"name": "manufactured", "type": "concept or principle", "pos": [39, 51]}, {"name": "milling", "type": "manufacturing process", "pos": [61, 68]}, {"name": "laser-cutting", "type": "manufacturing process", "pos": [72, 85]}]}, {"sentence": "The strata are assembled with inserts to rebuild the final object .", "entities": [{"name": "strata", "type": "concept or principle", "pos": [4, 10]}, {"name": "inserts", "type": "machine or equipment", "pos": [30, 37]}]}, {"sentence": "This process is useful thanks to milling of a low-cost sheet in raw material ( wood , MDF , PVC , aluminium , etc ) .", "entities": [{"name": "process", "type": "concept or principle", "pos": [5, 12]}, {"name": "milling", "type": "manufacturing process", "pos": [33, 40]}, {"name": "sheet", "type": "material", "pos": [55, 60]}, {"name": "raw material", "type": "material", "pos": [64, 76]}, {"name": "wood", "type": "material", "pos": [79, 83]}, {"name": "MDF", "type": "material", "pos": [86, 89]}, {"name": "PVC", "type": "material", "pos": [92, 95]}, {"name": "aluminium", "type": "material", "pos": [98, 107]}]}, {"sentence": "When you find out the AM technologies and you can use some of them , experts know that several manufacturing constraints and mechanical behaviours bring complications .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [22, 37]}, {"name": "manufacturing constraints", "type": "concept or principle", "pos": [95, 120]}, {"name": "mechanical behaviours", "type": "concept or principle", "pos": [125, 146]}]}, {"sentence": "For example , the powder technology leads to extract the final product outside of a power bed before cleaning it and often to applying a post-treatment .", "entities": [{"name": "powder technology", "type": "enabling technology", "pos": [18, 35]}, {"name": "power", "type": "process parameter", "pos": [84, 89]}, {"name": "bed", "type": "machine or equipment", "pos": [90, 93]}, {"name": "cleaning", "type": "manufacturing process", "pos": [101, 109]}, {"name": "post-treatment", "type": "manufacturing process", "pos": [137, 151]}]}, {"sentence": "Moreover , the manufacturing orientation of the model influences the quality of geometry because of material gradient and the manufacturing direction .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [15, 28]}, {"name": "model", "type": "concept or principle", "pos": [48, 53]}, {"name": "quality", "type": "concept or principle", "pos": [69, 76]}, {"name": "geometry", "type": "concept or principle", "pos": [80, 88]}, {"name": "material gradient", "type": "concept or principle", "pos": [100, 117]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [126, 139]}]}, {"sentence": "The part orientation can deeply modify the planarity , the circularity and the surface accuracy .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [9, 20]}, {"name": "planarity", "type": "concept or principle", "pos": [43, 52]}, {"name": "circularity", "type": "concept or principle", "pos": [59, 70]}, {"name": "surface accuracy", "type": "process characterization", "pos": [79, 95]}]}, {"sentence": "You have the same constraints with other technologies as the 3DP or DED .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [41, 53]}, {"name": "as", "type": "material", "pos": [54, 56]}, {"name": "3DP", "type": "manufacturing process", "pos": [61, 64]}, {"name": "DED", "type": "manufacturing process", "pos": [68, 71]}]}, {"sentence": "The internal structure of product due to the material orientation , the manufacturing technology and its manufacturing by layers generates use constraints which need to be integrated .", "entities": [{"name": "internal structure", "type": "machanical property", "pos": [4, 22]}, {"name": "material orientation", "type": "concept or principle", "pos": [45, 65]}, {"name": "manufacturing technology", "type": "manufacturing process", "pos": [72, 96]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [105, 118]}, {"name": "be", "type": "material", "pos": [169, 171]}]}, {"sentence": "We can quote in a non-exhaustive list the anisotropy for the part made by FDM , the crack propagation for powdered parts and the ageing UV for the models in photopolymers .", "entities": [{"name": "anisotropy", "type": "machanical property", "pos": [42, 52]}, {"name": "FDM", "type": "manufacturing process", "pos": [74, 77]}, {"name": "crack propagation", "type": "concept or principle", "pos": [84, 101]}, {"name": "ageing UV", "type": "enabling technology", "pos": [129, 138]}, {"name": "photopolymers", "type": "material", "pos": [157, 170]}]}, {"sentence": "You can find out the accuracy of some AM machines from manufacturer sources on the Table 1 .", "entities": [{"name": "accuracy", "type": "process characterization", "pos": [21, 29]}, {"name": "AM machines", "type": "machine or equipment", "pos": [38, 49]}, {"name": "manufacturer", "type": "concept or principle", "pos": [55, 67]}]}, {"sentence": "From a 3D printer to another , designer does not answer to the same need and accuracy is often decisive to get a reliable product or a functional mechanism .", "entities": [{"name": "3D printer", "type": "machine or equipment", "pos": [7, 17]}, {"name": "accuracy", "type": "process characterization", "pos": [77, 85]}, {"name": "functional mechanism", "type": "concept or principle", "pos": [135, 155]}]}, {"sentence": "Furthermore , the post-treatment , post-machining or post-finishing are often required to get a finished product .", "entities": [{"name": "post-treatment", "type": "manufacturing process", "pos": [18, 32]}, {"name": "post-machining", "type": "manufacturing process", "pos": [35, 49]}, {"name": "post-finishing", "type": "manufacturing process", "pos": [53, 67]}]}, {"sentence": "The recycling and the raw material cost have to be taken into account too .", "entities": [{"name": "recycling", "type": "concept or principle", "pos": [4, 13]}, {"name": "raw material", "type": "material", "pos": [22, 34]}, {"name": "be", "type": "material", "pos": [48, 50]}]}, {"sentence": "To sum up , a set of stages are to define in upstream to assess the AM technology implications .", "entities": [{"name": "set", "type": "application", "pos": [14, 17]}, {"name": "AM technology", "type": "manufacturing process", "pos": [68, 81]}]}, {"sentence": "The incrementation of experience greatly improves the engineering and manufacturing process .", "entities": [{"name": "engineering", "type": "application", "pos": [54, 65]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [70, 91]}]}, {"sentence": "The expiring patents open the market for others manufacturers proposing of new machines .", "entities": [{"name": "patents", "type": "concept or principle", "pos": [13, 20]}, {"name": "machines", "type": "machine or equipment", "pos": [79, 87]}]}, {"sentence": "Since February 2014 , a major patent related to SLS expired ( Apparatus for producing parts by selective sintering n.d. ) .", "entities": [{"name": "patent", "type": "concept or principle", "pos": [30, 36]}, {"name": "SLS", "type": "manufacturing process", "pos": [48, 51]}, {"name": "selective sintering", "type": "manufacturing process", "pos": [95, 114]}]}, {"sentence": "New technologies resulting from expiring patents appear with the solutions proposed by the companies DWS Systems ( Italy ) or Formlabs ( USA ) .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [4, 16]}, {"name": "patents", "type": "concept or principle", "pos": [41, 48]}, {"name": "companies", "type": "application", "pos": [91, 100]}]}, {"sentence": "3D printing applied to medical has appeared for some years through different applications .", "entities": [{"name": "3D printing", "type": "manufacturing process", "pos": [0, 11]}, {"name": "medical", "type": "application", "pos": [23, 30]}]}, {"sentence": "The organ transplantation sector has difficulties and the organ printing by jet based on 3d tissue engineering offers a possible solution .", "entities": [{"name": "organ transplantation", "type": "concept or principle", "pos": [4, 25]}, {"name": "organ printing", "type": "manufacturing process", "pos": [58, 72]}, {"name": "3d tissue engineering", "type": "application", "pos": [89, 110]}, {"name": "solution", "type": "concept or principle", "pos": [129, 137]}]}, {"sentence": "Some research define organ printing as a rapid prototyping computer-aided 3D printing technology based on using layer-by-layer deposition of cell and/or cell aggregates into a 3D gel with sequential maturation of the printed construct into perfused and vascularised living tissue or organ .", "entities": [{"name": "research", "type": "concept or principle", "pos": [5, 13]}, {"name": "organ printing", "type": "manufacturing process", "pos": [21, 35]}, {"name": "as", "type": "material", "pos": [36, 38]}, {"name": "rapid prototyping", "type": "enabling technology", "pos": [41, 58]}, {"name": "3D printing technology", "type": "enabling technology", "pos": [74, 96]}, {"name": "layer-by-layer deposition", "type": "concept or principle", "pos": [112, 137]}, {"name": "cell", "type": "application", "pos": [141, 145]}, {"name": "cell", "type": "application", "pos": [153, 157]}, {"name": "aggregates", "type": "material", "pos": [158, 168]}, {"name": "3D gel", "type": "material", "pos": [176, 182]}, {"name": "printed construct", "type": "concept or principle", "pos": [217, 234]}]}, {"sentence": "The success of an implantation depends on compatible materials .", "entities": [{"name": "implantation", "type": "manufacturing process", "pos": [18, 30]}, {"name": "materials", "type": "concept or principle", "pos": [53, 62]}]}, {"sentence": "We can find a variety of biomaterials such as curable synthetic polymers , synthetic gels and naturally derived hydrogels .", "entities": [{"name": "biomaterials", "type": "material", "pos": [25, 37]}, {"name": "as", "type": "material", "pos": [43, 45]}, {"name": "polymers", "type": "material", "pos": [64, 72]}, {"name": "synthetic gels", "type": "material", "pos": [75, 89]}, {"name": "naturally derived hydrogels", "type": "material", "pos": [94, 121]}]}, {"sentence": "Prosthetic is the first biomedical area which has used the 3D printing and it presents several successes .", "entities": [{"name": "Prosthetic", "type": "application", "pos": [0, 10]}, {"name": "biomedical", "type": "application", "pos": [24, 34]}, {"name": "area", "type": "process parameter", "pos": [35, 39]}, {"name": "3D printing", "type": "manufacturing process", "pos": [59, 70]}]}, {"sentence": "We can quote a patient ’ s skull anatomy reproduced via 3D printing for pre-surgical use in manual implant design and production and the enhancement of the fixation stability of the custom made total hip prostheses and restore the original biomechanical characteristics of the joint .", "entities": [{"name": "s", "type": "material", "pos": [25, 26]}, {"name": "3D printing", "type": "manufacturing process", "pos": [56, 67]}, {"name": "implant", "type": "application", "pos": [99, 106]}, {"name": "design", "type": "engineering feature", "pos": [107, 113]}, {"name": "production", "type": "manufacturing process", "pos": [118, 128]}, {"name": "stability", "type": "machanical property", "pos": [165, 174]}, {"name": "hip prostheses", "type": "machine or equipment", "pos": [200, 214]}, {"name": "biomechanical", "type": "application", "pos": [240, 253]}, {"name": "joint", "type": "concept or principle", "pos": [277, 282]}]}, {"sentence": "Several applications combine some degradable or allogeneic scaffolding with cellular bioprinting to create customised biologic prosthetics that have the great potential to serve as transplantable replacement tissue .", "entities": [{"name": "allogeneic scaffolding", "type": "biomedical", "pos": [48, 70]}, {"name": "cellular bioprinting", "type": "application", "pos": [76, 96]}, {"name": "prosthetics", "type": "application", "pos": [127, 138]}, {"name": "as", "type": "material", "pos": [178, 180]}]}, {"sentence": "New articles showed that the medical 3D Printing market might reach 983.2 million $ by the year 2020 .", "entities": [{"name": "medical", "type": "application", "pos": [29, 36]}, {"name": "3D Printing", "type": "manufacturing process", "pos": [37, 48]}]}, {"sentence": "Projects for home construction through 3D printing are emerging such as the Shanghai WinSun Decoration Engineering Company .", "entities": [{"name": "construction", "type": "application", "pos": [18, 30]}, {"name": "3D printing", "type": "manufacturing process", "pos": [39, 50]}, {"name": "as", "type": "material", "pos": [69, 71]}, {"name": "Engineering", "type": "application", "pos": [103, 114]}, {"name": "Company", "type": "application", "pos": [115, 122]}]}, {"sentence": "This company can print the basic components separately before assembling them on site .", "entities": [{"name": "company", "type": "application", "pos": [5, 12]}, {"name": "print", "type": "manufacturing process", "pos": [17, 22]}, {"name": "components", "type": "machine or equipment", "pos": [33, 43]}]}, {"sentence": "These concrete houses are built in one day by 3D printing and their construction costs about 3800 $ .", "entities": [{"name": "concrete", "type": "material", "pos": [6, 14]}, {"name": "3D printing", "type": "manufacturing process", "pos": [46, 57]}, {"name": "construction", "type": "application", "pos": [68, 80]}]}, {"sentence": "The 3D printer developed by the Chinese group is much larger than a conventional system and uses the same DDM technology .", "entities": [{"name": "3D printer", "type": "machine or equipment", "pos": [4, 14]}, {"name": "conventional system", "type": "concept or principle", "pos": [68, 87]}, {"name": "DDM technology", "type": "enabling technology", "pos": [106, 120]}]}, {"sentence": "The building industry introduced a vocabulary such as rapid construction or rapid building .", "entities": [{"name": "building industry", "type": "application", "pos": [4, 21]}, {"name": "as", "type": "material", "pos": [51, 53]}, {"name": "construction", "type": "application", "pos": [60, 72]}]}, {"sentence": "The use of the STL format limits the exchange of trades data .", "entities": [{"name": "STL format", "type": "manufacturing standard", "pos": [15, 25]}, {"name": "limits", "type": "concept or principle", "pos": [26, 32]}, {"name": "data", "type": "concept or principle", "pos": [56, 60]}]}, {"sentence": "If the STL format allows exporting from a surfacing model towards the specific software , the designer needs to insert rules in upstream work in CAD .", "entities": [{"name": "STL format", "type": "manufacturing standard", "pos": [7, 17]}, {"name": "model", "type": "concept or principle", "pos": [52, 57]}, {"name": "software", "type": "concept or principle", "pos": [79, 87]}, {"name": "insert", "type": "machine or equipment", "pos": [112, 118]}, {"name": "CAD", "type": "enabling technology", "pos": [145, 148]}]}, {"sentence": "The emergence of more enriched new exchange format appears such as the Additive Manufacturing file Format ( AMF ) with important parameters ( < material > , < composite > , < metadata > , etc .", "entities": [{"name": "exchange format", "type": "concept or principle", "pos": [35, 50]}, {"name": "as", "type": "material", "pos": [64, 66]}, {"name": "Additive Manufacturing file Format", "type": "manufacturing standard", "pos": [71, 105]}, {"name": "AMF", "type": "concept or principle", "pos": [108, 111]}, {"name": "parameters", "type": "concept or principle", "pos": [129, 139]}, {"name": "material", "type": "material", "pos": [144, 152]}, {"name": "composite", "type": "material", "pos": [159, 168]}, {"name": "metadata", "type": "enabling technology", "pos": [175, 183]}]}, {"sentence": ") or the STL 2.0 .", "entities": [{"name": "STL", "type": "manufacturing standard", "pos": [9, 12]}]}, {"sentence": "Alternative file format exports are also required to support depiction of complex organic geometry , whilst allowing multiple-material and mono/multicolour capabilities ; the development of STL 2.0 or Additive Manufacturing file Format ( AMF ) is promising , particularly for the composition of complex geometries and multiple-material .", "entities": [{"name": "file", "type": "manufacturing standard", "pos": [12, 16]}, {"name": "support", "type": "application", "pos": [53, 60]}, {"name": "geometry", "type": "concept or principle", "pos": [90, 98]}, {"name": "multiple-material", "type": "concept or principle", "pos": [117, 134]}, {"name": "mono/multicolour", "type": "concept or principle", "pos": [139, 155]}, {"name": "STL", "type": "manufacturing standard", "pos": [190, 193]}, {"name": "Additive Manufacturing file Format", "type": "manufacturing standard", "pos": [201, 235]}, {"name": "AMF", "type": "concept or principle", "pos": [238, 241]}, {"name": "composition", "type": "concept or principle", "pos": [280, 291]}, {"name": "complex geometries", "type": "concept or principle", "pos": [295, 313]}, {"name": "multiple-material", "type": "concept or principle", "pos": [318, 335]}]}, {"sentence": "The article shows that we need to transfer more trades data to the additive manufacturing machine through an enriched exchange format .", "entities": [{"name": "data", "type": "concept or principle", "pos": [55, 59]}, {"name": "additive manufacturing machine", "type": "machine or equipment", "pos": [67, 97]}, {"name": "exchange format", "type": "concept or principle", "pos": [118, 133]}]}, {"sentence": "The standard ISO/ASTM 52915:2013 Standard specification for additive manufacturing file format ( AMF ) Version 1.15 describes a framework for an interchange format to address the current and future needs of additive manufacturing technology .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [4, 12]}, {"name": "ISO/ASTM", "type": "manufacturing standard", "pos": [13, 21]}, {"name": "Standard", "type": "concept or principle", "pos": [33, 41]}, {"name": "specification", "type": "process parameter", "pos": [42, 55]}, {"name": "additive manufacturing file format", "type": "manufacturing standard", "pos": [60, 94]}, {"name": "AMF", "type": "concept or principle", "pos": [97, 100]}, {"name": "framework", "type": "concept or principle", "pos": [128, 137]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [207, 229]}]}, {"sentence": "The manufacturing units and the small size of AM build tray complicate the production line .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [4, 17]}, {"name": "AM build tray", "type": "machine or equipment", "pos": [46, 59]}, {"name": "production line", "type": "manufacturing process", "pos": [75, 90]}]}, {"sentence": "Industrials seek to reduce the lead time and increase in build speed but a lot of additive manufacturing technologies are not adapted .", "entities": [{"name": "lead time", "type": "process parameter", "pos": [31, 40]}, {"name": "build speed", "type": "process parameter", "pos": [57, 68]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [82, 104]}]}, {"sentence": "The interoperability is little studied by 3D printer manufacturers .", "entities": [{"name": "interoperability", "type": "concept or principle", "pos": [4, 20]}, {"name": "3D printer", "type": "machine or equipment", "pos": [42, 52]}]}, {"sentence": "Reflecting the strategy of some companies like ExOne or Voxeljet , the professional 3D printers can be combined to the production line and offer the largest printers on the world market for 3D printing of sand and metal materials .", "entities": [{"name": "companies", "type": "application", "pos": [32, 41]}, {"name": "3D printers", "type": "machine or equipment", "pos": [84, 95]}, {"name": "be", "type": "material", "pos": [100, 102]}, {"name": "production line", "type": "manufacturing process", "pos": [119, 134]}, {"name": "printers", "type": "machine or equipment", "pos": [157, 165]}, {"name": "3D printing", "type": "manufacturing process", "pos": [190, 201]}, {"name": "sand", "type": "material", "pos": [205, 209]}, {"name": "metal materials", "type": "material", "pos": [214, 229]}]}, {"sentence": "Announced as a new industrial revolution , the additive manufacturing technologies will make the difference when it will be interoperable with the set of manufacturing process .", "entities": [{"name": "as", "type": "material", "pos": [10, 12]}, {"name": "industrial revolution", "type": "concept or principle", "pos": [19, 40]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [47, 69]}, {"name": "be", "type": "material", "pos": [121, 123]}, {"name": "set", "type": "application", "pos": [147, 150]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [154, 175]}]}, {"sentence": "Development orientations show that the new 3D printers will be more integrated inside the production line with the automation and the connectivity with the digital chain .", "entities": [{"name": "orientations", "type": "concept or principle", "pos": [12, 24]}, {"name": "3D printers", "type": "machine or equipment", "pos": [43, 54]}, {"name": "be", "type": "material", "pos": [60, 62]}, {"name": "production line", "type": "manufacturing process", "pos": [90, 105]}, {"name": "automation", "type": "concept or principle", "pos": [115, 125]}, {"name": "digital chain", "type": "enabling technology", "pos": [156, 169]}]}, {"sentence": "A recent example is the emergence of hybrid system combining the 3D printing by laser deposition of metals ( DMD ) and the CNC machining through the LASERTEC AdditiveManufacturing6 solution proposed by DMG MORI© which accelerates the realisation of the finished product .", "entities": [{"name": "hybrid system", "type": "enabling technology", "pos": [37, 50]}, {"name": "3D printing", "type": "manufacturing process", "pos": [65, 76]}, {"name": "laser deposition of metals", "type": "manufacturing process", "pos": [80, 106]}, {"name": "DMD", "type": "manufacturing process", "pos": [109, 112]}, {"name": "CNC machining", "type": "manufacturing process", "pos": [123, 136]}, {"name": "solution", "type": "concept or principle", "pos": [181, 189]}]}, {"sentence": "In order to reduce the time and cost of moulds fabrication , additive manufacturing is used to develop and manufacture systems of rapid tooling .", "entities": [{"name": "moulds fabrication", "type": "manufacturing process", "pos": [40, 58]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [61, 83]}, {"name": "manufacture", "type": "concept or principle", "pos": [107, 118]}, {"name": "rapid tooling", "type": "manufacturing process", "pos": [130, 143]}]}, {"sentence": "Powder-based sintering processes are now able to produce metal moulds that can withstand a few thousand cycles of injection moulding .", "entities": [{"name": "Powder-based sintering", "type": "manufacturing process", "pos": [0, 22]}, {"name": "metal", "type": "material", "pos": [57, 62]}, {"name": "injection moulding", "type": "manufacturing process", "pos": [114, 132]}]}, {"sentence": "AM technologies propose to manufacture of sand moulds for the casting .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [0, 15]}, {"name": "manufacture", "type": "concept or principle", "pos": [27, 38]}, {"name": "sand moulds", "type": "machine or equipment", "pos": [42, 53]}, {"name": "casting", "type": "manufacturing process", "pos": [62, 69]}]}, {"sentence": "A method to produce a lost mould for casting is used with the thermojet technology by wax .", "entities": [{"name": "lost mould", "type": "machine or equipment", "pos": [22, 32]}, {"name": "casting", "type": "manufacturing process", "pos": [37, 44]}, {"name": "thermojet technology", "type": "enabling technology", "pos": [62, 82]}, {"name": "wax", "type": "material", "pos": [86, 89]}]}, {"sentence": "We saw that some powder technologies could realise sand moulds for casting ( Voxeljet , ExOne ) .", "entities": [{"name": "saw", "type": "manufacturing process", "pos": [3, 6]}, {"name": "powder technologies", "type": "enabling technology", "pos": [17, 36]}, {"name": "sand moulds", "type": "machine or equipment", "pos": [51, 62]}, {"name": "casting", "type": "manufacturing process", "pos": [67, 74]}]}, {"sentence": "Other approaches ally the additive manufacturing technology and the topological optimisation to realise a rapid tooling and to use less material while keeping its properties .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [26, 48]}, {"name": "topological optimisation", "type": "engineering feature", "pos": [68, 92]}, {"name": "rapid tooling", "type": "manufacturing process", "pos": [106, 119]}, {"name": "material", "type": "material", "pos": [136, 144]}, {"name": "properties", "type": "concept or principle", "pos": [163, 173]}]}, {"sentence": "The layers manufacturing is able to improve a product or a tooling by inserting new methods as cooling channels or sensors .", "entities": [{"name": "layers manufacturing", "type": "manufacturing process", "pos": [4, 24]}, {"name": "tooling", "type": "concept or principle", "pos": [59, 66]}, {"name": "as", "type": "material", "pos": [92, 94]}, {"name": "sensors", "type": "machine or equipment", "pos": [115, 122]}]}, {"sentence": "For example , an injection mould manufactured by a Stratoconception and after assembly of strata , cooling channels are provided in the various inter-stratum planes for allowing a fluid to pass through the part .", "entities": [{"name": "injection mould", "type": "machine or equipment", "pos": [17, 32]}, {"name": "Stratoconception", "type": "concept or principle", "pos": [51, 67]}, {"name": "assembly", "type": "manufacturing process", "pos": [78, 86]}, {"name": "strata", "type": "concept or principle", "pos": [90, 96]}, {"name": "cooling channels", "type": "machine or equipment", "pos": [99, 115]}, {"name": "fluid", "type": "material", "pos": [180, 185]}]}, {"sentence": "You must perceive that this type of method can improve the behaviour of a moulded part by adjusting the location of the cooling channels to a specific geometry .", "entities": [{"name": "moulded", "type": "machine or equipment", "pos": [74, 81]}, {"name": "cooling channels", "type": "machine or equipment", "pos": [120, 136]}, {"name": "geometry", "type": "concept or principle", "pos": [151, 159]}]}, {"sentence": "Another challenge is to reduce weight and decrease the material used while keeping the product functions ( mechanical , use… ) .", "entities": [{"name": "weight", "type": "process parameter", "pos": [31, 37]}, {"name": "material", "type": "material", "pos": [55, 63]}, {"name": "mechanical", "type": "application", "pos": [107, 117]}]}, {"sentence": "Moreover , the main and support material can be expensive in the AM technology .", "entities": [{"name": "support material", "type": "material", "pos": [24, 40]}, {"name": "be", "type": "material", "pos": [45, 47]}, {"name": "AM technology", "type": "manufacturing process", "pos": [65, 78]}]}, {"sentence": "Topology optimisation is a mathematical approach that optimises material layout within a given design space , for a given set of loads and boundary conditions so that the resulting layout meets a prescribed set of performance targets .", "entities": [{"name": "Topology optimisation", "type": "engineering feature", "pos": [0, 21]}, {"name": "mathematical", "type": "concept or principle", "pos": [27, 39]}, {"name": "material", "type": "material", "pos": [64, 72]}, {"name": "layout", "type": "concept or principle", "pos": [73, 79]}, {"name": "design space", "type": "concept or principle", "pos": [95, 107]}, {"name": "set", "type": "application", "pos": [122, 125]}, {"name": "boundary conditions", "type": "concept or principle", "pos": [139, 158]}, {"name": "layout", "type": "concept or principle", "pos": [181, 187]}, {"name": "set", "type": "application", "pos": [207, 210]}, {"name": "performance", "type": "concept or principle", "pos": [214, 225]}]}, {"sentence": "Using topology optimization , engineers can find the best concept design that meets the design requirements .", "entities": [{"name": "topology optimization", "type": "engineering feature", "pos": [6, 27]}, {"name": "concept design", "type": "concept or principle", "pos": [58, 72]}, {"name": "design", "type": "engineering feature", "pos": [88, 94]}]}, {"sentence": "Any complex geometry is feasible in additive manufacturing , the topological optimisation implementation of a model leads to a new internal structure while maintaining conditions ( mechanical , design shape , functions , etc ) .", "entities": [{"name": "complex geometry", "type": "concept or principle", "pos": [4, 20]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [36, 58]}, {"name": "topological optimisation", "type": "engineering feature", "pos": [65, 89]}, {"name": "model", "type": "concept or principle", "pos": [110, 115]}, {"name": "internal structure", "type": "machanical property", "pos": [131, 149]}, {"name": "mechanical", "type": "application", "pos": [181, 191]}, {"name": "design", "type": "engineering feature", "pos": [194, 200]}]}, {"sentence": "Topologically , optimised parts have been created with internal geometry , using a narrow-waited structure that avoids the need for building supports .", "entities": [{"name": "Topologically", "type": "concept or principle", "pos": [0, 13]}, {"name": "internal geometry", "type": "engineering feature", "pos": [55, 72]}, {"name": "structure", "type": "concept or principle", "pos": [97, 106]}, {"name": "supports", "type": "application", "pos": [141, 149]}]}, {"sentence": "Additive manufacturing technology standards are intended to endorse the knowledge of the industry , help stimulate research and encourage the implementation of technology .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "standards", "type": "concept or principle", "pos": [34, 43]}, {"name": "industry", "type": "application", "pos": [89, 97]}, {"name": "research", "type": "concept or principle", "pos": [115, 123]}, {"name": "technology", "type": "concept or principle", "pos": [160, 170]}]}, {"sentence": "The standards define terminology , measure the performance of different production processes , ensure the quality of the end products , and specify procedures for the calibration of additive manufacturing machines .", "entities": [{"name": "standards", "type": "concept or principle", "pos": [4, 13]}, {"name": "performance", "type": "concept or principle", "pos": [47, 58]}, {"name": "production", "type": "manufacturing process", "pos": [72, 82]}, {"name": "processes", "type": "concept or principle", "pos": [83, 92]}, {"name": "quality", "type": "concept or principle", "pos": [106, 113]}, {"name": "calibration", "type": "concept or principle", "pos": [167, 178]}, {"name": "additive manufacturing machines", "type": "machine or equipment", "pos": [182, 213]}]}, {"sentence": "Several major standards were created very recently by the International Organisation for Standardisation ( ISO ) ; we can mention the main ones : ISO 17296-2:2015 : Overview of process categories and feedstock .", "entities": [{"name": "standards", "type": "concept or principle", "pos": [14, 23]}, {"name": "International Organisation for Standardisation", "type": "manufacturing standard", "pos": [58, 104]}, {"name": "ISO", "type": "manufacturing standard", "pos": [107, 110]}, {"name": "ISO 17296-2:2015", "type": "manufacturing standard", "pos": [146, 162]}, {"name": "process", "type": "concept or principle", "pos": [177, 184]}, {"name": "feedstock", "type": "material", "pos": [200, 209]}]}, {"sentence": "It describes the process fundamentals of AM with the existing processes and the different types of materials used .", "entities": [{"name": "process", "type": "concept or principle", "pos": [17, 24]}, {"name": "AM", "type": "manufacturing process", "pos": [41, 43]}, {"name": "processes", "type": "concept or principle", "pos": [62, 71]}, {"name": "materials", "type": "concept or principle", "pos": [99, 108]}]}, {"sentence": "ISO 17296-3:2014 : Main characteristics and corresponding test methods : It covers the principal requirements applied to testing with the main quality characteristics of parts , the appropriate test procedures , and the recommendations .", "entities": [{"name": "ISO 17296-3:2014", "type": "manufacturing standard", "pos": [0, 16]}, {"name": "testing", "type": "process characterization", "pos": [121, 128]}, {"name": "quality", "type": "concept or principle", "pos": [143, 150]}]}, {"sentence": "ISO/ASTM DIS 2019 : Standard Practice – Guide for Design for AM : It is being developed since 2015 and will bring together good practices in design for getting a reliable product .", "entities": [{"name": "ISO/ASTM", "type": "manufacturing standard", "pos": [0, 8]}, {"name": "Standard", "type": "concept or principle", "pos": [20, 28]}, {"name": "Design", "type": "engineering feature", "pos": [50, 56]}, {"name": "AM", "type": "manufacturing process", "pos": [61, 63]}, {"name": "design", "type": "engineering feature", "pos": [141, 147]}]}, {"sentence": "You can also find other standards specifying the terminology in AM or the requirements for purchased AM parts .", "entities": [{"name": "standards", "type": "concept or principle", "pos": [24, 33]}, {"name": "AM", "type": "manufacturing process", "pos": [64, 66]}, {"name": "AM parts", "type": "machine or equipment", "pos": [101, 109]}]}, {"sentence": "In recent decades additive manufacturing has evolved from a prototyping to a production technology .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [18, 40]}, {"name": "prototyping", "type": "concept or principle", "pos": [60, 71]}, {"name": "production", "type": "manufacturing process", "pos": [77, 87]}]}, {"sentence": "It is used to produce end-use-parts for medical , aerospace , automotive and other industrial applications from small series up to 100,000 of commercially successful products .", "entities": [{"name": "medical", "type": "application", "pos": [40, 47]}, {"name": "aerospace", "type": "application", "pos": [50, 59]}, {"name": "automotive", "type": "application", "pos": [62, 72]}, {"name": "industrial", "type": "application", "pos": [83, 93]}]}, {"sentence": "Metal additive manufacturing processes are relatively slow , require complex preparation and post-processing treatment while using expensive machinery , resulting in high production costs per product .", "entities": [{"name": "Metal additive manufacturing", "type": "manufacturing process", "pos": [0, 28]}, {"name": "post-processing treatment", "type": "manufacturing process", "pos": [93, 118]}, {"name": "production costs", "type": "concept or principle", "pos": [171, 187]}]}, {"sentence": "Design for Additive Manufacturing aims at optimizing the product design to deal with the complexity of the production processes , while also defining decisive benefits of the AM based product in the usage stages of its life cycle .", "entities": [{"name": "Design for Additive Manufacturing", "type": "engineering feature", "pos": [0, 33]}, {"name": "product design", "type": "engineering feature", "pos": [57, 71]}, {"name": "complexity", "type": "concept or principle", "pos": [89, 99]}, {"name": "production", "type": "manufacturing process", "pos": [107, 117]}, {"name": "processes", "type": "concept or principle", "pos": [118, 127]}, {"name": "AM", "type": "manufacturing process", "pos": [175, 177]}, {"name": "life cycle", "type": "concept or principle", "pos": [219, 229]}]}, {"sentence": "Recent investigations have shown that the lack of knowledge on DfAM tools and techniques are seen as one of the barriers for the further implementation of AM .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [68, 73]}, {"name": "as", "type": "material", "pos": [98, 100]}, {"name": "AM", "type": "manufacturing process", "pos": [155, 157]}]}, {"sentence": "This paper presents a framework for DfAM methods and tools , subdivided into three distinct stages of product development : AM process selection , product redesign for functionality enhancement , and product optimization for the AM process chosen .", "entities": [{"name": "framework", "type": "concept or principle", "pos": [22, 31]}, {"name": "tools", "type": "machine or equipment", "pos": [53, 58]}, {"name": "product development", "type": "concept or principle", "pos": [102, 121]}, {"name": "AM process", "type": "manufacturing process", "pos": [124, 134]}, {"name": "product optimization", "type": "concept or principle", "pos": [200, 220]}, {"name": "AM process", "type": "manufacturing process", "pos": [229, 239]}]}, {"sentence": "It will illustrate the applicability of the design framework using examples from both research and industry .", "entities": [{"name": "design", "type": "engineering feature", "pos": [44, 50]}, {"name": "research", "type": "concept or principle", "pos": [86, 94]}, {"name": "industry", "type": "application", "pos": [99, 107]}]}, {"sentence": "Additive manufacturing was first developed in the late 1980 with increasing quality and market penetration ever since .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [0, 22]}, {"name": "quality", "type": "concept or principle", "pos": [76, 83]}, {"name": "penetration", "type": "concept or principle", "pos": [95, 106]}]}, {"sentence": "Starting as prototyping technology it has developed into a technology that allows for mass production of end use parts .", "entities": [{"name": "as", "type": "material", "pos": [9, 11]}, {"name": "technology", "type": "concept or principle", "pos": [24, 34]}, {"name": "technology", "type": "concept or principle", "pos": [59, 69]}, {"name": "mass production", "type": "concept or principle", "pos": [86, 101]}]}, {"sentence": "In 2018 BMW has reported on 3D printing of its one millionth component in series production .", "entities": [{"name": "3D printing", "type": "manufacturing process", "pos": [28, 39]}, {"name": "component", "type": "machine or equipment", "pos": [61, 70]}, {"name": "production", "type": "manufacturing process", "pos": [81, 91]}]}, {"sentence": "Major AM markets that include aerospace , automotive , consumer products , medical , and general industries report simular success stories .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [6, 8]}, {"name": "aerospace", "type": "application", "pos": [30, 39]}, {"name": "automotive", "type": "application", "pos": [42, 52]}, {"name": "consumer products", "type": "application", "pos": [55, 72]}, {"name": "medical", "type": "application", "pos": [75, 82]}, {"name": "industries", "type": "application", "pos": [97, 107]}]}, {"sentence": "According to a study by Deloitte AM is implemented within industry to increase the perceived value in any of three area 's : profit , risk and time .", "entities": [{"name": "Deloitte AM", "type": "enabling technology", "pos": [24, 35]}, {"name": "industry", "type": "application", "pos": [58, 66]}, {"name": "area", "type": "process parameter", "pos": [115, 119]}]}, {"sentence": "Next to that the tactical path along which these industries have incorporated AM implementation can be characterized by product and/or supply chain change .", "entities": [{"name": "industries", "type": "application", "pos": [49, 59]}, {"name": "AM", "type": "manufacturing process", "pos": [78, 80]}, {"name": "be", "type": "material", "pos": [100, 102]}, {"name": "supply chain", "type": "concept or principle", "pos": [135, 147]}]}, {"sentence": "Four different paths have been identified : Path 1 describes companies that do not seek radical modification of their products and supply chain , but look at AM to improve their value proposition to the customer .", "entities": [{"name": "companies", "type": "application", "pos": [61, 70]}, {"name": "supply chain", "type": "concept or principle", "pos": [131, 143]}, {"name": "AM", "type": "manufacturing process", "pos": [158, 160]}]}, {"sentence": "Typical examples of the use of AM for path 1 are printed prototypes and tools and fixtures .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [31, 33]}, {"name": "prototypes", "type": "concept or principle", "pos": [57, 67]}, {"name": "tools", "type": "machine or equipment", "pos": [72, 77]}]}, {"sentence": "Path 2 looks at AM as a means to define new business cases in which the production of end user products can be realized beneficially .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [16, 18]}, {"name": "business cases", "type": "application", "pos": [44, 58]}, {"name": "production", "type": "manufacturing process", "pos": [72, 82]}, {"name": "be", "type": "material", "pos": [108, 110]}]}, {"sentence": "Examples include for example the production of spare parts and production on problematic production locations like space , war zones and the oil & gas industry .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [33, 43]}, {"name": "production", "type": "manufacturing process", "pos": [63, 73]}, {"name": "production", "type": "manufacturing process", "pos": [89, 99]}, {"name": "oil", "type": "material", "pos": [141, 144]}, {"name": "gas", "type": "concept or principle", "pos": [147, 150]}]}, {"sentence": "Path 3 describes strategies being enabled by AM based new product performance .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [45, 47]}, {"name": "performance", "type": "concept or principle", "pos": [66, 77]}]}, {"sentence": "Examples are the fuel nozzle by GE , embedded electronics and lightweight structures .", "entities": [{"name": "fuel nozzle", "type": "machine or equipment", "pos": [17, 28]}, {"name": "GE", "type": "material", "pos": [32, 34]}, {"name": "embedded electronics", "type": "enabling technology", "pos": [37, 57]}, {"name": "lightweight structures", "type": "machine or equipment", "pos": [62, 84]}]}, {"sentence": "Path 4 describes companies that base their new business models on changes in both the supply chains and the products .", "entities": [{"name": "companies", "type": "application", "pos": [17, 26]}, {"name": "business models", "type": "application", "pos": [47, 62]}, {"name": "supply chains", "type": "concept or principle", "pos": [86, 99]}]}, {"sentence": "An example for this path is the 3D scanning and printing of custom shoes in retail stores .", "entities": [{"name": "3D scanning", "type": "process characterization", "pos": [32, 43]}]}, {"sentence": "All tactical development paths described above deal with product design within an AM-based supply chain .", "entities": [{"name": "product design", "type": "engineering feature", "pos": [57, 71]}, {"name": "supply chain", "type": "concept or principle", "pos": [91, 103]}]}, {"sentence": "It is required both for the realization of AM-based enhanced product performance as well as when printing more standard product designs ; these designs also have to be optimized for specific AM process opportunities and constraints so they are produced reliably , on time and cost efficiently .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [69, 80]}, {"name": "as", "type": "material", "pos": [81, 83]}, {"name": "as", "type": "material", "pos": [89, 91]}, {"name": "standard", "type": "concept or principle", "pos": [111, 119]}, {"name": "product designs", "type": "engineering feature", "pos": [120, 135]}, {"name": "designs", "type": "engineering feature", "pos": [144, 151]}, {"name": "be", "type": "material", "pos": [165, 167]}, {"name": "AM process", "type": "manufacturing process", "pos": [191, 201]}]}, {"sentence": "Design for Additive Manufacturing describes methodologies used to optimize the product design with the goal of improving performance in all lifecycle stages .", "entities": [{"name": "Design for Additive Manufacturing", "type": "engineering feature", "pos": [0, 33]}, {"name": "product design", "type": "engineering feature", "pos": [79, 93]}, {"name": "performance", "type": "concept or principle", "pos": [121, 132]}]}, {"sentence": "The lack of knowledge on DfAM has been identified as one of the barriers that holds back further adoption of AM in industry .", "entities": [{"name": "as", "type": "material", "pos": [31, 33]}, {"name": "AM", "type": "manufacturing process", "pos": [109, 111]}, {"name": "industry", "type": "application", "pos": [115, 123]}]}, {"sentence": "This can be attributed to the attention given to AM as a production technology , which only blossomed over the last decade .", "entities": [{"name": "be", "type": "material", "pos": [9, 11]}, {"name": "AM", "type": "manufacturing process", "pos": [49, 51]}, {"name": "production", "type": "manufacturing process", "pos": [57, 67]}]}, {"sentence": "Attention to design for AM trailed behind and only grew in importance when interest in commercial production of end user goods increased .", "entities": [{"name": "design", "type": "engineering feature", "pos": [13, 19]}, {"name": "AM", "type": "manufacturing process", "pos": [24, 26]}, {"name": "production", "type": "manufacturing process", "pos": [98, 108]}]}, {"sentence": "The CIRP community has published papers related to AM processes , AM materials , specific AM application areas and AM geometrical aspects .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [51, 63]}, {"name": "AM materials", "type": "material", "pos": [66, 78]}, {"name": "AM", "type": "manufacturing process", "pos": [90, 92]}, {"name": "areas", "type": "process parameter", "pos": [105, 110]}, {"name": "AM", "type": "manufacturing process", "pos": [115, 117]}]}, {"sentence": "The CIRP keynote paper by Thompson focused on DfAM and disclosed the width and complexity of the DfAM theme , and addressed many of the themes that should be considered as part of product development for AM .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [79, 89]}, {"name": "be", "type": "material", "pos": [155, 157]}, {"name": "as", "type": "material", "pos": [169, 171]}, {"name": "product development", "type": "concept or principle", "pos": [180, 199]}, {"name": "AM", "type": "manufacturing process", "pos": [204, 206]}]}, {"sentence": "These topics ranged from design strategies and artefact design up to economic and strategic considerations on the implementation of AM within industrial product development processes .", "entities": [{"name": "design", "type": "engineering feature", "pos": [25, 31]}, {"name": "design", "type": "engineering feature", "pos": [56, 62]}, {"name": "AM", "type": "manufacturing process", "pos": [132, 134]}, {"name": "industrial", "type": "application", "pos": [142, 152]}, {"name": "processes", "type": "concept or principle", "pos": [173, 182]}]}, {"sentence": "The paper focussed on design considerations that should be addressed when deciding on the transition from classical production processes to additive manufacturing .", "entities": [{"name": "design considerations", "type": "concept or principle", "pos": [22, 43]}, {"name": "be", "type": "material", "pos": [56, 58]}, {"name": "transition", "type": "concept or principle", "pos": [90, 100]}, {"name": "production", "type": "manufacturing process", "pos": [116, 126]}, {"name": "processes", "type": "concept or principle", "pos": [127, 136]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [140, 162]}]}, {"sentence": "This keynote paper focuses on the state of the art on methods and tools related to the design of geometry or functional AM artefacts within an industrial setting .", "entities": [{"name": "art", "type": "application", "pos": [47, 50]}, {"name": "tools", "type": "machine or equipment", "pos": [66, 71]}, {"name": "design", "type": "engineering feature", "pos": [87, 93]}, {"name": "geometry", "type": "concept or principle", "pos": [97, 105]}, {"name": "AM", "type": "manufacturing process", "pos": [120, 122]}, {"name": "industrial", "type": "application", "pos": [143, 153]}]}, {"sentence": "A general introduction to AM processes and process steps will be presented 2 .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [26, 38]}, {"name": "process", "type": "concept or principle", "pos": [43, 50]}, {"name": "be", "type": "material", "pos": [62, 64]}]}, {"sentence": "Section 3 will present a framework for the selection and application of DfAM methods and tools .", "entities": [{"name": "framework", "type": "concept or principle", "pos": [25, 34]}, {"name": "tools", "type": "machine or equipment", "pos": [89, 94]}]}, {"sentence": "In Sections 4the DfAM framework will be discussed in more detail ; lightweighting , internal topology , surface topolgy , material complexity and part integration .", "entities": [{"name": "framework", "type": "concept or principle", "pos": [22, 31]}, {"name": "be", "type": "material", "pos": [37, 39]}, {"name": "lightweighting", "type": "machanical property", "pos": [67, 81]}, {"name": "internal topology", "type": "concept or principle", "pos": [84, 101]}, {"name": "surface", "type": "concept or principle", "pos": [104, 111]}, {"name": "material", "type": "material", "pos": [122, 130]}, {"name": "complexity", "type": "concept or principle", "pos": [131, 141]}]}, {"sentence": "When required , methods and examples of application will focus on AM based production of metal parts in an industrial setting .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [66, 68]}, {"name": "production", "type": "manufacturing process", "pos": [75, 85]}, {"name": "metal", "type": "material", "pos": [89, 94]}, {"name": "industrial", "type": "application", "pos": [107, 117]}]}, {"sentence": "The applicability of the design framework is however not limited to the examples given but can , at a generic level , be apllied to the majority of the known AM processes .", "entities": [{"name": "design", "type": "engineering feature", "pos": [25, 31]}, {"name": "be", "type": "material", "pos": [118, 120]}, {"name": "AM processes", "type": "manufacturing process", "pos": [158, 170]}]}, {"sentence": "2 Additive manufacturing AM is defined by the ISO/ASTM joint standard 52900:2018 as the process of joining materials to make parts from 3D model data , usually layer upon layer , as opposed to subtractive manufacturing and formative manufacturing methodologies .", "entities": [{"name": "Additive manufacturing", "type": "manufacturing process", "pos": [2, 24]}, {"name": "ISO/ASTM", "type": "manufacturing standard", "pos": [46, 54]}, {"name": "standard", "type": "concept or principle", "pos": [61, 69]}, {"name": "as", "type": "material", "pos": [81, 83]}, {"name": "process", "type": "concept or principle", "pos": [88, 95]}, {"name": "joining", "type": "manufacturing process", "pos": [99, 106]}, {"name": "3D model", "type": "application", "pos": [136, 144]}, {"name": "layer", "type": "process parameter", "pos": [160, 165]}, {"name": "layer", "type": "process parameter", "pos": [171, 176]}, {"name": "as", "type": "material", "pos": [179, 181]}, {"name": "subtractive manufacturing", "type": "manufacturing process", "pos": [193, 218]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [233, 246]}]}, {"sentence": "Note that this definition is very general and can be applied to a wide range of technologies .", "entities": [{"name": "be", "type": "material", "pos": [50, 52]}, {"name": "range", "type": "process parameter", "pos": [71, 76]}, {"name": "technologies", "type": "concept or principle", "pos": [80, 92]}]}, {"sentence": "Hybrid technologies that for example use additive plus subtractive processes within a single machine may therefore not be considered as AM machines in the strict definition of the term .", "entities": [{"name": "Hybrid technologies", "type": "enabling technology", "pos": [0, 19]}, {"name": "additive", "type": "material", "pos": [41, 49]}, {"name": "subtractive processes", "type": "manufacturing process", "pos": [55, 76]}, {"name": "machine", "type": "machine or equipment", "pos": [93, 100]}, {"name": "be", "type": "material", "pos": [119, 121]}, {"name": "as", "type": "material", "pos": [133, 135]}, {"name": "AM machines", "type": "machine or equipment", "pos": [136, 147]}]}, {"sentence": "For the near future it is foreseen that fully automated manufacturing lines , combining AM in tight and repetitive sequences alongside other fully automated production and handling processes , will become the standard for the modern factory .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [56, 69]}, {"name": "AM", "type": "manufacturing process", "pos": [88, 90]}, {"name": "production", "type": "manufacturing process", "pos": [157, 167]}, {"name": "processes", "type": "concept or principle", "pos": [181, 190]}, {"name": "standard", "type": "concept or principle", "pos": [209, 217]}]}, {"sentence": "2.1 AM processes According to ISO/ASTM there are currently seven AM process categories that result in a 3D CAD model being formed into a solid , integrated part : Binder jetting : droplet printing of a liquid used to bind powder particles together ; Directed energy deposition : material is simultaneously fed into a moving focused energy region ; Material extrusion : material is fed through a nozzle in a liquid state after which solidifies ; Material jetting : material is jetted in liquid droplet form after which it solidifies ; Powder bed fusion : powder material is selectively heated so that the particles partially or fully melt to form a solid matrix ; Sheet lamination : sheets of material are bonded together either before or after the part outline is separated from the sheets ; Vat photopolymerisation : a platform is dropped through or raised above a vat of liquid resin where light is used to selectively solidify it .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [4, 16]}, {"name": "ISO/ASTM", "type": "manufacturing standard", "pos": [30, 38]}, {"name": "AM process", "type": "manufacturing process", "pos": [65, 75]}, {"name": "3D", "type": "concept or principle", "pos": [104, 106]}, {"name": "model", "type": "concept or principle", "pos": [111, 116]}, {"name": "Binder jetting", "type": "manufacturing process", "pos": [163, 177]}, {"name": "droplet", "type": "concept or principle", "pos": [180, 187]}, {"name": "bind", "type": "manufacturing process", "pos": [217, 221]}, {"name": "particles", "type": "concept or principle", "pos": [229, 238]}, {"name": "Directed energy deposition", "type": "manufacturing process", "pos": [250, 276]}, {"name": "material", "type": "material", "pos": [279, 287]}, {"name": "Material extrusion", "type": "manufacturing process", "pos": [348, 366]}, {"name": "material", "type": "material", "pos": [369, 377]}, {"name": "nozzle", "type": "machine or equipment", "pos": [395, 401]}, {"name": "liquid state", "type": "concept or principle", "pos": [407, 419]}, {"name": "Material jetting", "type": "manufacturing process", "pos": [445, 461]}, {"name": "material", "type": "material", "pos": [464, 472]}, {"name": "liquid droplet form", "type": "concept or principle", "pos": [486, 505]}, {"name": "Powder bed fusion", "type": "manufacturing process", "pos": [534, 551]}, {"name": "powder material", "type": "material", "pos": [554, 569]}, {"name": "particles", "type": "concept or principle", "pos": [604, 613]}, {"name": "melt", "type": "concept or principle", "pos": [633, 637]}, {"name": "solid matrix", "type": "concept or principle", "pos": [648, 660]}, {"name": "Sheet lamination", "type": "manufacturing process", "pos": [663, 679]}, {"name": "sheets", "type": "material", "pos": [682, 688]}, {"name": "material", "type": "material", "pos": [692, 700]}, {"name": "sheets", "type": "material", "pos": [783, 789]}, {"name": "Vat photopolymerisation", "type": "manufacturing process", "pos": [792, 815]}, {"name": "platform", "type": "machine or equipment", "pos": [820, 828]}, {"name": "vat", "type": "machine or equipment", "pos": [866, 869]}, {"name": "resin", "type": "material", "pos": [880, 885]}, {"name": "solidify", "type": "concept or principle", "pos": [921, 929]}]}, {"sentence": "Most of these categories have so far resulted mainly in machines that are designed for one-off prototypes or for production that heavily employs manual work .", "entities": [{"name": "machines", "type": "machine or equipment", "pos": [56, 64]}, {"name": "designed", "type": "engineering feature", "pos": [74, 82]}, {"name": "prototypes", "type": "concept or principle", "pos": [95, 105]}, {"name": "production", "type": "manufacturing process", "pos": [113, 123]}]}, {"sentence": "Whilst the AM technology itself is largely automated , the design process , machine setup and finishing stages may require a significant amount of knowledge and skills to perform .", "entities": [{"name": "AM technology", "type": "manufacturing process", "pos": [11, 24]}, {"name": "design process", "type": "concept or principle", "pos": [59, 73]}, {"name": "machine setup", "type": "machine or equipment", "pos": [76, 89]}, {"name": "finishing", "type": "manufacturing process", "pos": [94, 103]}]}, {"sentence": "All the above processes were initially developed to create parts from different polymeric materials , with the exception of sheet lamination .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [14, 23]}, {"name": "polymeric materials", "type": "material", "pos": [80, 99]}, {"name": "sheet lamination", "type": "manufacturing process", "pos": [124, 140]}]}, {"sentence": "Some of these technologies have now been developed to a level where they have been incorporated into large batch production .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [14, 26]}, {"name": "batch production", "type": "concept or principle", "pos": [107, 123]}]}, {"sentence": "Some of these batches can be considered to be part of a continuous production line .", "entities": [{"name": "be", "type": "material", "pos": [26, 28]}, {"name": "be", "type": "material", "pos": [43, 45]}, {"name": "continuous production line", "type": "manufacturing process", "pos": [56, 82]}]}, {"sentence": "The most well-known of these would be AM machines used in production of teeth aligners and hearing aids .", "entities": [{"name": "be", "type": "material", "pos": [35, 37]}, {"name": "AM machines", "type": "machine or equipment", "pos": [38, 49]}, {"name": "production", "type": "manufacturing process", "pos": [58, 68]}, {"name": "hearing aids", "type": "application", "pos": [91, 103]}]}, {"sentence": "These examples show that when the additional complexity of form and/or the individual part cost allows it , AM can be used for final part production of parts .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [45, 55]}, {"name": "AM", "type": "manufacturing process", "pos": [108, 110]}, {"name": "be", "type": "material", "pos": [115, 117]}, {"name": "production", "type": "manufacturing process", "pos": [138, 148]}]}, {"sentence": "The impact of AM on process chain towards final production is however most heavily felt when producing metal parts .", "entities": [{"name": "impact", "type": "concept or principle", "pos": [4, 10]}, {"name": "AM", "type": "manufacturing process", "pos": [14, 16]}, {"name": "process chain", "type": "enabling technology", "pos": [20, 33]}, {"name": "production", "type": "manufacturing process", "pos": [48, 58]}, {"name": "metal", "type": "material", "pos": [103, 108]}]}, {"sentence": "All of the above process categories have a means in which to arrive at a metal part .", "entities": [{"name": "process", "type": "concept or principle", "pos": [17, 24]}, {"name": "metal", "type": "material", "pos": [73, 78]}]}, {"sentence": "The first approach is by mixing metal particles with the material joining mechanism .", "entities": [{"name": "mixing", "type": "concept or principle", "pos": [25, 31]}, {"name": "metal", "type": "material", "pos": [32, 37]}, {"name": "material joining", "type": "engineering feature", "pos": [57, 73]}]}, {"sentence": "For example , metal particles can be added to photopolymers in vat photopolymerisation or mixed with polymer powder in powder bed fusion or with filament in material extrusion .", "entities": [{"name": "metal", "type": "material", "pos": [14, 19]}, {"name": "be", "type": "material", "pos": [34, 36]}, {"name": "photopolymers", "type": "material", "pos": [46, 59]}, {"name": "vat photopolymerisation", "type": "manufacturing process", "pos": [63, 86]}, {"name": "polymer", "type": "material", "pos": [101, 108]}, {"name": "powder bed fusion", "type": "manufacturing process", "pos": [119, 136]}, {"name": "filament", "type": "material", "pos": [145, 153]}, {"name": "material extrusion", "type": "manufacturing process", "pos": [157, 175]}]}, {"sentence": "In general this will end in a blended part that exhibits some of the properties of the metal like improved surface hardness or heat deflection .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [69, 79]}, {"name": "metal", "type": "material", "pos": [87, 92]}, {"name": "surface", "type": "concept or principle", "pos": [107, 114]}, {"name": "hardness", "type": "machanical property", "pos": [115, 123]}, {"name": "heat deflection", "type": "concept or principle", "pos": [127, 142]}]}, {"sentence": "The second approach is where the parts above are used in a secondary furnace cycle to burn off the polymer and cause the metal particles to sinter together .", "entities": [{"name": "furnace", "type": "machine or equipment", "pos": [69, 76]}, {"name": "polymer", "type": "material", "pos": [99, 106]}, {"name": "metal", "type": "material", "pos": [121, 126]}, {"name": "sinter", "type": "manufacturing process", "pos": [140, 146]}]}, {"sentence": "This process therefore requires an additional programmable furnace to achieve this effect .", "entities": [{"name": "process", "type": "concept or principle", "pos": [5, 12]}, {"name": "furnace", "type": "machine or equipment", "pos": [59, 66]}]}, {"sentence": "In addition to the process categories mentioned in the previous paragraph , binder jetting is also widely used in this manner .", "entities": [{"name": "process", "type": "concept or principle", "pos": [19, 26]}, {"name": "binder jetting", "type": "manufacturing process", "pos": [76, 90]}]}, {"sentence": "It should be noted in particular that part shrinkage will occur using this approach .", "entities": [{"name": "be", "type": "material", "pos": [10, 12]}, {"name": "shrinkage", "type": "concept or principle", "pos": [43, 52]}]}, {"sentence": "This shrinkage can be minimised if an infiltrant is used to fill in voids prior to densification .", "entities": [{"name": "shrinkage", "type": "concept or principle", "pos": [5, 14]}, {"name": "be", "type": "material", "pos": [19, 21]}, {"name": "voids", "type": "concept or principle", "pos": [68, 73]}, {"name": "densification", "type": "manufacturing process", "pos": [83, 96]}]}, {"sentence": "For example 420 stainless steel parts can be infiltrated with bronze at 1100 .", "entities": [{"name": "420 stainless steel", "type": "material", "pos": [12, 31]}, {"name": "be", "type": "material", "pos": [42, 44]}, {"name": "bronze", "type": "material", "pos": [62, 68]}]}, {"sentence": "Many technologies have been refined to a level where geometric tolerances are highly predictable and achieving up to 97 % final density values .", "entities": [{"name": "technologies", "type": "concept or principle", "pos": [5, 17]}, {"name": "geometric tolerances", "type": "engineering feature", "pos": [53, 73]}, {"name": "predictable", "type": "concept or principle", "pos": [85, 96]}, {"name": "density", "type": "machanical property", "pos": [128, 135]}]}, {"sentence": "Conventional polymer AM materials can often be used in casting processes to achieve metal parts .", "entities": [{"name": "polymer", "type": "material", "pos": [13, 20]}, {"name": "AM materials", "type": "material", "pos": [21, 33]}, {"name": "be", "type": "material", "pos": [44, 46]}, {"name": "casting", "type": "manufacturing process", "pos": [55, 62]}, {"name": "metal", "type": "material", "pos": [84, 89]}]}, {"sentence": "Some of the original processes were developed around waxes as a means to integrate with conventional investment casting .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [21, 30]}, {"name": "waxes", "type": "material", "pos": [53, 58]}, {"name": "as", "type": "material", "pos": [59, 61]}, {"name": "conventional investment casting", "type": "manufacturing process", "pos": [88, 119]}]}, {"sentence": "It was found later that other , stronger polymers could be used in this way provided the casting shells were strengthened and the burnout conditions were modified .", "entities": [{"name": "polymers", "type": "material", "pos": [41, 49]}, {"name": "be", "type": "material", "pos": [56, 58]}, {"name": "casting shells", "type": "machine or equipment", "pos": [89, 103]}, {"name": "burnout conditions", "type": "process characterization", "pos": [130, 148]}]}, {"sentence": "Four of the above process categories can directly produce metal parts ; powder bed fusion , directed energy deposition , material jetting , and sheet lamination .", "entities": [{"name": "process", "type": "concept or principle", "pos": [18, 25]}, {"name": "metal", "type": "material", "pos": [58, 63]}, {"name": "powder bed fusion", "type": "manufacturing process", "pos": [72, 89]}, {"name": "directed energy deposition", "type": "manufacturing process", "pos": [92, 118]}, {"name": "material jetting", "type": "manufacturing process", "pos": [121, 137]}, {"name": "sheet lamination", "type": "manufacturing process", "pos": [144, 160]}]}, {"sentence": "It is interesting to note that sheet lamination is largely a hybrid process .", "entities": [{"name": "sheet lamination", "type": "manufacturing process", "pos": [31, 47]}, {"name": "process", "type": "concept or principle", "pos": [68, 75]}]}, {"sentence": "In sheet lamination there can be a large amount of material , often much more than is used for the part itself , that is separated from the part in a subtractive manner during the AM process .", "entities": [{"name": "sheet lamination", "type": "manufacturing process", "pos": [3, 19]}, {"name": "be", "type": "material", "pos": [30, 32]}, {"name": "material", "type": "material", "pos": [51, 59]}, {"name": "subtractive", "type": "manufacturing process", "pos": [150, 161]}, {"name": "AM process", "type": "manufacturing process", "pos": [180, 190]}]}, {"sentence": "These sheets can be metal and bonded together using ultrasonic bonding .", "entities": [{"name": "sheets", "type": "material", "pos": [6, 12]}, {"name": "be", "type": "material", "pos": [17, 19]}, {"name": "ultrasonic bonding", "type": "manufacturing process", "pos": [52, 70]}]}, {"sentence": "This is a low temperature welding process for joining dissimular metals and can for example allow embedding of electronics in the structure without damaging it .", "entities": [{"name": "temperature", "type": "process parameter", "pos": [14, 25]}, {"name": "process", "type": "concept or principle", "pos": [34, 41]}, {"name": "joining", "type": "manufacturing process", "pos": [46, 53]}, {"name": "metals", "type": "material", "pos": [65, 71]}, {"name": "electronics", "type": "concept or principle", "pos": [111, 122]}, {"name": "structure", "type": "concept or principle", "pos": [130, 139]}]}, {"sentence": "It is a niche AM route towards metal parts .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [14, 16]}, {"name": "metal", "type": "material", "pos": [31, 36]}]}, {"sentence": "By far the most widely used AM approach for metal parts is powder bed fusion .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [28, 30]}, {"name": "metal", "type": "material", "pos": [44, 49]}, {"name": "powder bed fusion", "type": "manufacturing process", "pos": [59, 76]}]}, {"sentence": "This is largely because of the basic simplicity of the process combined with the fact that a range metals is readily available and suitable for mainstream applications .", "entities": [{"name": "process", "type": "concept or principle", "pos": [55, 62]}, {"name": "range", "type": "process parameter", "pos": [93, 98]}, {"name": "metals", "type": "material", "pos": [99, 105]}]}, {"sentence": "A beam of energy is used to selectively melt the powders to form the solid part .", "entities": [{"name": "beam", "type": "machine or equipment", "pos": [2, 6]}, {"name": "melt", "type": "concept or principle", "pos": [40, 44]}, {"name": "powders", "type": "material", "pos": [49, 56]}]}, {"sentence": "Electron beam melting is available but most systems use laser energy , normally in a sealed chamber , in an inert gas environment or a vacuum .", "entities": [{"name": "Electron beam melting", "type": "manufacturing process", "pos": [0, 21]}, {"name": "laser energy", "type": "concept or principle", "pos": [56, 68]}, {"name": "inert gas", "type": "concept or principle", "pos": [108, 117]}]}, {"sentence": "This sealed chamber may be at an elevated temperature but still considerably below the melting point of the metal .", "entities": [{"name": "be", "type": "material", "pos": [16, 18]}, {"name": "temperature", "type": "process parameter", "pos": [42, 53]}, {"name": "melting point", "type": "machanical property", "pos": [87, 100]}, {"name": "metal", "type": "material", "pos": [108, 113]}]}, {"sentence": "Since this means very large thermal gradients , it is normal to connect the parts to a solid substrate in a similar way to processes that require support structures .", "entities": [{"name": "thermal gradients", "type": "process parameter", "pos": [28, 45]}, {"name": "solid substrate", "type": "machine or equipment", "pos": [87, 102]}, {"name": "processes", "type": "concept or principle", "pos": [123, 132]}, {"name": "support structures", "type": "engineering feature", "pos": [146, 164]}]}, {"sentence": "These supports have a different purpose in that they anchor the part to prevent internal stress warpage during build .", "entities": [{"name": "supports", "type": "application", "pos": [6, 14]}, {"name": "internal stress", "type": "machanical property", "pos": [80, 95]}, {"name": "build", "type": "process parameter", "pos": [111, 116]}]}, {"sentence": "Directed energy deposition is a process that almost entirely focuses on metal parts .", "entities": [{"name": "Directed energy deposition", "type": "manufacturing process", "pos": [0, 26]}, {"name": "process", "type": "concept or principle", "pos": [32, 39]}, {"name": "metal", "type": "material", "pos": [72, 77]}]}, {"sentence": "A high energy source is used to melt metals that are delivered in either powder or wire form .", "entities": [{"name": "source", "type": "application", "pos": [14, 20]}, {"name": "melt", "type": "concept or principle", "pos": [32, 36]}, {"name": "powder", "type": "material", "pos": [73, 79]}]}, {"sentence": "The energy focal point is also where the material is delivered and so there is a periodic melting followed by rapid solidification .", "entities": [{"name": "energy focal point", "type": "engineering feature", "pos": [4, 22]}, {"name": "material", "type": "material", "pos": [41, 49]}, {"name": "melting", "type": "manufacturing process", "pos": [90, 97]}, {"name": "rapid solidification", "type": "manufacturing process", "pos": [110, 130]}]}, {"sentence": "Similar issues to powder bed fusion exist regarding residual stresses with the additional complexity of a significantly varying thermal environment .", "entities": [{"name": "powder bed fusion", "type": "manufacturing process", "pos": [18, 35]}, {"name": "residual stresses", "type": "machanical property", "pos": [52, 69]}, {"name": "complexity", "type": "concept or principle", "pos": [90, 100]}]}, {"sentence": "Since there is no surrounding powder to help stabilise the heat transfer , the directed energy deposition process will have differing cooling profiles dependent on the mass of surrounding material at the energy delivery point .", "entities": [{"name": "powder", "type": "material", "pos": [30, 36]}, {"name": "heat transfer", "type": "concept or principle", "pos": [59, 72]}, {"name": "directed energy deposition process", "type": "manufacturing process", "pos": [79, 113]}, {"name": "cooling", "type": "manufacturing process", "pos": [134, 141]}, {"name": "material", "type": "material", "pos": [188, 196]}]}, {"sentence": "Material jetting for the production of metal parts is hampered by the high temperatures needed to get the metals in the proper liquid state .", "entities": [{"name": "Material jetting", "type": "manufacturing process", "pos": [0, 16]}, {"name": "production", "type": "manufacturing process", "pos": [25, 35]}, {"name": "metal", "type": "material", "pos": [39, 44]}, {"name": "temperatures", "type": "process parameter", "pos": [75, 87]}, {"name": "metals", "type": "material", "pos": [106, 112]}, {"name": "liquid state", "type": "concept or principle", "pos": [127, 139]}]}, {"sentence": "As a result this technology , when used to directly fabricate metal parts , is still in the development stage .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "technology", "type": "concept or principle", "pos": [17, 27]}, {"name": "fabricate", "type": "manufacturing process", "pos": [52, 61]}]}, {"sentence": "2.2 AM process steps The process of creating an additively manufactured product can be subdevided into seven steps .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [4, 14]}, {"name": "process", "type": "concept or principle", "pos": [25, 32]}, {"name": "additively manufactured product", "type": "manufacturing process", "pos": [48, 79]}, {"name": "be", "type": "material", "pos": [84, 86]}]}, {"sentence": "1 Model design .", "entities": [{"name": "Model", "type": "concept or principle", "pos": [2, 7]}, {"name": "design", "type": "engineering feature", "pos": [8, 14]}]}, {"sentence": "3D CAD software can be used to create a solid or surface model or scan data is used to create the 3D geometry ; 2 STL file creation .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [0, 2]}, {"name": "software", "type": "concept or principle", "pos": [7, 15]}, {"name": "be", "type": "material", "pos": [20, 22]}, {"name": "surface model", "type": "enabling technology", "pos": [49, 62]}, {"name": "data", "type": "concept or principle", "pos": [71, 75]}, {"name": "3D geometry", "type": "engineering feature", "pos": [98, 109]}, {"name": "STL", "type": "manufacturing standard", "pos": [114, 117]}, {"name": "file", "type": "manufacturing standard", "pos": [118, 122]}]}, {"sentence": "The 3D model is converted into a file format that is understood by AM machines .", "entities": [{"name": "3D model", "type": "application", "pos": [4, 12]}, {"name": "file", "type": "manufacturing standard", "pos": [33, 37]}, {"name": "AM machines", "type": "machine or equipment", "pos": [67, 78]}]}, {"sentence": "The STL file format is widely used and approximates the 3D model by a surface that is constructed using triangles .", "entities": [{"name": "STL", "type": "manufacturing standard", "pos": [4, 7]}, {"name": "file", "type": "manufacturing standard", "pos": [8, 12]}, {"name": "3D model", "type": "application", "pos": [56, 64]}, {"name": "surface", "type": "concept or principle", "pos": [70, 77]}]}, {"sentence": "Other file formats exist that are better suited to advanced AM features like multi material parts ; 3 Build preperation .", "entities": [{"name": "file", "type": "manufacturing standard", "pos": [6, 10]}, {"name": "AM", "type": "manufacturing process", "pos": [60, 62]}, {"name": "material", "type": "material", "pos": [83, 91]}, {"name": "Build", "type": "process parameter", "pos": [102, 107]}]}, {"sentence": "The STL file is transferred to the build preparation software , where the location and orientation of the part in the build envelope are defined .", "entities": [{"name": "STL", "type": "manufacturing standard", "pos": [4, 7]}, {"name": "file", "type": "manufacturing standard", "pos": [8, 12]}, {"name": "build preparation", "type": "process parameter", "pos": [35, 52]}, {"name": "orientation", "type": "concept or principle", "pos": [87, 98]}, {"name": "build envelope", "type": "process parameter", "pos": [118, 132]}]}, {"sentence": "The software slices the geometry into individual layers .", "entities": [{"name": "software slices", "type": "concept or principle", "pos": [4, 19]}, {"name": "geometry", "type": "concept or principle", "pos": [24, 32]}]}, {"sentence": "For each layer the geometric data of that layer , in combination with the machine parameters , like laser power , layer thickness and scan patterns , is translated into build instructions for the AM machine ; 4 The build process .", "entities": [{"name": "layer", "type": "process parameter", "pos": [9, 14]}, {"name": "data", "type": "concept or principle", "pos": [29, 33]}, {"name": "layer", "type": "process parameter", "pos": [42, 47]}, {"name": "machine parameters", "type": "process parameter", "pos": [74, 92]}, {"name": "laser power", "type": "process parameter", "pos": [100, 111]}, {"name": "layer thickness", "type": "process parameter", "pos": [114, 129]}, {"name": "scan patterns", "type": "process parameter", "pos": [134, 147]}, {"name": "build", "type": "process parameter", "pos": [169, 174]}, {"name": "AM machine", "type": "machine or equipment", "pos": [196, 206]}, {"name": "build", "type": "process parameter", "pos": [215, 220]}]}, {"sentence": "After the build process the part is removed from the build plate/envelope and excess material is removed .", "entities": [{"name": "build", "type": "process parameter", "pos": [10, 15]}, {"name": "build plate/envelope", "type": "process parameter", "pos": [53, 73]}, {"name": "material", "type": "material", "pos": [85, 93]}]}, {"sentence": "Additional post-processing steps might be needed to improve the functional characteristics of the part .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [11, 26]}, {"name": "be", "type": "material", "pos": [39, 41]}]}, {"sentence": "6 Quality and inspection .", "entities": [{"name": "Quality", "type": "concept or principle", "pos": [2, 9]}, {"name": "inspection", "type": "process characterization", "pos": [14, 24]}]}, {"sentence": "Often quality and inspection methods are applied that are based on other production technologies like casting and forging .", "entities": [{"name": "quality", "type": "concept or principle", "pos": [6, 13]}, {"name": "inspection", "type": "process characterization", "pos": [18, 28]}, {"name": "production", "type": "manufacturing process", "pos": [73, 83]}, {"name": "casting", "type": "manufacturing process", "pos": [102, 109]}, {"name": "forging", "type": "manufacturing process", "pos": [114, 121]}]}, {"sentence": "But the complexity of the geometry can induce unique inspection problems like inaccesable surfaces or the absence of measuring datum planes ; 7 Application .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [8, 18]}, {"name": "geometry", "type": "concept or principle", "pos": [26, 34]}, {"name": "inspection", "type": "process characterization", "pos": [53, 63]}, {"name": "surfaces", "type": "concept or principle", "pos": [90, 98]}, {"name": "datum planes", "type": "process characterization", "pos": [127, 139]}]}, {"sentence": "For most industrial parts produced by additive manufacturing the expected benefits in the use phase are the reason for designing parts to be created by additive manufacturing .", "entities": [{"name": "industrial", "type": "application", "pos": [9, 19]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [38, 60]}, {"name": "phase", "type": "concept or principle", "pos": [94, 99]}, {"name": "be", "type": "material", "pos": [138, 140]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [152, 174]}]}, {"sentence": "2.3 AM design stages As mentioned in Thompson , the AM design process has to take into account a lot of aspects related to several key performance indicators .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [4, 6]}, {"name": "As", "type": "material", "pos": [21, 23]}, {"name": "AM", "type": "manufacturing process", "pos": [52, 54]}, {"name": "process", "type": "concept or principle", "pos": [62, 69]}, {"name": "performance", "type": "concept or principle", "pos": [135, 146]}]}, {"sentence": "Globally , as defined in the standard ISO/ASTM 52910:2018 the AM design steps can be structured into three global stages .", "entities": [{"name": "as", "type": "material", "pos": [11, 13]}, {"name": "standard", "type": "concept or principle", "pos": [29, 37]}, {"name": "ISO/ASTM", "type": "manufacturing standard", "pos": [38, 46]}, {"name": "AM", "type": "manufacturing process", "pos": [62, 64]}, {"name": "be", "type": "material", "pos": [82, 84]}]}, {"sentence": "The first stage relates to go/no-go evaluations concerning the part , tool or product to be considered .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [70, 74]}, {"name": "be", "type": "material", "pos": [89, 91]}]}, {"sentence": "Manufacturability issues will have to be checked at this stage even before defining any geometry .", "entities": [{"name": "Manufacturability", "type": "concept or principle", "pos": [0, 17]}, {"name": "be", "type": "material", "pos": [38, 40]}, {"name": "geometry", "type": "concept or principle", "pos": [88, 96]}]}, {"sentence": "Before that , however , crucial decisions must be made with respect to functional decomposition and functional integration .", "entities": [{"name": "be", "type": "material", "pos": [47, 49]}, {"name": "decomposition", "type": "machanical property", "pos": [82, 95]}]}, {"sentence": "One later decision will be to define the complete manufacturing for each feature as well as the scheduling of the individual manufacturing operations , with possible use of different manufacturing technologies .", "entities": [{"name": "be", "type": "material", "pos": [24, 26]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [50, 63]}, {"name": "feature", "type": "engineering feature", "pos": [73, 80]}, {"name": "as", "type": "material", "pos": [81, 83]}, {"name": "as", "type": "material", "pos": [89, 91]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [125, 138]}, {"name": "manufacturing technologies", "type": "manufacturing process", "pos": [183, 209]}]}, {"sentence": "The material and its characteristics will also have to be defined for each voxel of the part .", "entities": [{"name": "material", "type": "material", "pos": [4, 12]}, {"name": "be", "type": "material", "pos": [55, 57]}, {"name": "voxel", "type": "concept or principle", "pos": [75, 80]}]}, {"sentence": "The definition of the material characteristics must be fixed as well as the definition of transitions between different materials in different regions of the objects .", "entities": [{"name": "material", "type": "material", "pos": [22, 30]}, {"name": "be", "type": "material", "pos": [52, 54]}, {"name": "as", "type": "material", "pos": [61, 63]}, {"name": "as", "type": "material", "pos": [69, 71]}, {"name": "materials", "type": "concept or principle", "pos": [120, 129]}]}, {"sentence": "These possibilities are limited to AM technologies that allow assembly of different materials or grading material characteristics in a given part .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [35, 50]}, {"name": "assembly", "type": "manufacturing process", "pos": [62, 70]}, {"name": "materials", "type": "concept or principle", "pos": [84, 93]}, {"name": "material", "type": "material", "pos": [105, 113]}]}, {"sentence": "The third stage corresponds to the final check and optimization of process characteristics with respect to the best possible properties of the manufactured objects .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [51, 63]}, {"name": "process", "type": "concept or principle", "pos": [67, 74]}, {"name": "properties", "type": "concept or principle", "pos": [125, 135]}, {"name": "manufactured", "type": "concept or principle", "pos": [143, 155]}]}, {"sentence": "For example , the number of parts produced is dependent on the choice of orientation of the part and consequently on the support structures that are minimized with respect to an optimum part geometry .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [73, 84]}, {"name": "support structures", "type": "engineering feature", "pos": [121, 139]}, {"name": "geometry", "type": "concept or principle", "pos": [191, 199]}]}, {"sentence": "These three global design stages serve to minimize the technical and economic risks before going to manufacturing .", "entities": [{"name": "design", "type": "engineering feature", "pos": [19, 25]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [100, 113]}]}, {"sentence": "Design does not therefore just rely on a simple set of design guidelines .", "entities": [{"name": "Design", "type": "engineering feature", "pos": [0, 6]}, {"name": "simple", "type": "manufacturing process", "pos": [41, 47]}, {"name": "set", "type": "application", "pos": [48, 51]}, {"name": "design", "type": "engineering feature", "pos": [55, 61]}]}, {"sentence": "A global and systemic vision of the complete value chain has to be considered with respect to global indicators like in particular lead time , cost and quality , in order to evaluate feasibility , suitability and stability of AM-based value chain performances .", "entities": [{"name": "be", "type": "material", "pos": [64, 66]}, {"name": "lead time", "type": "process parameter", "pos": [131, 140]}, {"name": "quality", "type": "concept or principle", "pos": [152, 159]}, {"name": "feasibility", "type": "concept or principle", "pos": [183, 194]}, {"name": "stability", "type": "machanical property", "pos": [213, 222]}]}, {"sentence": "3 A DfAM framework Design for manufacturing and assembly has been around for many years and deals with the design of products while focussing on both the manufacturing and assembly process .", "entities": [{"name": "framework", "type": "concept or principle", "pos": [9, 18]}, {"name": "Design", "type": "engineering feature", "pos": [19, 25]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [30, 43]}, {"name": "assembly", "type": "manufacturing process", "pos": [48, 56]}, {"name": "design", "type": "engineering feature", "pos": [107, 113]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [154, 167]}, {"name": "assembly", "type": "manufacturing process", "pos": [172, 180]}]}, {"sentence": "The goal of DfMA is to include manufacturing and assembly knowledge early in the design proces to increase chances of success and shorten the development cycle .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [31, 44]}, {"name": "assembly", "type": "manufacturing process", "pos": [49, 57]}, {"name": "design", "type": "engineering feature", "pos": [81, 87]}]}, {"sentence": "Many variants exist , focussed for example on specific production technologies like injection molding or casting .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [55, 65]}, {"name": "injection molding", "type": "manufacturing process", "pos": [84, 101]}, {"name": "casting", "type": "manufacturing process", "pos": [105, 112]}]}, {"sentence": "DfAM focusses on AM processes but differs from other DfX processes .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [17, 29]}, {"name": "processes", "type": "concept or principle", "pos": [57, 66]}]}, {"sentence": "It deals with many different AM process variants and needs to take the whole process chain into account to be successful while research has shown that the number of interacting aspects that define successful production is large .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [29, 39]}, {"name": "process chain", "type": "enabling technology", "pos": [77, 90]}, {"name": "be", "type": "material", "pos": [107, 109]}, {"name": "research", "type": "concept or principle", "pos": [127, 135]}, {"name": "production", "type": "manufacturing process", "pos": [208, 218]}]}, {"sentence": "Finally , AM is a new group of processes that provides other opportunities and constraints to traditional forming and subtractive processes which implies non-traditional approaches to product design are required .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [10, 12]}, {"name": "processes", "type": "concept or principle", "pos": [31, 40]}, {"name": "forming", "type": "manufacturing process", "pos": [106, 113]}, {"name": "subtractive processes", "type": "manufacturing process", "pos": [118, 139]}, {"name": "product design", "type": "engineering feature", "pos": [184, 198]}]}, {"sentence": "Many papers exist on individual aspects of the design process while for a succesful design process all relevant aspects should be taken into account .", "entities": [{"name": "design process", "type": "concept or principle", "pos": [47, 61]}, {"name": "design process", "type": "concept or principle", "pos": [84, 98]}, {"name": "be", "type": "material", "pos": [127, 129]}]}, {"sentence": "The framework defines a structured method to link design challenges to specific design goals and focusses on the 3 stages presented 2.3 .", "entities": [{"name": "framework", "type": "concept or principle", "pos": [4, 13]}, {"name": "design", "type": "engineering feature", "pos": [50, 56]}, {"name": "design", "type": "engineering feature", "pos": [80, 86]}]}, {"sentence": "Examples used will focus on AM-based manufacturing of metal products although the framework is generic in nature and can also be applied for other material/process combinations .", "entities": [{"name": "manufacturing", "type": "manufacturing process", "pos": [37, 50]}, {"name": "metal", "type": "material", "pos": [54, 59]}, {"name": "framework", "type": "concept or principle", "pos": [82, 91]}, {"name": "be", "type": "material", "pos": [126, 128]}]}, {"sentence": "3.1 AM suitability Additive manufacturing is a relatively new group of production processes , of which integration in industry is just starting to gain momentum .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [4, 6]}, {"name": "Additive manufacturing", "type": "manufacturing process", "pos": [19, 41]}, {"name": "production", "type": "manufacturing process", "pos": [71, 81]}, {"name": "processes", "type": "concept or principle", "pos": [82, 91]}, {"name": "industry", "type": "application", "pos": [118, 126]}, {"name": "gain", "type": "process parameter", "pos": [147, 151]}]}, {"sentence": "This momentum might be attributed to the claims of a future where AM will realize low cost efficient production of any shape in any material .", "entities": [{"name": "be", "type": "material", "pos": [20, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [66, 68]}, {"name": "production", "type": "manufacturing process", "pos": [101, 111]}, {"name": "material", "type": "material", "pos": [132, 140]}]}, {"sentence": "Current industrial additive manufacturing practice shows that this bright future is yet to be .", "entities": [{"name": "industrial", "type": "application", "pos": [8, 18]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [19, 41]}, {"name": "be", "type": "material", "pos": [91, 93]}]}, {"sentence": "Timely identification of the match between design task , product requirements and AM capabilities is needed .", "entities": [{"name": "design", "type": "engineering feature", "pos": [43, 49]}, {"name": "AM", "type": "manufacturing process", "pos": [82, 84]}]}, {"sentence": "proposes to base this evaluation on the following criteria : Do available AM materials match the product application ? Does the product design fit the build envelope of AM hardware ? Can the product functionality improve when applying the following product design modifications or product opportunities ? - Part customization - Lightweighting - Use of internal channels or structures - Functional integration - The use of designed surface structures - The use of multi-material or gradient material parts .", "entities": [{"name": "AM materials", "type": "material", "pos": [74, 86]}, {"name": "product design", "type": "engineering feature", "pos": [128, 142]}, {"name": "fit", "type": "concept or principle", "pos": [143, 146]}, {"name": "build envelope", "type": "process parameter", "pos": [151, 165]}, {"name": "AM", "type": "manufacturing process", "pos": [169, 171]}, {"name": "product functionality", "type": "process characterization", "pos": [191, 212]}, {"name": "product design", "type": "engineering feature", "pos": [249, 263]}, {"name": "Lightweighting", "type": "machanical property", "pos": [328, 342]}, {"name": "designed", "type": "engineering feature", "pos": [422, 430]}, {"name": "multi-material", "type": "concept or principle", "pos": [463, 477]}, {"name": "material", "type": "material", "pos": [490, 498]}]}, {"sentence": "This is to evaluate the balance between the expected economic benefits of product design opportunities against , in most cases , the increased manufacturing costs .", "entities": [{"name": "product design", "type": "engineering feature", "pos": [74, 88]}, {"name": "manufacturing costs", "type": "concept or principle", "pos": [143, 162]}]}, {"sentence": "The dominant objectives established in that last paper are improved part performance , manufacturing and reduction of lead time .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [73, 84]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [87, 100]}, {"name": "reduction", "type": "concept or principle", "pos": [105, 114]}, {"name": "lead time", "type": "process parameter", "pos": [118, 127]}]}, {"sentence": "3.2 AM material , process and machine selection If AM potential has been established then AM resources should be identified , as these affect downstream design choices .", "entities": [{"name": "AM material", "type": "material", "pos": [4, 15]}, {"name": "process", "type": "concept or principle", "pos": [18, 25]}, {"name": "machine selection", "type": "process parameter", "pos": [30, 47]}, {"name": "AM", "type": "manufacturing process", "pos": [51, 53]}, {"name": "AM", "type": "manufacturing process", "pos": [90, 92]}, {"name": "be", "type": "material", "pos": [110, 112]}, {"name": "as", "type": "material", "pos": [126, 128]}, {"name": "design", "type": "engineering feature", "pos": [153, 159]}]}, {"sentence": "This includes the decision between direct AM-based production , indirect AM-based production or hybrid approaches .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [51, 61]}, {"name": "production", "type": "manufacturing process", "pos": [82, 92]}]}, {"sentence": "Also post-processing steps , needed to reach the required product characteristics , could be identified in this stage .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [5, 20]}, {"name": "be", "type": "material", "pos": [90, 92]}]}, {"sentence": "For reasons of process chain selection , hybrid production processes can be subdivided based on the method used to generate the bulk of the geometry .", "entities": [{"name": "process chain selection", "type": "concept or principle", "pos": [15, 38]}, {"name": "production", "type": "manufacturing process", "pos": [48, 58]}, {"name": "processes", "type": "concept or principle", "pos": [59, 68]}, {"name": "be", "type": "material", "pos": [73, 75]}, {"name": "geometry", "type": "concept or principle", "pos": [140, 148]}]}, {"sentence": "From an industrial perspective some hybrid technologies use conventional technologies to create the bulk of the part and use AM as a subsequent production method to add detailing features .", "entities": [{"name": "industrial", "type": "application", "pos": [8, 18]}, {"name": "hybrid technologies", "type": "enabling technology", "pos": [36, 55]}, {"name": "technologies", "type": "concept or principle", "pos": [73, 85]}, {"name": "AM", "type": "manufacturing process", "pos": [125, 127]}, {"name": "production", "type": "manufacturing process", "pos": [144, 154]}]}, {"sentence": "This sequencing of processes can have economic benefits or can result in parts that exceed the standard build chamber dimensions .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [19, 28]}, {"name": "standard", "type": "concept or principle", "pos": [95, 103]}, {"name": "build chamber", "type": "process parameter", "pos": [104, 117]}]}, {"sentence": "An AM process that produces the bulk of the part using AM technologies and integrates subtractive technologies during the build process can be seen as the second group of hybrid processes .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [3, 13]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [55, 70]}, {"name": "subtractive", "type": "manufacturing process", "pos": [86, 97]}, {"name": "build", "type": "process parameter", "pos": [122, 127]}, {"name": "be", "type": "material", "pos": [140, 142]}, {"name": "as", "type": "material", "pos": [148, 150]}, {"name": "processes", "type": "concept or principle", "pos": [178, 187]}]}, {"sentence": "For metal parts this sub-group typically consists of DED-based metal additive manufacturing technologies and with milling to post-process functional , internal or hard to reach surfaces .", "entities": [{"name": "metal", "type": "material", "pos": [4, 9]}, {"name": "DED-based metal additive manufacturing technologies", "type": "enabling technology", "pos": [53, 104]}, {"name": "milling", "type": "manufacturing process", "pos": [114, 121]}, {"name": "post-process", "type": "concept or principle", "pos": [125, 137]}, {"name": "surfaces", "type": "concept or principle", "pos": [177, 185]}]}, {"sentence": "Based on interdependencies and sequencing of process steps , alternative processing chains can be generated and evaluated .", "entities": [{"name": "process", "type": "concept or principle", "pos": [45, 52]}, {"name": "be", "type": "material", "pos": [95, 97]}]}, {"sentence": "Based on the design requirements and selections already made , Bikas proposes to use screening and selection for AM processes based on criteria related to machine , material , process and part constraints .", "entities": [{"name": "design", "type": "engineering feature", "pos": [13, 19]}, {"name": "AM processes", "type": "manufacturing process", "pos": [113, 125]}, {"name": "machine", "type": "machine or equipment", "pos": [155, 162]}, {"name": "material", "type": "material", "pos": [165, 173]}, {"name": "process", "type": "concept or principle", "pos": [176, 183]}]}, {"sentence": "The Senvol database links AM processes to available materials and build envelops of industrial AM machines .", "entities": [{"name": "Senvol database", "type": "enabling technology", "pos": [4, 19]}, {"name": "AM processes", "type": "manufacturing process", "pos": [26, 38]}, {"name": "materials", "type": "concept or principle", "pos": [52, 61]}, {"name": "build", "type": "process parameter", "pos": [66, 71]}, {"name": "industrial", "type": "application", "pos": [84, 94]}, {"name": "AM machines", "type": "machine or equipment", "pos": [95, 106]}]}, {"sentence": "Also the screening and ranking method proposed by Ashby can be applied for AM material and process selection .", "entities": [{"name": "be", "type": "material", "pos": [60, 62]}, {"name": "AM material", "type": "material", "pos": [75, 86]}, {"name": "process selection", "type": "concept or principle", "pos": [91, 108]}]}, {"sentence": "3.3 Initial cost estimation The decision to apply additive manufacturing for functional parts involves balancing the cost of additive manufacturing against the expected benefits during the design , production and use phase .", "entities": [{"name": "cost estimation", "type": "concept or principle", "pos": [12, 27]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [50, 72]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [125, 147]}, {"name": "design", "type": "engineering feature", "pos": [189, 195]}, {"name": "production", "type": "manufacturing process", "pos": [198, 208]}, {"name": "phase", "type": "concept or principle", "pos": [217, 222]}]}, {"sentence": "Although the cost/benefits analysis during the early design stage is important , information required for detailed cost estimation is often missing .", "entities": [{"name": "cost/benefits analysis", "type": "process characterization", "pos": [13, 35]}, {"name": "design", "type": "engineering feature", "pos": [53, 59]}, {"name": "cost estimation", "type": "concept or principle", "pos": [115, 130]}]}, {"sentence": "Knowledge on the expected product volume , production technology and required post-processing steps can give insight into the expected costs .", "entities": [{"name": "volume", "type": "concept or principle", "pos": [34, 40]}, {"name": "production", "type": "manufacturing process", "pos": [43, 53]}, {"name": "post-processing", "type": "concept or principle", "pos": [78, 93]}]}, {"sentence": "For the early cost estimation of the production of the part , the costs are often expressed as cost per cm3 of the printed part .", "entities": [{"name": "cost estimation", "type": "concept or principle", "pos": [14, 29]}, {"name": "production", "type": "manufacturing process", "pos": [37, 47]}, {"name": "as", "type": "material", "pos": [92, 94]}]}, {"sentence": "Most cost estimations found in literature only take the process related post-processing steps into consideration and additional costs must be taken into account when the functionality of the printed part has to be improved also .", "entities": [{"name": "cost estimations", "type": "concept or principle", "pos": [5, 21]}, {"name": "process", "type": "concept or principle", "pos": [56, 63]}, {"name": "post-processing", "type": "concept or principle", "pos": [72, 87]}, {"name": "be", "type": "material", "pos": [139, 141]}, {"name": "be", "type": "material", "pos": [211, 213]}]}, {"sentence": "Most cost estimation calculations are based on the assumption of in-house production and an idealized representation of the AM process investigated .", "entities": [{"name": "cost estimation", "type": "concept or principle", "pos": [5, 20]}, {"name": "production", "type": "manufacturing process", "pos": [74, 84]}, {"name": "AM process", "type": "manufacturing process", "pos": [124, 134]}]}, {"sentence": "It is assumed that one AM machine is used for one product the whole life time of the machine , resulting in a high machine load .", "entities": [{"name": "AM machine", "type": "machine or equipment", "pos": [23, 33]}, {"name": "machine", "type": "machine or equipment", "pos": [85, 92]}, {"name": "machine", "type": "machine or equipment", "pos": [115, 122]}]}, {"sentence": "For example , Baumers presents a cost breakdown for metal powder bed based production of a stainless steel 304L product with wire erosion support removal and de-powdering as post processing steps .", "entities": [{"name": "metal powder", "type": "material", "pos": [52, 64]}, {"name": "bed", "type": "machine or equipment", "pos": [65, 68]}, {"name": "production", "type": "manufacturing process", "pos": [75, 85]}, {"name": "stainless steel 304L", "type": "material", "pos": [91, 111]}, {"name": "wire erosion", "type": "concept or principle", "pos": [125, 137]}, {"name": "support", "type": "application", "pos": [138, 145]}, {"name": "de-powdering", "type": "machanical property", "pos": [158, 170]}, {"name": "as", "type": "material", "pos": [171, 173]}]}, {"sentence": "Based on that analysis four major cost aspects were identified : Indirect cost , material costs , labor costs , and risk associated costs .", "entities": [{"name": "material", "type": "material", "pos": [81, 89]}, {"name": "labor costs", "type": "concept or principle", "pos": [98, 109]}]}, {"sentence": "Risk related costs include build failures and accounts for 26 % of the AM unit cost .", "entities": [{"name": "build failures", "type": "process characterization", "pos": [27, 41]}, {"name": "AM", "type": "manufacturing process", "pos": [71, 73]}]}, {"sentence": "In the production of laser based powder bed fusion system was compared to an electron beam variant .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [7, 17]}, {"name": "laser", "type": "enabling technology", "pos": [21, 26]}, {"name": "powder bed fusion", "type": "manufacturing process", "pos": [33, 50]}, {"name": "electron beam variant", "type": "process characterization", "pos": [77, 98]}]}, {"sentence": "The AM deposition rates are relatively slow and are identified as the major driver for the manufacturing costs .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [4, 6]}, {"name": "as", "type": "material", "pos": [63, 65]}, {"name": "manufacturing costs", "type": "concept or principle", "pos": [91, 110]}]}, {"sentence": "An alternative cost estimation study was presented by Baldinger and focusses on buy scenarios for AM parts .", "entities": [{"name": "cost estimation", "type": "concept or principle", "pos": [15, 30]}, {"name": "AM parts", "type": "machine or equipment", "pos": [98, 106]}]}, {"sentence": "The cost estimations are based on reviews of the cost price for obtaining an AM part through commercial service providers and focused on both plastic and metallic parts .", "entities": [{"name": "cost estimations", "type": "concept or principle", "pos": [4, 20]}, {"name": "AM part", "type": "machine or equipment", "pos": [77, 84]}, {"name": "plastic and metallic parts", "type": "material", "pos": [142, 168]}]}, {"sentence": "This research compared twenty-one AM service providers worldwide and found that the main cost drivers for this scenario are total volume of the order , packing density in the build envelope and the number of parts ordered .", "entities": [{"name": "research", "type": "concept or principle", "pos": [5, 13]}, {"name": "AM", "type": "manufacturing process", "pos": [34, 36]}, {"name": "volume", "type": "concept or principle", "pos": [130, 136]}, {"name": "density", "type": "machanical property", "pos": [160, 167]}, {"name": "build envelope", "type": "process parameter", "pos": [175, 189]}]}, {"sentence": "It seems that two strategies are applied by the companies ; group A and B .", "entities": [{"name": "companies", "type": "application", "pos": [48, 57]}, {"name": "B", "type": "material", "pos": [72, 73]}]}, {"sentence": "Companies in group A use cost estimation strategies where part cost is almost independent of the number of parts ordered .", "entities": [{"name": "Companies", "type": "application", "pos": [0, 9]}, {"name": "cost estimation", "type": "concept or principle", "pos": [25, 40]}]}, {"sentence": "These companies focus on optimizing the utilization of the build volume and have a slightly longer lead time .", "entities": [{"name": "companies", "type": "application", "pos": [6, 15]}, {"name": "build volume", "type": "process parameter", "pos": [59, 71]}, {"name": "lead time", "type": "process parameter", "pos": [99, 108]}]}, {"sentence": "Companies in group B estimate cost for each order separately , have a large difference in cost per cm3 for order sizes one and one-hundred , but have a slightly shorter lead time .", "entities": [{"name": "Companies", "type": "application", "pos": [0, 9]}, {"name": "B", "type": "material", "pos": [19, 20]}, {"name": "lead time", "type": "process parameter", "pos": [169, 178]}]}, {"sentence": "2 Post-processing can add considerably to the cost of AM parts .", "entities": [{"name": "Post-processing", "type": "concept or principle", "pos": [2, 17]}, {"name": "AM parts", "type": "machine or equipment", "pos": [54, 62]}]}, {"sentence": "In many cost models only the costs of the post-processing steps directly related to the AM process are considered .", "entities": [{"name": "cost models", "type": "concept or principle", "pos": [8, 19]}, {"name": "post-processing", "type": "concept or principle", "pos": [42, 57]}, {"name": "AM process", "type": "manufacturing process", "pos": [88, 98]}]}, {"sentence": "For example , Lindeman calculated the post-processing costs for metal parts produced by L-PBF to be between 4 and 14 % .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [38, 53]}, {"name": "metal", "type": "material", "pos": [64, 69]}, {"name": "L-PBF", "type": "manufacturing process", "pos": [88, 93]}, {"name": "be", "type": "material", "pos": [97, 99]}]}, {"sentence": "Simpson gives a more generic overview of post-processing cost for metal AM .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [41, 56]}, {"name": "metal AM", "type": "manufacturing process", "pos": [66, 74]}]}, {"sentence": "3.4 Build job considerations Build jobs are usually considered during the phase of process planning .", "entities": [{"name": "Build", "type": "process parameter", "pos": [4, 9]}, {"name": "Build", "type": "process parameter", "pos": [29, 34]}, {"name": "phase", "type": "concept or principle", "pos": [74, 79]}, {"name": "process planning", "type": "concept or principle", "pos": [83, 99]}]}, {"sentence": "Process planning is one of the most important activities in manufacturing planning and is a pivotal link between design and manufacturing .", "entities": [{"name": "Process planning", "type": "concept or principle", "pos": [0, 16]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [60, 73]}, {"name": "design", "type": "engineering feature", "pos": [113, 119]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [124, 137]}]}, {"sentence": "Compared to traditional processing , the context changes for Additive Manufacturing , but it is still within the manufacturing scope .", "entities": [{"name": "Additive Manufacturing", "type": "manufacturing process", "pos": [61, 83]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [113, 126]}]}, {"sentence": "Although AM machines are highly integrated and automatic , before enabling the building process for a machine , there are also some preparation tasks that should be done after receiving a design model and its related production requirements .", "entities": [{"name": "AM machines", "type": "machine or equipment", "pos": [9, 20]}, {"name": "building process", "type": "process characterization", "pos": [79, 95]}, {"name": "machine", "type": "machine or equipment", "pos": [102, 109]}, {"name": "be", "type": "material", "pos": [162, 164]}, {"name": "design", "type": "engineering feature", "pos": [188, 194]}, {"name": "production", "type": "manufacturing process", "pos": [217, 227]}]}, {"sentence": "In this chain , optimization of the number of parts and their relative positioning in 2D or in 3D , is required when building multiple parts .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [16, 28]}, {"name": "2D", "type": "concept or principle", "pos": [86, 88]}, {"name": "3D", "type": "concept or principle", "pos": [95, 97]}]}, {"sentence": "Support generation could be achieved before or after the nesting stage .", "entities": [{"name": "Support generation", "type": "engineering feature", "pos": [0, 18]}, {"name": "be", "type": "material", "pos": [25, 27]}, {"name": "nesting", "type": "concept or principle", "pos": [57, 64]}]}, {"sentence": "Layer building can then be normally achieved by slicing the 3D set of nested or packed parts with their support structures .", "entities": [{"name": "Layer", "type": "process parameter", "pos": [0, 5]}, {"name": "be", "type": "material", "pos": [24, 26]}, {"name": "slicing", "type": "concept or principle", "pos": [48, 55]}, {"name": "3D", "type": "concept or principle", "pos": [60, 62]}, {"name": "support structures", "type": "engineering feature", "pos": [104, 122]}]}, {"sentence": "In some cases this stage is very different because the orientation of the part during the process changes .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [55, 66]}, {"name": "process", "type": "concept or principle", "pos": [90, 97]}]}, {"sentence": "In such cases , the generation of the material deposition trajectory has to be achieved by taking into account non-planar layers .", "entities": [{"name": "material", "type": "material", "pos": [38, 46]}, {"name": "deposition", "type": "concept or principle", "pos": [47, 57]}, {"name": "be", "type": "material", "pos": [76, 78]}]}, {"sentence": "Alternative operations of adding and subtracting material and functions are sometimes considered to improve manufacturing efficiency , as an alternative solution to conventional methods like welding and machining .", "entities": [{"name": "material", "type": "material", "pos": [49, 57]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [108, 121]}, {"name": "as", "type": "material", "pos": [135, 137]}, {"name": "solution", "type": "concept or principle", "pos": [153, 161]}, {"name": "welding", "type": "manufacturing process", "pos": [191, 198]}, {"name": "machining", "type": "manufacturing process", "pos": [203, 212]}]}, {"sentence": "This approach , usually named hybrid manufacturing , needs specific AM process planning solutions in order to process from feature decomposition to a complete part recomposition , taking into account sequencing aspects and material excess regions for machining depending on expected dimensional and surface qualities .", "entities": [{"name": "hybrid manufacturing", "type": "concept or principle", "pos": [30, 50]}, {"name": "AM process", "type": "manufacturing process", "pos": [68, 78]}, {"name": "process", "type": "concept or principle", "pos": [110, 117]}, {"name": "feature decomposition", "type": "engineering feature", "pos": [123, 144]}, {"name": "material", "type": "material", "pos": [223, 231]}, {"name": "machining", "type": "manufacturing process", "pos": [251, 260]}, {"name": "surface qualities", "type": "process parameter", "pos": [299, 316]}]}, {"sentence": "However , orientation and placement have to be validated with respect to global thermal conditions of manufacturing .", "entities": [{"name": "orientation", "type": "concept or principle", "pos": [10, 21]}, {"name": "be", "type": "material", "pos": [44, 46]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [102, 115]}]}, {"sentence": "As material and geometry are obtained at the same time , it is mandatory to validate the material quality induced by the input of energy during the material transformation and the consequences on the metallurgical properties of the part .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "geometry", "type": "concept or principle", "pos": [16, 24]}, {"name": "material", "type": "material", "pos": [89, 97]}, {"name": "material", "type": "material", "pos": [148, 156]}, {"name": "metallurgical", "type": "application", "pos": [200, 213]}]}, {"sentence": "Consequently , potential deformations are also calculated and some modifications of strategy are also possible in order to compromise between production performance parameters and part material properties .", "entities": [{"name": "deformations", "type": "concept or principle", "pos": [25, 37]}, {"name": "production", "type": "manufacturing process", "pos": [142, 152]}, {"name": "performance parameters", "type": "concept or principle", "pos": [153, 175]}, {"name": "material properties", "type": "concept or principle", "pos": [185, 204]}]}, {"sentence": "Some simulation tools exist starting from the nested or packed global model integrating support structures .", "entities": [{"name": "simulation", "type": "enabling technology", "pos": [5, 15]}, {"name": "model", "type": "concept or principle", "pos": [70, 75]}, {"name": "support structures", "type": "engineering feature", "pos": [88, 106]}]}, {"sentence": "For some specific applications , process planning for AM may also generate assembly instructions .", "entities": [{"name": "process planning", "type": "concept or principle", "pos": [33, 49]}, {"name": "AM", "type": "manufacturing process", "pos": [54, 56]}, {"name": "assembly", "type": "manufacturing process", "pos": [75, 83]}]}, {"sentence": "This occurs when a part 's size exceeds the build volume of a machine and it can be decomposed into several small sections to be made separately .", "entities": [{"name": "build volume", "type": "process parameter", "pos": [44, 56]}, {"name": "machine", "type": "machine or equipment", "pos": [62, 69]}, {"name": "be", "type": "material", "pos": [81, 83]}, {"name": "be", "type": "material", "pos": [126, 128]}]}, {"sentence": "3.5 AM process constraints Like with all technologies , there are many constraints to AM .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [4, 14]}, {"name": "technologies", "type": "concept or principle", "pos": [41, 53]}, {"name": "AM", "type": "manufacturing process", "pos": [86, 88]}]}, {"sentence": "This section will focus on four primary constraints that are common to all AM process categories and particularly relevant to the AM of metals : Speed of build , materials , build envelope , and accuracy .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [75, 85]}, {"name": "AM", "type": "manufacturing process", "pos": [130, 132]}, {"name": "metals", "type": "material", "pos": [136, 142]}, {"name": "build", "type": "process parameter", "pos": [154, 159]}, {"name": "materials", "type": "concept or principle", "pos": [162, 171]}, {"name": "build envelope", "type": "process parameter", "pos": [174, 188]}, {"name": "accuracy", "type": "process characterization", "pos": [195, 203]}]}, {"sentence": "Although AM used to be called Rapid Prototyping , one is now quite accustomed to having prototypes built quickly , but this is difficult to scale up .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [9, 11]}, {"name": "be", "type": "material", "pos": [20, 22]}, {"name": "Rapid Prototyping", "type": "enabling technology", "pos": [30, 47]}, {"name": "prototypes", "type": "concept or principle", "pos": [88, 98]}]}, {"sentence": "Furthermore , there is increasing demand for AM to be used in mainstream production , which requires much faster throughput .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [45, 47]}, {"name": "be", "type": "material", "pos": [51, 53]}, {"name": "production", "type": "manufacturing process", "pos": [73, 83]}, {"name": "throughput", "type": "process characterization", "pos": [113, 123]}]}, {"sentence": "AM has the benefits of geometric freedom , no minimum batch constraint and rapid change between batches , which meets many of the demands of modern manufacturing industry .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "geometric freedom", "type": "concept or principle", "pos": [23, 40]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [148, 161]}, {"name": "industry", "type": "application", "pos": [162, 170]}]}, {"sentence": "The hunt is therefore on for faster AM technology .", "entities": [{"name": "AM technology", "type": "manufacturing process", "pos": [36, 49]}]}, {"sentence": "Many metal AM systems use lasers due to the demand for large amounts of focussed energy .", "entities": [{"name": "metal AM", "type": "manufacturing process", "pos": [5, 13]}]}, {"sentence": "The ideal situation would be to provide the required energy over an entire layer simultaneously but so far this has not been demonstrated to be possible .", "entities": [{"name": "be", "type": "material", "pos": [26, 28]}, {"name": "layer", "type": "process parameter", "pos": [75, 80]}, {"name": "be", "type": "material", "pos": [120, 122]}]}, {"sentence": "A compromise is the supply of multiple laser beams controlled simultaneously .", "entities": [{"name": "laser beams", "type": "concept or principle", "pos": [39, 50]}]}, {"sentence": "Different lasers can be used to process different regions with finer spots being used for more detailed parts and wider beams to process bulk regions .", "entities": [{"name": "be", "type": "material", "pos": [21, 23]}, {"name": "process", "type": "concept or principle", "pos": [32, 39]}, {"name": "finer spots", "type": "process characterization", "pos": [63, 74]}, {"name": "process", "type": "concept or principle", "pos": [129, 136]}, {"name": "bulk regions", "type": "engineering feature", "pos": [137, 149]}]}, {"sentence": "Careful attention must be given to beam control so that they do n't affect each other , including the vapour trails from the molten metal regions .", "entities": [{"name": "be", "type": "material", "pos": [23, 25]}, {"name": "beam control", "type": "process parameter", "pos": [35, 47]}, {"name": "molten metal", "type": "material", "pos": [125, 137]}]}, {"sentence": "A contrasting approach to increasing throughput for batch production of metal parts is the use of binder jetting methods or material extrusion with metal-filled binder materials .", "entities": [{"name": "throughput", "type": "process characterization", "pos": [37, 47]}, {"name": "batch production", "type": "concept or principle", "pos": [52, 68]}, {"name": "metal", "type": "material", "pos": [72, 77]}, {"name": "binder jetting methods", "type": "manufacturing process", "pos": [98, 120]}, {"name": "material extrusion", "type": "manufacturing process", "pos": [124, 142]}, {"name": "binder", "type": "material", "pos": [161, 167]}]}, {"sentence": "Such methods can achieve faster AM throughput and can be more easily scaled to create larger parts .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [32, 34]}, {"name": "be", "type": "material", "pos": [54, 56]}]}, {"sentence": "The downsides relate to increases in post-processing times during heat treatment and during machine finishing , if required .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [37, 52]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [66, 80]}, {"name": "machine", "type": "machine or equipment", "pos": [92, 99]}, {"name": "finishing", "type": "manufacturing process", "pos": [100, 109]}]}, {"sentence": "These requirements are also driving the development of open-architecture , robot-based metal AM systems , like Wire Arc AM and Laser Metal Deposition .", "entities": [{"name": "metal AM", "type": "manufacturing process", "pos": [87, 95]}, {"name": "Arc", "type": "concept or principle", "pos": [116, 119]}, {"name": "AM", "type": "manufacturing process", "pos": [120, 122]}, {"name": "Laser Metal Deposition", "type": "manufacturing process", "pos": [127, 149]}]}, {"sentence": "There is a huge and increasing number of metals and other materials used to make products .", "entities": [{"name": "metals", "type": "material", "pos": [41, 47]}, {"name": "materials", "type": "concept or principle", "pos": [58, 67]}]}, {"sentence": "Most of these metals are carefully chosen to suit product requirements in strength , chemical resistance , thermal properties , processability , cost , etc .", "entities": [{"name": "metals", "type": "material", "pos": [14, 20]}, {"name": "strength", "type": "machanical property", "pos": [74, 82]}, {"name": "chemical resistance", "type": "machanical property", "pos": [85, 104]}, {"name": "thermal properties", "type": "concept or principle", "pos": [107, 125]}]}, {"sentence": "In comparison , there are a very few materials available in AM .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [37, 46]}, {"name": "AM", "type": "manufacturing process", "pos": [60, 62]}]}, {"sentence": "All AM processes are suited to a subset of materials , the requirements for which can be very specific , like the need for photo-curable resins .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [4, 16]}, {"name": "materials", "type": "concept or principle", "pos": [43, 52]}, {"name": "be", "type": "material", "pos": [86, 88]}, {"name": "photo-curable resins", "type": "material", "pos": [123, 143]}]}, {"sentence": "Many materials can be formed by AM using thermal energy , but the amounts of energy vary considerably .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [5, 14]}, {"name": "be", "type": "material", "pos": [19, 21]}, {"name": "AM", "type": "manufacturing process", "pos": [32, 34]}, {"name": "thermal energy", "type": "concept or principle", "pos": [41, 55]}]}, {"sentence": "It is not easy to melt metals in an AM process chamber specifically built for polymers for example .", "entities": [{"name": "melt", "type": "concept or principle", "pos": [18, 22]}, {"name": "AM process", "type": "manufacturing process", "pos": [36, 46]}, {"name": "polymers", "type": "material", "pos": [78, 86]}]}, {"sentence": "In addition , raw materials often need to be presented with well-defined morphology , like in filament or carefully-graded powder distributions .", "entities": [{"name": "raw materials", "type": "material", "pos": [14, 27]}, {"name": "be", "type": "material", "pos": [42, 44]}, {"name": "morphology", "type": "concept or principle", "pos": [73, 83]}, {"name": "filament", "type": "material", "pos": [94, 102]}, {"name": "powder", "type": "material", "pos": [123, 129]}, {"name": "distributions", "type": "concept or principle", "pos": [130, 143]}]}, {"sentence": "However , even within a smaller range of materials the processing requirements can still be difficult to specify .", "entities": [{"name": "range", "type": "process parameter", "pos": [32, 37]}, {"name": "materials", "type": "concept or principle", "pos": [41, 50]}, {"name": "be", "type": "material", "pos": [89, 91]}]}, {"sentence": "Metals within L-PBF systems for example will absorb laser energy in different proportions .", "entities": [{"name": "Metals", "type": "material", "pos": [0, 6]}, {"name": "L-PBF systems", "type": "machine or equipment", "pos": [14, 27]}, {"name": "laser energy", "type": "concept or principle", "pos": [52, 64]}]}, {"sentence": "The physics around phase change behaviour and effects in the molten state can all be quite different , significantly affecting the final material microstructure .", "entities": [{"name": "physics", "type": "concept or principle", "pos": [4, 11]}, {"name": "phase", "type": "concept or principle", "pos": [19, 24]}, {"name": "be", "type": "material", "pos": [32, 34]}, {"name": "material", "type": "material", "pos": [137, 145]}]}, {"sentence": "Furthermore , much of this is significantly different from other manufacturing processes like casting and forging .", "entities": [{"name": "manufacturing processes", "type": "manufacturing process", "pos": [65, 88]}, {"name": "casting", "type": "manufacturing process", "pos": [94, 101]}, {"name": "forging", "type": "manufacturing process", "pos": [106, 113]}]}, {"sentence": "All these need to be carefully studied before AM materials can be released to the market .", "entities": [{"name": "be", "type": "material", "pos": [18, 20]}, {"name": "AM materials", "type": "material", "pos": [46, 58]}, {"name": "be", "type": "material", "pos": [63, 65]}]}, {"sentence": "As , AM becomes more widespread , one can expect more materials to become available but it is widely accepted that range of materials needs to be increased .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "AM", "type": "manufacturing process", "pos": [5, 7]}, {"name": "materials", "type": "concept or principle", "pos": [54, 63]}, {"name": "range", "type": "process parameter", "pos": [115, 120]}, {"name": "materials", "type": "concept or principle", "pos": [124, 133]}, {"name": "be", "type": "material", "pos": [143, 145]}]}, {"sentence": "Having said that , current AM materials like Ti-6Al-4V , 316 stainless steel and CoCr alloys , etc .", "entities": [{"name": "AM materials", "type": "material", "pos": [27, 39]}, {"name": "Ti-6Al-4V", "type": "material", "pos": [45, 54]}, {"name": "stainless steel", "type": "material", "pos": [61, 76]}, {"name": "CoCr alloys", "type": "material", "pos": [81, 92]}]}, {"sentence": "Many products are made from metals because of the needs for strength and accuracy .", "entities": [{"name": "metals", "type": "material", "pos": [28, 34]}, {"name": "strength", "type": "machanical property", "pos": [60, 68]}, {"name": "accuracy", "type": "process characterization", "pos": [73, 81]}]}, {"sentence": "In AM , part strength is often acceptable but part accuracy is very often not .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [3, 5]}, {"name": "strength", "type": "machanical property", "pos": [13, 21]}, {"name": "accuracy", "type": "process characterization", "pos": [51, 59]}]}, {"sentence": "Metal parts are often mated with others and so the joining surfaces must align with each other .", "entities": [{"name": "Metal", "type": "material", "pos": [0, 5]}, {"name": "joining", "type": "manufacturing process", "pos": [51, 58]}]}, {"sentence": "Most metal AM processes create parts with poor surface finish , usually no better than 15 Rz and very often considerably worse .", "entities": [{"name": "metal AM", "type": "manufacturing process", "pos": [5, 13]}, {"name": "surface finish", "type": "engineering feature", "pos": [47, 61]}]}, {"sentence": "Machine finishing is therefore a common requirement as a post-process .", "entities": [{"name": "Machine", "type": "machine or equipment", "pos": [0, 7]}, {"name": "finishing", "type": "manufacturing process", "pos": [8, 17]}, {"name": "as", "type": "material", "pos": [52, 54]}, {"name": "post-process", "type": "concept or principle", "pos": [57, 69]}]}, {"sentence": "Thermally induced distortion due to large temperature gradients during builds and corresponding residual stresses is also a common phenomenon for metal AM .", "entities": [{"name": "distortion", "type": "concept or principle", "pos": [18, 28]}, {"name": "temperature gradients", "type": "process parameter", "pos": [42, 63]}, {"name": "builds", "type": "process characterization", "pos": [71, 77]}, {"name": "residual stresses", "type": "machanical property", "pos": [96, 113]}, {"name": "metal AM", "type": "manufacturing process", "pos": [146, 154]}]}, {"sentence": "Features may therefore be imprecisely located and it may be better to provide a machining allowance in the initial AM part design .", "entities": [{"name": "be", "type": "material", "pos": [23, 25]}, {"name": "be", "type": "material", "pos": [57, 59]}, {"name": "machining allowance", "type": "process parameter", "pos": [80, 99]}, {"name": "AM part", "type": "machine or equipment", "pos": [115, 122]}]}, {"sentence": "The introduction of hybrid machines that combine AM with subtractive and other manufacturing processes that operate in a sequential manner aim to overcome issues around part accuracy .", "entities": [{"name": "machines", "type": "machine or equipment", "pos": [27, 35]}, {"name": "AM", "type": "manufacturing process", "pos": [49, 51]}, {"name": "subtractive", "type": "manufacturing process", "pos": [57, 68]}, {"name": "manufacturing processes", "type": "manufacturing process", "pos": [79, 102]}, {"name": "accuracy", "type": "process characterization", "pos": [174, 182]}]}, {"sentence": "This is particularly useful where the requirement is internal to the part geometry and difficult to achieve as a post-process .", "entities": [{"name": "geometry", "type": "concept or principle", "pos": [74, 82]}, {"name": "as", "type": "material", "pos": [108, 110]}, {"name": "post-process", "type": "concept or principle", "pos": [113, 125]}]}, {"sentence": "3.6 AM post-processing constraints For much of the time that AM technology has been under development , post-processing has been something that you would rather not do and eliminate if possible .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [4, 6]}, {"name": "AM technology", "type": "manufacturing process", "pos": [61, 74]}, {"name": "post-processing", "type": "concept or principle", "pos": [104, 119]}]}, {"sentence": "AM is now considered as something that can shorten process chains , not eliminate them entirely .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "as", "type": "material", "pos": [21, 23]}, {"name": "process chains", "type": "enabling technology", "pos": [51, 65]}]}, {"sentence": "Sometimes it may be appropriate to include a design feature in the post-process rather than in the AM build itself .", "entities": [{"name": "be", "type": "material", "pos": [17, 19]}, {"name": "design", "type": "engineering feature", "pos": [45, 51]}, {"name": "post-process", "type": "concept or principle", "pos": [67, 79]}, {"name": "AM", "type": "manufacturing process", "pos": [99, 101]}]}, {"sentence": "Post-processing tasks can be broadly divided in terms of those that can require significant manual intervention and those that can be carried out in a largely automated fashion .", "entities": [{"name": "Post-processing", "type": "concept or principle", "pos": [0, 15]}, {"name": "be", "type": "material", "pos": [26, 28]}, {"name": "be", "type": "material", "pos": [131, 133]}, {"name": "fashion", "type": "concept or principle", "pos": [169, 176]}]}, {"sentence": "Of course this depends on the available technology to achieve these tasks as well as the level of investment , quality issues , volume of production , etc .", "entities": [{"name": "technology", "type": "concept or principle", "pos": [40, 50]}, {"name": "as", "type": "material", "pos": [69, 71]}, {"name": "as", "type": "material", "pos": [74, 76]}, {"name": "quality", "type": "concept or principle", "pos": [111, 118]}, {"name": "volume", "type": "concept or principle", "pos": [128, 134]}, {"name": "production", "type": "manufacturing process", "pos": [138, 148]}]}, {"sentence": "Post-processing can also be considered in terms of those that need to be carried out due to the characteristics of the AM process used and those that are more aimed at enhancement of the AM parts .", "entities": [{"name": "Post-processing", "type": "concept or principle", "pos": [0, 15]}, {"name": "be", "type": "material", "pos": [25, 27]}, {"name": "be", "type": "material", "pos": [70, 72]}, {"name": "AM process", "type": "manufacturing process", "pos": [119, 129]}, {"name": "AM parts", "type": "machine or equipment", "pos": [187, 195]}]}, {"sentence": "Like with the previous classification , there are overlaps or grey areas , around where exactly surface finish fits for example .", "entities": [{"name": "classification", "type": "concept or principle", "pos": [23, 37]}, {"name": "areas", "type": "process parameter", "pos": [67, 72]}, {"name": "surface finish", "type": "engineering feature", "pos": [96, 110]}, {"name": "fits", "type": "concept or principle", "pos": [111, 115]}]}, {"sentence": "This can also form part of the decision making in the process design The AM technology specific processes mainly refer to the chosen build process and are aimed at providing a consistent quality of output suited to the general application .", "entities": [{"name": "process", "type": "concept or principle", "pos": [54, 61]}, {"name": "design", "type": "engineering feature", "pos": [62, 68]}, {"name": "AM technology", "type": "manufacturing process", "pos": [73, 86]}, {"name": "processes", "type": "concept or principle", "pos": [96, 105]}, {"name": "build", "type": "process parameter", "pos": [133, 138]}, {"name": "quality", "type": "concept or principle", "pos": [187, 194]}]}, {"sentence": "Many processes use support structures which have to be removed somehow , often requiring further finishing of regions where the supports connected with the part .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [5, 14]}, {"name": "support structures", "type": "engineering feature", "pos": [19, 37]}, {"name": "be", "type": "material", "pos": [52, 54]}, {"name": "finishing", "type": "manufacturing process", "pos": [97, 106]}, {"name": "supports", "type": "application", "pos": [128, 136]}]}, {"sentence": "Build strategies often revolve around minimising the amount of supports or avoiding key surfaces for aesthetic or accuracy reasons .", "entities": [{"name": "Build strategies", "type": "concept or principle", "pos": [0, 16]}, {"name": "supports", "type": "application", "pos": [63, 71]}, {"name": "surfaces", "type": "concept or principle", "pos": [88, 96]}, {"name": "aesthetic", "type": "concept or principle", "pos": [101, 110]}, {"name": "accuracy", "type": "process characterization", "pos": [114, 122]}]}, {"sentence": "For many machines , flat and curved surfaces can appear different due to the stair-stepping phenomena .", "entities": [{"name": "machines", "type": "machine or equipment", "pos": [9, 17]}, {"name": "curved surfaces", "type": "concept or principle", "pos": [29, 44]}]}, {"sentence": "Abrasive or chemical finishing can be used to make these surfaces appear more uniform .", "entities": [{"name": "Abrasive", "type": "material", "pos": [0, 8]}, {"name": "finishing", "type": "manufacturing process", "pos": [21, 30]}, {"name": "be", "type": "material", "pos": [35, 37]}, {"name": "surfaces", "type": "concept or principle", "pos": [57, 65]}]}, {"sentence": "A further post-processing task can revolve around excess material that may be adhering to the part surfaces .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [10, 25]}, {"name": "material", "type": "material", "pos": [57, 65]}, {"name": "be", "type": "material", "pos": [75, 77]}, {"name": "surfaces", "type": "concept or principle", "pos": [99, 107]}]}, {"sentence": "This may be a surrounding material that protects these surfaces or they may be residual material due to inconsistencies in the process , similar to flash in moulding operations .", "entities": [{"name": "be", "type": "material", "pos": [9, 11]}, {"name": "material", "type": "material", "pos": [26, 34]}, {"name": "surfaces", "type": "concept or principle", "pos": [55, 63]}, {"name": "be", "type": "material", "pos": [76, 78]}, {"name": "material", "type": "material", "pos": [88, 96]}, {"name": "process", "type": "concept or principle", "pos": [127, 134]}, {"name": "flash", "type": "material", "pos": [148, 153]}, {"name": "moulding", "type": "concept or principle", "pos": [157, 165]}]}, {"sentence": "Although specific to powder-based AM technology , pore-filling and densification can also be application specific in terms of the material chosen to create a fully dense part .", "entities": [{"name": "AM technology", "type": "manufacturing process", "pos": [34, 47]}, {"name": "densification", "type": "manufacturing process", "pos": [67, 80]}, {"name": "be", "type": "material", "pos": [90, 92]}, {"name": "material", "type": "material", "pos": [130, 138]}, {"name": "fully dense", "type": "process parameter", "pos": [158, 169]}]}, {"sentence": "Densification can also be in the form of a furnace cycle , perhaps using hot isostatic pressing .", "entities": [{"name": "Densification", "type": "manufacturing process", "pos": [0, 13]}, {"name": "be", "type": "material", "pos": [23, 25]}, {"name": "furnace", "type": "machine or equipment", "pos": [43, 50]}, {"name": "hot isostatic pressing", "type": "manufacturing process", "pos": [73, 95]}]}, {"sentence": "Since some processes can be slightly heterogeneous in nature , accounting for shrinkage may require careful preparation and difficult to precisely control .", "entities": [{"name": "processes", "type": "concept or principle", "pos": [11, 20]}, {"name": "be", "type": "material", "pos": [25, 27]}, {"name": "heterogeneous", "type": "concept or principle", "pos": [37, 50]}, {"name": "shrinkage", "type": "concept or principle", "pos": [78, 87]}]}, {"sentence": "Metal AM parts in particular are commonly used as fully functional parts .", "entities": [{"name": "Metal AM", "type": "manufacturing process", "pos": [0, 8]}, {"name": "as", "type": "material", "pos": [47, 49]}]}, {"sentence": "Choice of metal as a part material often relates to part strength and while precision can represent a problem .", "entities": [{"name": "metal", "type": "material", "pos": [10, 15]}, {"name": "as", "type": "material", "pos": [16, 18]}, {"name": "material", "type": "material", "pos": [26, 34]}, {"name": "strength", "type": "machanical property", "pos": [57, 65]}, {"name": "precision", "type": "process characterization", "pos": [76, 85]}]}, {"sentence": "Finish machining of key surfaces is often required , much in the same way as we would treat a casting .", "entities": [{"name": "Finish machining", "type": "manufacturing process", "pos": [0, 16]}, {"name": "surfaces", "type": "concept or principle", "pos": [24, 32]}, {"name": "as", "type": "material", "pos": [74, 76]}, {"name": "casting", "type": "manufacturing process", "pos": [94, 101]}]}, {"sentence": "In these specific regions it may be appropriate to grow some of these surfaces in the design phase to provide sufficient machining allowance to ensure high quality , accurate results .", "entities": [{"name": "be", "type": "material", "pos": [33, 35]}, {"name": "surfaces", "type": "concept or principle", "pos": [70, 78]}, {"name": "design", "type": "engineering feature", "pos": [86, 92]}, {"name": "machining allowance", "type": "process parameter", "pos": [121, 140]}, {"name": "quality", "type": "concept or principle", "pos": [156, 163]}, {"name": "accurate", "type": "process characterization", "pos": [166, 174]}]}, {"sentence": "It can be argued that there will be fewer of these surfaces to finish since it is common thinking that AM allows for part consolidation due to the ability to create internalised features .", "entities": [{"name": "be", "type": "material", "pos": [7, 9]}, {"name": "be", "type": "material", "pos": [33, 35]}, {"name": "surfaces", "type": "concept or principle", "pos": [51, 59]}, {"name": "AM", "type": "manufacturing process", "pos": [103, 105]}, {"name": "part consolidation", "type": "concept or principle", "pos": [117, 135]}]}, {"sentence": "Although it is quite possible to print features like holes and screw-threads using AM , the precision demands on such features can be very stringent and beyond the capacity of the AM technology used .", "entities": [{"name": "print", "type": "manufacturing process", "pos": [33, 38]}, {"name": "AM", "type": "manufacturing process", "pos": [83, 85]}, {"name": "precision", "type": "process characterization", "pos": [92, 101]}, {"name": "be", "type": "material", "pos": [131, 133]}, {"name": "capacity", "type": "concept or principle", "pos": [164, 172]}, {"name": "AM technology", "type": "manufacturing process", "pos": [180, 193]}]}, {"sentence": "It may be possible to save material by printing a hole but the time taken to finish a partially-made hole may be the same , or even longer , than to drill a complete hole in a blank space .", "entities": [{"name": "be", "type": "material", "pos": [7, 9]}, {"name": "material", "type": "material", "pos": [27, 35]}, {"name": "be", "type": "material", "pos": [110, 112]}, {"name": "drill", "type": "machine or equipment", "pos": [149, 154]}, {"name": "blank", "type": "material", "pos": [176, 181]}]}, {"sentence": "This may be even more relevant if the hole contained a screw thread .", "entities": [{"name": "be", "type": "material", "pos": [9, 11]}, {"name": "screw thread", "type": "engineering feature", "pos": [55, 67]}]}, {"sentence": "Again , it can be argued that this adds complexity to the process decision-making , but it is pertinent when relating to heavily industrial applications .", "entities": [{"name": "be", "type": "material", "pos": [15, 17]}, {"name": "complexity", "type": "concept or principle", "pos": [40, 50]}, {"name": "process", "type": "concept or principle", "pos": [58, 65]}, {"name": "industrial", "type": "application", "pos": [129, 139]}]}, {"sentence": "Coatings can go from simple paint jobs to improve aesthetics and seal against corrosive atmospheres through to providing significant functional properties , including bioactive features .", "entities": [{"name": "Coatings", "type": "application", "pos": [0, 8]}, {"name": "go", "type": "material", "pos": [13, 15]}, {"name": "simple", "type": "manufacturing process", "pos": [21, 27]}, {"name": "corrosive", "type": "machanical property", "pos": [78, 87]}, {"name": "properties", "type": "concept or principle", "pos": [144, 154]}, {"name": "bioactive features", "type": "concept or principle", "pos": [167, 185]}]}, {"sentence": "These tasks may require significantly specialised facilities to those used in other production steps and as such may be outsourced .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [84, 94]}, {"name": "as", "type": "material", "pos": [105, 107]}, {"name": "be", "type": "material", "pos": [117, 119]}]}, {"sentence": "This could also be the case with other forms of chemical and heat treatment .", "entities": [{"name": "be", "type": "material", "pos": [16, 18]}, {"name": "heat treatment", "type": "manufacturing process", "pos": [61, 75]}]}, {"sentence": "Many AM parts can include complex internal or difficult to reach features .", "entities": [{"name": "AM parts", "type": "machine or equipment", "pos": [5, 13]}]}, {"sentence": "Should these features require finishing , it may be somewhat difficult to achieve a stable quality , even when using automated techniques .", "entities": [{"name": "finishing", "type": "manufacturing process", "pos": [30, 39]}, {"name": "be", "type": "material", "pos": [49, 51]}, {"name": "quality", "type": "concept or principle", "pos": [91, 98]}]}, {"sentence": "Some methods are under development to address these issues but more effort could be made and in fact most methods for surface finishing are highly manual in nature .", "entities": [{"name": "be", "type": "material", "pos": [81, 83]}, {"name": "surface finishing", "type": "manufacturing process", "pos": [118, 135]}]}, {"sentence": "3.7 AM quality , inspection and certification Many AM applications can be found in highly regulated industries , like aerospace and medicine .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [4, 6]}, {"name": "inspection", "type": "process characterization", "pos": [17, 27]}, {"name": "AM", "type": "manufacturing process", "pos": [51, 53]}, {"name": "be", "type": "material", "pos": [71, 73]}, {"name": "industries", "type": "application", "pos": [100, 110]}, {"name": "aerospace", "type": "application", "pos": [118, 127]}, {"name": "medicine", "type": "concept or principle", "pos": [132, 140]}]}, {"sentence": "This is even the case within the medical industry where one might expect such parts to be customised to suit a patient 's needs and anatomy .", "entities": [{"name": "medical industry", "type": "application", "pos": [33, 49]}, {"name": "be", "type": "material", "pos": [87, 89]}]}, {"sentence": "Quality control , inspection and certification would therefore be conducted in a similar fashion to conventionally manufactured parts .", "entities": [{"name": "Quality control", "type": "concept or principle", "pos": [0, 15]}, {"name": "inspection", "type": "process characterization", "pos": [18, 28]}, {"name": "be", "type": "material", "pos": [63, 65]}, {"name": "fashion", "type": "concept or principle", "pos": [89, 96]}, {"name": "manufactured", "type": "concept or principle", "pos": [115, 127]}]}, {"sentence": "Validation in these cases is as much about ensuring consistency in the manufacturing process and traceability of the supply chain as it is about the functionality of the part .", "entities": [{"name": "Validation", "type": "concept or principle", "pos": [0, 10]}, {"name": "as", "type": "material", "pos": [21, 23]}, {"name": "consistency", "type": "concept or principle", "pos": [52, 63]}, {"name": "manufacturing process", "type": "manufacturing process", "pos": [71, 92]}, {"name": "supply chain", "type": "concept or principle", "pos": [117, 129]}, {"name": "as", "type": "material", "pos": [130, 132]}]}, {"sentence": "The US Federal Food and Drug Administration is widely regarded as a key standards organisation around the world and many other countries base their own medical standards on the FDA .", "entities": [{"name": "as", "type": "material", "pos": [63, 65]}, {"name": "standards", "type": "concept or principle", "pos": [72, 81]}, {"name": "medical", "type": "application", "pos": [152, 159]}, {"name": "FDA", "type": "manufacturing standard", "pos": [177, 180]}]}, {"sentence": "In 2017 the FDA published guidelines related to technical use of AM in medical devices .", "entities": [{"name": "FDA", "type": "manufacturing standard", "pos": [12, 15]}, {"name": "AM", "type": "manufacturing process", "pos": [65, 67]}, {"name": "medical devices", "type": "application", "pos": [71, 86]}]}, {"sentence": "These guidelines cover aspects related to AM-based design of medical devices as well as how they are manufactured and validated .", "entities": [{"name": "design", "type": "engineering feature", "pos": [51, 57]}, {"name": "medical devices", "type": "application", "pos": [61, 76]}, {"name": "as", "type": "material", "pos": [77, 79]}, {"name": "as", "type": "material", "pos": [85, 87]}, {"name": "manufactured", "type": "concept or principle", "pos": [101, 113]}]}, {"sentence": "Certification of medical devices is required if there is a medium to high risk potential to the user .", "entities": [{"name": "medical devices", "type": "application", "pos": [17, 32]}]}, {"sentence": "All implantable devices would be Class II or Class III , whilst AM produced foot orthotics are class I , requiring no premarket notification to prove they have been clinically tested certification ) .", "entities": [{"name": "implantable devices", "type": "machine or equipment", "pos": [4, 23]}, {"name": "be", "type": "material", "pos": [30, 32]}, {"name": "AM", "type": "manufacturing process", "pos": [64, 66]}, {"name": "foot orthotics", "type": "machine or equipment", "pos": [76, 90]}]}, {"sentence": "The medical device manufacturer Stryker released their Spine Tritanium PL Cage around 2016 .", "entities": [{"name": "medical device", "type": "application", "pos": [4, 18]}, {"name": "manufacturer", "type": "concept or principle", "pos": [19, 31]}, {"name": "PL Cage", "type": "material", "pos": [71, 78]}]}, {"sentence": "AM is used to create a complex porous geometry of titanium that aims to promote bone ingrowth in a lumbar spine fusion process .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "porous", "type": "machanical property", "pos": [31, 37]}, {"name": "geometry", "type": "concept or principle", "pos": [38, 46]}, {"name": "titanium", "type": "material", "pos": [50, 58]}, {"name": "bone ingrowth", "type": "concept or principle", "pos": [80, 93]}, {"name": "lumbar spine fusion process", "type": "concept or principle", "pos": [99, 126]}]}, {"sentence": "It is possible that introduction of this device may have been premature as it is believed that more experimental work is needed to establish the boundaries for fatigue in AM lattice structures .", "entities": [{"name": "as", "type": "material", "pos": [72, 74]}, {"name": "experimental", "type": "concept or principle", "pos": [100, 112]}, {"name": "boundaries", "type": "engineering feature", "pos": [145, 155]}, {"name": "fatigue", "type": "machanical property", "pos": [160, 167]}, {"name": "AM", "type": "manufacturing process", "pos": [171, 173]}]}, {"sentence": "It should be noted that similar porous and irregular lattice structures have been used in 100,000s of successful acetabular hip implant cases .", "entities": [{"name": "be", "type": "material", "pos": [10, 12]}, {"name": "porous", "type": "machanical property", "pos": [32, 38]}, {"name": "lattice structures", "type": "engineering feature", "pos": [53, 71]}, {"name": "hip implant", "type": "application", "pos": [124, 135]}]}, {"sentence": "This issue of possible failure will be even more important should the device have a customisable geometry .", "entities": [{"name": "failure", "type": "concept or principle", "pos": [23, 30]}, {"name": "be", "type": "material", "pos": [36, 38]}, {"name": "geometry", "type": "concept or principle", "pos": [97, 105]}]}, {"sentence": "The FDA refers to these as Customised or Humanitarian-use devices .", "entities": [{"name": "FDA", "type": "manufacturing standard", "pos": [4, 7]}, {"name": "as", "type": "material", "pos": [24, 26]}]}, {"sentence": "These must also be limited in number and subject to significant medical board scrutiny .", "entities": [{"name": "be", "type": "material", "pos": [16, 18]}, {"name": "medical", "type": "application", "pos": [64, 71]}]}, {"sentence": "Medical authorities are currently at a significant crosB-road as to how to provide custom implants for more widespread use .", "entities": [{"name": "Medical", "type": "application", "pos": [0, 7]}, {"name": "as", "type": "material", "pos": [62, 64]}, {"name": "custom implants", "type": "application", "pos": [83, 98]}]}, {"sentence": "Aerospace certification , through the Federal Aviation Authority , also appears to be at a similar crosB-road .", "entities": [{"name": "Aerospace", "type": "application", "pos": [0, 9]}, {"name": "be", "type": "material", "pos": [83, 85]}]}, {"sentence": "However , it is noted that many parts already in use could be repaired when damaged using AM techniques , most specifically using Directed Energy Deposition .", "entities": [{"name": "be", "type": "material", "pos": [59, 61]}, {"name": "AM techniques", "type": "manufacturing process", "pos": [90, 103]}, {"name": "Directed Energy Deposition", "type": "manufacturing process", "pos": [130, 156]}]}, {"sentence": "Many safety critical parts , like turbine blades , could be repaired in this way .", "entities": [{"name": "safety", "type": "concept or principle", "pos": [5, 11]}, {"name": "turbine blades", "type": "application", "pos": [34, 48]}, {"name": "be", "type": "material", "pos": [57, 59]}]}, {"sentence": "Emphasis must therefore be on the AM process to ensure that functionality is maintained to a suitable standard .", "entities": [{"name": "be", "type": "material", "pos": [24, 26]}, {"name": "AM process", "type": "manufacturing process", "pos": [34, 44]}, {"name": "standard", "type": "concept or principle", "pos": [102, 110]}]}, {"sentence": "For example Air New Zealand are saving significant repair costs by making their own replacement seat tray-tables using materials like the flame-retardant ULTEM 9085 polymer material from Stratasys .", "entities": [{"name": "repair costs", "type": "process parameter", "pos": [51, 63]}, {"name": "materials", "type": "concept or principle", "pos": [119, 128]}, {"name": "polymer material", "type": "material", "pos": [165, 181]}, {"name": "Stratasys", "type": "application", "pos": [187, 196]}]}, {"sentence": "This is just part of a much wider push to demonstrate a sustainable industry for AM in aerospace .", "entities": [{"name": "sustainable", "type": "concept or principle", "pos": [56, 67]}, {"name": "industry", "type": "application", "pos": [68, 76]}, {"name": "AM", "type": "manufacturing process", "pos": [81, 83]}, {"name": "aerospace", "type": "application", "pos": [87, 96]}]}, {"sentence": "Many of the above issues for medical and aerospace are reflected in a more general form within the standards under development by ISO Technical Committee 261 in conjunction with the ASTM F42 Group .", "entities": [{"name": "medical", "type": "application", "pos": [29, 36]}, {"name": "aerospace", "type": "application", "pos": [41, 50]}, {"name": "standards", "type": "concept or principle", "pos": [99, 108]}, {"name": "ISO", "type": "manufacturing standard", "pos": [130, 133]}]}, {"sentence": "Numerous techniques , like the printing of test coupons alongside critical components , machine calibration and material storage , etc .", "entities": [{"name": "components", "type": "machine or equipment", "pos": [75, 85]}, {"name": "machine calibration", "type": "process parameter", "pos": [88, 107]}, {"name": "material", "type": "material", "pos": [112, 120]}]}, {"sentence": "This has led to significant improvements in process monitoring within industrial scale AM machines .", "entities": [{"name": "led", "type": "application", "pos": [9, 12]}, {"name": "process monitoring", "type": "concept or principle", "pos": [44, 62]}, {"name": "industrial", "type": "application", "pos": [70, 80]}, {"name": "AM machines", "type": "machine or equipment", "pos": [87, 98]}]}, {"sentence": "Many polymer-based systems have camera monitoring that allow determining the build status and remote intervention if problems can be seen .", "entities": [{"name": "camera", "type": "machine or equipment", "pos": [32, 38]}, {"name": "build status", "type": "process parameter", "pos": [77, 89]}, {"name": "be", "type": "material", "pos": [130, 132]}]}, {"sentence": "Many metal L-PBF systems also have optional laser power and melt-pool sensing to determine the state of part with the possibility of detecting a failure before it damages the machine .", "entities": [{"name": "metal", "type": "material", "pos": [5, 10]}, {"name": "L-PBF systems", "type": "machine or equipment", "pos": [11, 24]}, {"name": "laser power", "type": "process parameter", "pos": [44, 55]}, {"name": "sensing", "type": "application", "pos": [70, 77]}, {"name": "failure", "type": "concept or principle", "pos": [145, 152]}, {"name": "machine", "type": "machine or equipment", "pos": [175, 182]}]}, {"sentence": "4 Tools and methods for designing lightweight parts Lightweight design always has been a hot topic in structural engineering .", "entities": [{"name": "Tools", "type": "machine or equipment", "pos": [2, 7]}, {"name": "lightweight", "type": "concept or principle", "pos": [34, 45]}, {"name": "Lightweight", "type": "concept or principle", "pos": [52, 63]}, {"name": "design", "type": "engineering feature", "pos": [64, 70]}, {"name": "structural engineering", "type": "concept or principle", "pos": [102, 124]}]}, {"sentence": "AM processes can produce highly complex structures , constructed using both internally and externally very complex surfaces .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [0, 12]}, {"name": "complex structures", "type": "concept or principle", "pos": [32, 50]}, {"name": "surfaces", "type": "concept or principle", "pos": [115, 123]}]}, {"sentence": "More importantly , there is no clear relationship between the complexity of the part and the associated production cost , providing more freedom to explore the design space to its full extent .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [62, 72]}, {"name": "production cost", "type": "concept or principle", "pos": [104, 119]}, {"name": "design space", "type": "concept or principle", "pos": [160, 172]}]}, {"sentence": "As a result , not only conventional lightweighting design tools are used for AM , but also some new methods have emerged to fully grasp the benefits of AM .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "lightweighting", "type": "machanical property", "pos": [36, 50]}, {"name": "design", "type": "engineering feature", "pos": [51, 57]}, {"name": "AM", "type": "manufacturing process", "pos": [77, 79]}, {"name": "AM", "type": "manufacturing process", "pos": [152, 154]}]}, {"sentence": "In relation to lightweight design for AM , four groups of methods and tools can be identified : topology optimization , generative design , lattice structure filling , and bio-inspired design .", "entities": [{"name": "lightweight", "type": "concept or principle", "pos": [15, 26]}, {"name": "design", "type": "engineering feature", "pos": [27, 33]}, {"name": "AM", "type": "manufacturing process", "pos": [38, 40]}, {"name": "tools", "type": "machine or equipment", "pos": [70, 75]}, {"name": "be", "type": "material", "pos": [80, 82]}, {"name": "topology optimization", "type": "engineering feature", "pos": [96, 117]}, {"name": "generative design", "type": "enabling technology", "pos": [120, 137]}, {"name": "lattice structure", "type": "engineering feature", "pos": [140, 157]}, {"name": "bio-inspired design", "type": "engineering feature", "pos": [172, 191]}]}, {"sentence": "4.1 Topology optimization Topology optimization was originally used for mechanical design problems to answer a layout optimization question : how to put the right material in the right place of a pre-defined design space ? The objective was to obtain the expected mechanical properties at minimum material use .", "entities": [{"name": "Topology optimization", "type": "engineering feature", "pos": [4, 25]}, {"name": "Topology", "type": "concept or principle", "pos": [26, 34]}, {"name": "optimization", "type": "concept or principle", "pos": [35, 47]}, {"name": "mechanical", "type": "application", "pos": [72, 82]}, {"name": "design", "type": "engineering feature", "pos": [83, 89]}, {"name": "layout", "type": "concept or principle", "pos": [111, 117]}, {"name": "material", "type": "material", "pos": [163, 171]}, {"name": "design space", "type": "concept or principle", "pos": [208, 220]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [264, 285]}, {"name": "material", "type": "material", "pos": [297, 305]}]}, {"sentence": "The method uses numerical analysis and design solution update steps in an iterative way , mostly guided by gradient computation or non-gradient discrete approaches .", "entities": [{"name": "design", "type": "engineering feature", "pos": [39, 45]}, {"name": "computation", "type": "concept or principle", "pos": [116, 127]}, {"name": "non-gradient discrete approaches", "type": "concept or principle", "pos": [131, 163]}]}, {"sentence": "Traditionally , TO is driven by an objective function , minimizing or maximizing while being subjected to a set of predefined constraints , such as mass , deformation , vibration frequency , etc .", "entities": [{"name": "set", "type": "application", "pos": [108, 111]}, {"name": "as", "type": "material", "pos": [145, 147]}, {"name": "deformation", "type": "concept or principle", "pos": [155, 166]}, {"name": "vibration frequency", "type": "process parameter", "pos": [169, 188]}]}, {"sentence": "Usually , continuous design variables are used to solve the TO problem in a discretized way .", "entities": [{"name": "continuous design variables", "type": "concept or principle", "pos": [10, 37]}]}, {"sentence": "During this optimization iteration process , segments of the predefined initial design space are step by step removed so as to arrive at the minimal part volume/mass .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [12, 24]}, {"name": "process", "type": "concept or principle", "pos": [35, 42]}, {"name": "design space", "type": "concept or principle", "pos": [80, 92]}, {"name": "step", "type": "concept or principle", "pos": [97, 101]}, {"name": "step", "type": "concept or principle", "pos": [105, 109]}, {"name": "as", "type": "material", "pos": [121, 123]}]}, {"sentence": "Initial methods developed remove materials bit by bit using a strain energy distribution and a preset threshold value .", "entities": [{"name": "materials", "type": "concept or principle", "pos": [33, 42]}, {"name": "strain", "type": "machanical property", "pos": [62, 68]}, {"name": "distribution", "type": "concept or principle", "pos": [76, 88]}]}, {"sentence": "More advanced methods use genetic algorithms that both add and remove materials .", "entities": [{"name": "genetic algorithms", "type": "concept or principle", "pos": [26, 44]}, {"name": "materials", "type": "concept or principle", "pos": [70, 79]}]}, {"sentence": "porous structures and lattice structures , but with relaxed mathematical constraints .", "entities": [{"name": "porous", "type": "machanical property", "pos": [0, 6]}, {"name": "lattice structures", "type": "engineering feature", "pos": [22, 40]}, {"name": "mathematical", "type": "concept or principle", "pos": [60, 72]}]}, {"sentence": "As stated in , even current pure TO studies still face problems , such as efficiency , general applicability , ease of use , etc .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "face", "type": "concept or principle", "pos": [50, 54]}, {"name": "as", "type": "material", "pos": [71, 73]}]}, {"sentence": "Many of them only use relatively simple boundary conditions with limited constraints , e.g .", "entities": [{"name": "simple", "type": "manufacturing process", "pos": [33, 39]}, {"name": "boundary conditions", "type": "concept or principle", "pos": [40, 59]}]}, {"sentence": "When introducing extra AM related constraints such as support structures/overhangs , minimum printable features , anisotropic material properties , heat-transfer , thermal strain/stress into TO , this would result in more complex constraints or boundary conditions .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [23, 25]}, {"name": "as", "type": "material", "pos": [51, 53]}, {"name": "anisotropic material properties", "type": "machanical property", "pos": [114, 145]}, {"name": "boundary conditions", "type": "concept or principle", "pos": [245, 264]}]}, {"sentence": "This again would result in more difficulties for the TO process to find the solutionwith an effective and fast converging simulation process .", "entities": [{"name": "process", "type": "concept or principle", "pos": [56, 63]}, {"name": "simulation", "type": "enabling technology", "pos": [122, 132]}, {"name": "process", "type": "concept or principle", "pos": [133, 140]}]}, {"sentence": "Attracted by the great potential of AM , researchers investigated TO with AM constraints , focussing on generating an optimal topologically lightweight material layout , to be printed without any manufacturing problems .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [36, 38]}, {"name": "AM", "type": "manufacturing process", "pos": [74, 76]}, {"name": "topologically lightweight", "type": "concept or principle", "pos": [126, 151]}, {"name": "material", "type": "material", "pos": [152, 160]}, {"name": "layout", "type": "concept or principle", "pos": [161, 167]}, {"name": "be", "type": "material", "pos": [173, 175]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [196, 209]}]}, {"sentence": "Therefore , recent researches on TO for DfAM are geared towards print-ready designs bridging challenges in design and printing .", "entities": [{"name": "designs", "type": "engineering feature", "pos": [76, 83]}, {"name": "bridging", "type": "concept or principle", "pos": [84, 92]}, {"name": "design", "type": "engineering feature", "pos": [107, 113]}]}, {"sentence": "One is to represent AM constraints with mathematical models and embed them into the TO iteration process .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [20, 22]}, {"name": "mathematical", "type": "concept or principle", "pos": [40, 52]}, {"name": "process", "type": "concept or principle", "pos": [97, 104]}]}, {"sentence": "The other is to use TO to generate one or a set of finite reference design solutions and apply design rules or experience to adapt these solutions manually or automatically to the AM constraints .", "entities": [{"name": "set", "type": "application", "pos": [44, 47]}, {"name": "design", "type": "engineering feature", "pos": [68, 74]}, {"name": "design rules", "type": "concept or principle", "pos": [95, 107]}, {"name": "AM", "type": "manufacturing process", "pos": [180, 182]}]}, {"sentence": "This last category thus applies AM constraints in the post-processing stage of a given TO result .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [32, 34]}, {"name": "post-processing", "type": "concept or principle", "pos": [54, 69]}]}, {"sentence": "For ease of practice , most of the earliest works directly tried to use existing traditional TO , or other similar structure optimization methods , for lightweight design in DfAM , without considering any AM constraints .", "entities": [{"name": "structure optimization", "type": "concept or principle", "pos": [115, 137]}, {"name": "lightweight", "type": "concept or principle", "pos": [152, 163]}, {"name": "design", "type": "engineering feature", "pos": [164, 170]}, {"name": "AM", "type": "manufacturing process", "pos": [176, 178]}]}, {"sentence": "The main reason for this was the assumption that AM can overcome manufacturing problems of TO generated structure as these structures would encounter in conventional manufacturing processes .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [49, 51]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [65, 78]}, {"name": "structure", "type": "concept or principle", "pos": [104, 113]}, {"name": "as", "type": "material", "pos": [114, 116]}, {"name": "conventional manufacturing", "type": "manufacturing process", "pos": [153, 179]}]}, {"sentence": "Although the 2D or 3D TO produced structures could be printed by polymer AM processes , the direct application of the existing non-tailored TO may have difficulty using metallic AM .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [13, 15]}, {"name": "3D", "type": "concept or principle", "pos": [19, 21]}, {"name": "be", "type": "material", "pos": [51, 53]}, {"name": "polymer", "type": "material", "pos": [65, 72]}, {"name": "AM processes", "type": "manufacturing process", "pos": [73, 85]}, {"name": "metallic AM", "type": "manufacturing process", "pos": [169, 180]}]}, {"sentence": "This is more complicated due to the multi-physical phenomena which can not be handled by relatively simple macro mechanic and geometric based calculations .", "entities": [{"name": "be", "type": "material", "pos": [75, 77]}, {"name": "simple", "type": "manufacturing process", "pos": [100, 106]}, {"name": "macro", "type": "engineering feature", "pos": [107, 112]}]}, {"sentence": "A large number of researchers began to associate specific AM constraints with their TO process , either as a TO process driver or a TO post-processor .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [58, 60]}, {"name": "process", "type": "concept or principle", "pos": [87, 94]}, {"name": "as", "type": "material", "pos": [104, 106]}, {"name": "process", "type": "concept or principle", "pos": [112, 119]}]}, {"sentence": "However , their efforts are mainly focusing at 2D problems with consideration of only one simple or limited subset of AM constraints , e.g .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [47, 49]}, {"name": "simple", "type": "manufacturing process", "pos": [90, 96]}, {"name": "AM", "type": "manufacturing process", "pos": [118, 120]}]}, {"sentence": "support volume or overhang area .", "entities": [{"name": "support", "type": "application", "pos": [0, 7]}, {"name": "overhang area", "type": "process parameter", "pos": [18, 31]}]}, {"sentence": "For example Leary , describes a variant where traditional TO is conducted and a boundary decomposition algorithm is applied to detect and decompose the internal or external boundary areas needing support structures .", "entities": [{"name": "boundary decomposition algorithm", "type": "concept or principle", "pos": [80, 112]}, {"name": "boundary", "type": "engineering feature", "pos": [173, 181]}, {"name": "areas", "type": "process parameter", "pos": [182, 187]}, {"name": "support structures", "type": "engineering feature", "pos": [196, 214]}]}, {"sentence": "Then , the detected and decomposed relatively large cavities are filled with a set of smaller generated boundaries so as to avoid the appearance of overhang as shown in 7 .", "entities": [{"name": "set", "type": "application", "pos": [79, 82]}, {"name": "boundaries", "type": "engineering feature", "pos": [104, 114]}, {"name": "as", "type": "material", "pos": [118, 120]}, {"name": "overhang", "type": "process parameter", "pos": [148, 156]}, {"name": "as", "type": "material", "pos": [157, 159]}]}, {"sentence": "In that example even though a sophisticated decomposition algorithm was designed and the use of support structure in printing was mostly avoided , the result is still far from optimal .", "entities": [{"name": "decomposition", "type": "machanical property", "pos": [44, 57]}, {"name": "algorithm", "type": "concept or principle", "pos": [58, 67]}, {"name": "designed", "type": "engineering feature", "pos": [72, 80]}, {"name": "support structure", "type": "engineering feature", "pos": [96, 113]}]}, {"sentence": "2D results sometimes are quite useless in practice since the broadened design freedom exists in 3D , not 2D .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [0, 2]}, {"name": "design freedom", "type": "concept or principle", "pos": [71, 85]}, {"name": "3D", "type": "concept or principle", "pos": [96, 98]}, {"name": "2D", "type": "concept or principle", "pos": [105, 107]}]}, {"sentence": "Taking the TO example in 7 , we can easily rotate the 2D result around the X-axis in the 3D and then we will find that there is no need of support structures .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [54, 56]}, {"name": "3D", "type": "concept or principle", "pos": [89, 91]}, {"name": "support structures", "type": "engineering feature", "pos": [139, 157]}]}, {"sentence": "This means all the optimization steps are useless if we simply change the build orientation .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [19, 31]}, {"name": "build orientation", "type": "process parameter", "pos": [74, 91]}]}, {"sentence": "The dilemma may be caused by two factors : the TO researcher has a lack of knowledge on the AM processes or the direct embedding of AM constraints with mathematical models in the 2D or 3D TO processes is quite tough .", "entities": [{"name": "be", "type": "material", "pos": [16, 18]}, {"name": "AM processes", "type": "manufacturing process", "pos": [92, 104]}, {"name": "AM", "type": "manufacturing process", "pos": [132, 134]}, {"name": "mathematical", "type": "concept or principle", "pos": [152, 164]}, {"name": "2D", "type": "concept or principle", "pos": [179, 181]}, {"name": "3D", "type": "concept or principle", "pos": [185, 187]}, {"name": "processes", "type": "concept or principle", "pos": [191, 200]}]}, {"sentence": "Readers may find more representative research on 2D TO for AM lightweight design in .", "entities": [{"name": "research", "type": "concept or principle", "pos": [37, 45]}, {"name": "2D", "type": "concept or principle", "pos": [49, 51]}, {"name": "AM", "type": "manufacturing process", "pos": [59, 61]}, {"name": "design", "type": "engineering feature", "pos": [74, 80]}]}, {"sentence": "To extend beyond 2D , researchers adopted the decomposition method as proposed in and tried to extend it to 3D TO for AM .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [17, 19]}, {"name": "decomposition", "type": "machanical property", "pos": [46, 59]}, {"name": "as", "type": "material", "pos": [67, 69]}, {"name": "3D", "type": "concept or principle", "pos": [108, 110]}, {"name": "AM", "type": "manufacturing process", "pos": [118, 120]}]}, {"sentence": "However , like the 2D cases presented above , reducing support structures is based on the compromise of adding more volume in the structure itself , which will decrease the global optimality .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [19, 21]}, {"name": "support structures", "type": "engineering feature", "pos": [55, 73]}, {"name": "volume", "type": "concept or principle", "pos": [116, 122]}, {"name": "structure", "type": "concept or principle", "pos": [130, 139]}]}, {"sentence": "In addition , it is still not a real 3D TO for AM design since the decomposition and overhang angle control with volume filling still uses 2D operations .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [37, 39]}, {"name": "AM", "type": "manufacturing process", "pos": [47, 49]}, {"name": "decomposition", "type": "machanical property", "pos": [67, 80]}, {"name": "overhang angle", "type": "process parameter", "pos": [85, 99]}, {"name": "volume", "type": "concept or principle", "pos": [113, 119]}, {"name": "2D operations", "type": "process parameter", "pos": [139, 152]}]}, {"sentence": "`For these investigations discussed above , the 2D TO process is relatively easy to realize when only considering overhang or support structure AM constraint .", "entities": [{"name": "2D", "type": "concept or principle", "pos": [48, 50]}, {"name": "process", "type": "concept or principle", "pos": [54, 61]}, {"name": "overhang", "type": "process parameter", "pos": [114, 122]}, {"name": "support structure", "type": "engineering feature", "pos": [126, 143]}, {"name": "AM", "type": "manufacturing process", "pos": [144, 146]}]}, {"sentence": "However , complexity in AM is generally manifested in 3D .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [10, 20]}, {"name": "AM", "type": "manufacturing process", "pos": [24, 26]}, {"name": "3D", "type": "concept or principle", "pos": [54, 56]}]}, {"sentence": "Hence , a lot of recent research is directed towards the development of tailored 3D TO methods for AM design .", "entities": [{"name": "research", "type": "concept or principle", "pos": [24, 32]}, {"name": "3D", "type": "concept or principle", "pos": [81, 83]}, {"name": "AM", "type": "manufacturing process", "pos": [99, 101]}]}, {"sentence": "As is the case with the 2D variants , these 3D TO practices mainly focus on how to minimize overhang area or support volumes , as these constraints are relatively easy to integrate in the TO process .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "2D", "type": "concept or principle", "pos": [24, 26]}, {"name": "3D", "type": "concept or principle", "pos": [44, 46]}, {"name": "overhang area", "type": "process parameter", "pos": [92, 105]}, {"name": "support", "type": "application", "pos": [109, 116]}, {"name": "as", "type": "material", "pos": [127, 129]}, {"name": "process", "type": "concept or principle", "pos": [191, 198]}]}, {"sentence": "In , intensive discussions and experimental computations were conducted for the support volume constrained 3D TO for AM design .", "entities": [{"name": "experimental", "type": "concept or principle", "pos": [31, 43]}, {"name": "support", "type": "application", "pos": [80, 87]}, {"name": "3D", "type": "concept or principle", "pos": [107, 109]}, {"name": "AM", "type": "manufacturing process", "pos": [117, 119]}]}, {"sentence": "Level set based Pareto is adopted to control and alter the shape boundary where support structure may be required .", "entities": [{"name": "set", "type": "application", "pos": [6, 9]}, {"name": "Pareto", "type": "concept or principle", "pos": [16, 22]}, {"name": "boundary", "type": "engineering feature", "pos": [65, 73]}, {"name": "support structure", "type": "engineering feature", "pos": [80, 97]}, {"name": "be", "type": "material", "pos": [102, 104]}]}, {"sentence": "It is hard to find a unique optimal solution , as each solution is a compromise between the constraints added .", "entities": [{"name": "solution", "type": "concept or principle", "pos": [36, 44]}, {"name": "as", "type": "material", "pos": [47, 49]}, {"name": "solution", "type": "concept or principle", "pos": [55, 63]}]}, {"sentence": "A set of Pareto solutions are provided , as seen in 9 .", "entities": [{"name": "set", "type": "application", "pos": [2, 5]}, {"name": "Pareto", "type": "concept or principle", "pos": [9, 15]}, {"name": "as", "type": "material", "pos": [41, 43]}]}, {"sentence": "As stated in , the elimination of support volume may be possible but will hardly work for real 3D TO problems in AM design .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "support", "type": "application", "pos": [34, 41]}, {"name": "be", "type": "material", "pos": [53, 55]}, {"name": "3D", "type": "concept or principle", "pos": [95, 97]}, {"name": "AM", "type": "manufacturing process", "pos": [113, 115]}]}, {"sentence": "Even though it is hard to totally avoid the use of support structures , researchers in still tried to obtain optimal 3D TO structures without supports for several relative simple demonstration cases .", "entities": [{"name": "support structures", "type": "engineering feature", "pos": [51, 69]}, {"name": "3D", "type": "concept or principle", "pos": [117, 119]}, {"name": "supports", "type": "application", "pos": [142, 150]}, {"name": "simple", "type": "manufacturing process", "pos": [172, 178]}]}, {"sentence": "To avoid the use of supports this study includes a simplified AM fabrication model , implemented as a layerwise filtering procedure into a topology optimization formulation .", "entities": [{"name": "supports", "type": "application", "pos": [20, 28]}, {"name": "AM", "type": "manufacturing process", "pos": [62, 64]}, {"name": "model", "type": "concept or principle", "pos": [77, 82]}, {"name": "as", "type": "material", "pos": [97, 99]}, {"name": "topology optimization", "type": "engineering feature", "pos": [139, 160]}]}, {"sentence": "In this way , unprintable geometries are excluded from the design space , resulting in fully self-supporting optimized designs .", "entities": [{"name": "geometries", "type": "concept or principle", "pos": [26, 36]}, {"name": "design space", "type": "concept or principle", "pos": [59, 71]}, {"name": "self-supporting", "type": "engineering feature", "pos": [93, 108]}, {"name": "designs", "type": "engineering feature", "pos": [119, 126]}]}, {"sentence": "Similar ideas can be found in where support constraint is applied .", "entities": [{"name": "be", "type": "material", "pos": [18, 20]}, {"name": "support", "type": "application", "pos": [36, 43]}]}, {"sentence": "However , this as a compromise between the structural performance and global volume .", "entities": [{"name": "as", "type": "material", "pos": [15, 17]}, {"name": "structural performance", "type": "process characterization", "pos": [43, 65]}, {"name": "volume", "type": "concept or principle", "pos": [77, 83]}]}, {"sentence": "The author of also understands that it would be hard to avoid the use of support structure , and proposed to optimize the 3D structure with necessary support structure in parallel so as to obtain a better compromise .", "entities": [{"name": "be", "type": "material", "pos": [45, 47]}, {"name": "support structure", "type": "engineering feature", "pos": [73, 90]}, {"name": "3D structure", "type": "concept or principle", "pos": [122, 134]}, {"name": "support structure", "type": "engineering feature", "pos": [150, 167]}, {"name": "as", "type": "material", "pos": [183, 185]}]}, {"sentence": "In this study , two separate density fields were proposed to describe the component and support structure layouts respectively .", "entities": [{"name": "density fields", "type": "machanical property", "pos": [29, 43]}, {"name": "component", "type": "machine or equipment", "pos": [74, 83]}, {"name": "support structure", "type": "engineering feature", "pos": [88, 105]}]}, {"sentence": "A simple critical overhang angle was imposed into the TO process as a constraint .", "entities": [{"name": "simple", "type": "manufacturing process", "pos": [2, 8]}, {"name": "overhang angle", "type": "process parameter", "pos": [18, 32]}, {"name": "process", "type": "concept or principle", "pos": [57, 64]}, {"name": "as", "type": "material", "pos": [65, 67]}]}, {"sentence": "The examples presented in 10 and 11 show that more volume used for supports , which can be seen as waste material , results in more material saved for the main structure .", "entities": [{"name": "volume", "type": "concept or principle", "pos": [51, 57]}, {"name": "supports", "type": "application", "pos": [67, 75]}, {"name": "be", "type": "material", "pos": [88, 90]}, {"name": "as", "type": "material", "pos": [96, 98]}, {"name": "material", "type": "material", "pos": [105, 113]}, {"name": "material", "type": "material", "pos": [132, 140]}, {"name": "structure", "type": "concept or principle", "pos": [160, 169]}]}, {"sentence": "Actually , optimizing the functionality of supports for 3D structures to be printed by metallic AM processes would be a more important goal than optimizing material savings , since the support structures in metallic AM processes have a profound impact on the final printing quality .", "entities": [{"name": "supports", "type": "application", "pos": [43, 51]}, {"name": "3D structures", "type": "concept or principle", "pos": [56, 69]}, {"name": "be", "type": "material", "pos": [73, 75]}, {"name": "metallic AM", "type": "manufacturing process", "pos": [87, 98]}, {"name": "be", "type": "material", "pos": [115, 117]}, {"name": "material", "type": "material", "pos": [156, 164]}, {"name": "support structures", "type": "engineering feature", "pos": [185, 203]}, {"name": "metallic AM", "type": "manufacturing process", "pos": [207, 218]}, {"name": "impact", "type": "concept or principle", "pos": [245, 251]}, {"name": "quality", "type": "concept or principle", "pos": [274, 281]}]}, {"sentence": "For example , the build orientation has a direct impact on the TO process since it determines the TO solution space .", "entities": [{"name": "build orientation", "type": "process parameter", "pos": [18, 35]}, {"name": "impact", "type": "concept or principle", "pos": [49, 55]}, {"name": "process", "type": "concept or principle", "pos": [66, 73]}, {"name": "solution", "type": "concept or principle", "pos": [101, 109]}]}, {"sentence": "In , the combined optimization of part topology , support structure and build orientation is investigated .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [18, 30]}, {"name": "topology", "type": "concept or principle", "pos": [39, 47]}, {"name": "support structure", "type": "engineering feature", "pos": [50, 67]}, {"name": "build orientation", "type": "process parameter", "pos": [72, 89]}]}, {"sentence": "The research into these complex interrelationships are limited to 2D simple cases , where the impact of build orientation to TO and support optimization is clear .", "entities": [{"name": "research", "type": "concept or principle", "pos": [4, 12]}, {"name": "2D", "type": "concept or principle", "pos": [66, 68]}, {"name": "impact", "type": "concept or principle", "pos": [94, 100]}, {"name": "build orientation", "type": "process parameter", "pos": [104, 121]}, {"name": "support", "type": "application", "pos": [132, 139]}, {"name": "optimization", "type": "concept or principle", "pos": [140, 152]}]}, {"sentence": "This implies that more work should be done in this direction for real 3D industrial cases .", "entities": [{"name": "be", "type": "material", "pos": [35, 37]}, {"name": "3D", "type": "concept or principle", "pos": [70, 72]}]}, {"sentence": "If we take the slicing and toolpath planning as additional considerations into the 3D TO process , the complexity would be increased even further .", "entities": [{"name": "slicing", "type": "concept or principle", "pos": [15, 22]}, {"name": "toolpath planning", "type": "process parameter", "pos": [27, 44]}, {"name": "as", "type": "material", "pos": [45, 47]}, {"name": "3D", "type": "concept or principle", "pos": [83, 85]}, {"name": "process", "type": "concept or principle", "pos": [89, 96]}, {"name": "complexity", "type": "concept or principle", "pos": [103, 113]}, {"name": "be", "type": "material", "pos": [120, 122]}]}, {"sentence": "Finally , there are researchers working on level set TO methods to include AM material deposition path/toolpath as constraints to control sharp angles , deposition gaps , minimum inner hole size and minimum strut size in the topology formation process .", "entities": [{"name": "set", "type": "application", "pos": [49, 52]}, {"name": "AM material", "type": "material", "pos": [75, 86]}, {"name": "as", "type": "material", "pos": [112, 114]}, {"name": "sharp angles", "type": "engineering feature", "pos": [138, 150]}, {"name": "deposition gaps", "type": "process characterization", "pos": [153, 168]}, {"name": "hole size", "type": "engineering feature", "pos": [185, 194]}, {"name": "strut size", "type": "process parameter", "pos": [207, 217]}, {"name": "topology", "type": "concept or principle", "pos": [225, 233]}, {"name": "process", "type": "concept or principle", "pos": [244, 251]}]}, {"sentence": "If the manufacturability of an AM TO solution could not be guaranteed , any kind of optimal design may bring no application value .", "entities": [{"name": "manufacturability", "type": "concept or principle", "pos": [7, 24]}, {"name": "AM", "type": "manufacturing process", "pos": [31, 33]}, {"name": "solution", "type": "concept or principle", "pos": [37, 45]}, {"name": "be", "type": "material", "pos": [56, 58]}, {"name": "design", "type": "engineering feature", "pos": [92, 98]}]}, {"sentence": "In , manufacturability of the AM components and the cooling rate are considered as constraints and a shape based TO method is proposed .", "entities": [{"name": "manufacturability", "type": "concept or principle", "pos": [5, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [30, 32]}, {"name": "cooling rate", "type": "process parameter", "pos": [52, 64]}, {"name": "as", "type": "material", "pos": [80, 82]}]}, {"sentence": "The manufacturability is checked for each layer .", "entities": [{"name": "manufacturability", "type": "concept or principle", "pos": [4, 21]}, {"name": "layer", "type": "process parameter", "pos": [42, 47]}]}, {"sentence": "More recently , a new constraint function of the domain which controls the negative impact of porosity on elastic structures in the framework of shape and topology optimization is defined as a special shape derivative and proposed to embed into a level set TO process for AM lightweight design .", "entities": [{"name": "domain", "type": "concept or principle", "pos": [49, 55]}, {"name": "impact", "type": "concept or principle", "pos": [84, 90]}, {"name": "porosity", "type": "machanical property", "pos": [94, 102]}, {"name": "elastic structures", "type": "machanical property", "pos": [106, 124]}, {"name": "framework", "type": "concept or principle", "pos": [132, 141]}, {"name": "topology optimization", "type": "engineering feature", "pos": [155, 176]}, {"name": "as", "type": "material", "pos": [188, 190]}, {"name": "set", "type": "application", "pos": [253, 256]}, {"name": "process", "type": "concept or principle", "pos": [260, 267]}, {"name": "AM", "type": "manufacturing process", "pos": [272, 274]}, {"name": "design", "type": "engineering feature", "pos": [287, 293]}]}, {"sentence": "Even these methods can obtain a manufacturable TO layout , the boundaryproblems brought by a density based TO method still pose challenges for AM processes .", "entities": [{"name": "manufacturable", "type": "concept or principle", "pos": [32, 46]}, {"name": "layout", "type": "concept or principle", "pos": [50, 56]}, {"name": "density", "type": "machanical property", "pos": [93, 100]}, {"name": "AM processes", "type": "manufacturing process", "pos": [143, 155]}]}, {"sentence": "Therefore , level set based methods or boundary decomposition with spline interpolation are usually used to do post-processing of the TO results .", "entities": [{"name": "set", "type": "application", "pos": [18, 21]}, {"name": "boundary decomposition", "type": "concept or principle", "pos": [39, 61]}, {"name": "spline interpolation", "type": "enabling technology", "pos": [67, 87]}, {"name": "post-processing", "type": "concept or principle", "pos": [111, 126]}]}, {"sentence": "From the discussion of existing research presented above , there are still a lot of difficulties for the development of tailored TO methods and tools for AM lightweight design .", "entities": [{"name": "research", "type": "concept or principle", "pos": [32, 40]}, {"name": "tools", "type": "machine or equipment", "pos": [144, 149]}, {"name": "AM", "type": "manufacturing process", "pos": [154, 156]}, {"name": "design", "type": "engineering feature", "pos": [169, 175]}]}, {"sentence": "The work discussed is all based on a single material showing isotropic properties .", "entities": [{"name": "material", "type": "material", "pos": [44, 52]}, {"name": "isotropic", "type": "machanical property", "pos": [61, 70]}]}, {"sentence": "However , with digital controlled deposition , theoretically AM can print different materials with different gradients for multi-functional structures .", "entities": [{"name": "deposition", "type": "concept or principle", "pos": [34, 44]}, {"name": "AM", "type": "manufacturing process", "pos": [61, 63]}, {"name": "print", "type": "manufacturing process", "pos": [68, 73]}, {"name": "materials", "type": "concept or principle", "pos": [84, 93]}, {"name": "multi-functional structures", "type": "concept or principle", "pos": [123, 150]}]}, {"sentence": "For example , jetting-based AM processes can print smart structures with multiple polymers .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [28, 40]}, {"name": "print", "type": "manufacturing process", "pos": [45, 50]}, {"name": "polymers", "type": "material", "pos": [82, 90]}]}, {"sentence": "Hence , TO methods and tools to help designers to allocate different material to different regions with optimal quantities for an expected multi-functional structure become critical .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [23, 28]}, {"name": "material", "type": "material", "pos": [69, 77]}, {"name": "multi-functional structure", "type": "concept or principle", "pos": [139, 165]}]}, {"sentence": "In , a multivariate SIMP method is proposed to optimize an application dependent multi-material layout .", "entities": [{"name": "multivariate SIMP method", "type": "concept or principle", "pos": [7, 31]}, {"name": "multi-material layout", "type": "concept or principle", "pos": [81, 102]}]}, {"sentence": "The inclusion of multiple materials in the topology optimization process has the potential to eliminate the narrow , weak , hinge-like sections that are often present in single-material compliant mechanisms .", "entities": [{"name": "inclusion", "type": "material", "pos": [4, 13]}, {"name": "materials", "type": "concept or principle", "pos": [26, 35]}, {"name": "topology optimization process", "type": "engineering feature", "pos": [43, 72]}, {"name": "compliant mechanisms", "type": "concept or principle", "pos": [186, 206]}]}, {"sentence": "The demonstration example is the realization of a 3-phase , multi-material 2D compliant mechanism .", "entities": [{"name": "multi-material 2D compliant mechanism", "type": "concept or principle", "pos": [60, 97]}]}, {"sentence": "One can foresee that if some work in the future can help realize multi-material topology optimization for 3D metal structures , then the complexity capability of AM can be further explored not only for lightweight design but also for a combined multi-function design .", "entities": [{"name": "multi-material", "type": "concept or principle", "pos": [65, 79]}, {"name": "optimization", "type": "concept or principle", "pos": [89, 101]}, {"name": "3D metal structures", "type": "engineering feature", "pos": [106, 125]}, {"name": "complexity", "type": "concept or principle", "pos": [137, 147]}, {"name": "AM", "type": "manufacturing process", "pos": [162, 164]}, {"name": "be", "type": "material", "pos": [169, 171]}, {"name": "lightweight", "type": "concept or principle", "pos": [202, 213]}, {"name": "design", "type": "engineering feature", "pos": [214, 220]}, {"name": "multi-function design", "type": "engineering feature", "pos": [245, 266]}]}, {"sentence": "Currently , metallic FDM process with metallurgical solidification as a post-process can theoretically realize the joining of multiple metals .", "entities": [{"name": "metallic", "type": "material", "pos": [12, 20]}, {"name": "FDM", "type": "manufacturing process", "pos": [21, 24]}, {"name": "metallurgical", "type": "application", "pos": [38, 51]}, {"name": "as", "type": "material", "pos": [67, 69]}, {"name": "post-process", "type": "concept or principle", "pos": [72, 84]}, {"name": "joining", "type": "manufacturing process", "pos": [115, 122]}, {"name": "metals", "type": "material", "pos": [135, 141]}]}, {"sentence": "There has been extensive exploration of TO for AM in diverse application examples either via standard TO tools or AM oriented tools .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [47, 49]}, {"name": "standard", "type": "concept or principle", "pos": [93, 101]}, {"name": "tools", "type": "machine or equipment", "pos": [105, 110]}, {"name": "AM", "type": "manufacturing process", "pos": [114, 116]}, {"name": "tools", "type": "machine or equipment", "pos": [126, 131]}]}, {"sentence": "Reports have presented industrial design cases to show the great potential of TO tools for AM lightweight design .", "entities": [{"name": "industrial", "type": "application", "pos": [23, 33]}, {"name": "design", "type": "engineering feature", "pos": [34, 40]}, {"name": "tools", "type": "machine or equipment", "pos": [81, 86]}, {"name": "AM", "type": "manufacturing process", "pos": [91, 93]}, {"name": "design", "type": "engineering feature", "pos": [106, 112]}]}, {"sentence": "EADS presented a component for Airbus .", "entities": [{"name": "component", "type": "machine or equipment", "pos": [17, 26]}, {"name": "Airbus", "type": "application", "pos": [31, 37]}]}, {"sentence": "However , there are no details about how to embed the AM constraints in the design process of the example .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [54, 56]}, {"name": "design process", "type": "concept or principle", "pos": [76, 90]}]}, {"sentence": "In the second example , a minimum AM feature size is embedded into the density based TO process and allows to define arbitrary objective functions for multi-physic fields , which is crucial for gradient-based , and thus all topology optimization .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [34, 36]}, {"name": "density", "type": "machanical property", "pos": [71, 78]}, {"name": "process", "type": "concept or principle", "pos": [88, 95]}, {"name": "topology optimization", "type": "engineering feature", "pos": [224, 245]}]}, {"sentence": "An example on the comparison study of designing a heat sink between traditional parametric optimization and AM oriented TO is presented in 15 .", "entities": [{"name": "heat sink", "type": "machine or equipment", "pos": [50, 59]}, {"name": "parametric optimization", "type": "concept or principle", "pos": [80, 103]}, {"name": "AM", "type": "manufacturing process", "pos": [108, 110]}]}, {"sentence": "Apart from density-based methods or level set methods , evolutionary TO methods were also investigated for AM design .", "entities": [{"name": "set", "type": "application", "pos": [42, 45]}, {"name": "AM", "type": "manufacturing process", "pos": [107, 109]}]}, {"sentence": "In , a recently developed topology optimization method called Iso-XFEM is used .", "entities": [{"name": "topology optimization", "type": "engineering feature", "pos": [26, 47]}, {"name": "Iso-XFEM", "type": "process characterization", "pos": [62, 70]}]}, {"sentence": "This method is capable of generating high resolution topology optimized solutions using isolines/isosurfaces of a structural performance criterion .", "entities": [{"name": "high resolution", "type": "process parameter", "pos": [37, 52]}, {"name": "structural performance", "type": "process characterization", "pos": [114, 136]}]}, {"sentence": "XFEM is similar to the BESO method , but removes or adds materials within elements .", "entities": [{"name": "BESO method", "type": "concept or principle", "pos": [23, 34]}, {"name": "materials", "type": "concept or principle", "pos": [57, 66]}, {"name": "elements", "type": "material", "pos": [74, 82]}]}, {"sentence": "However , there is no description how the TO process is tailored for AM .", "entities": [{"name": "process", "type": "concept or principle", "pos": [45, 52]}, {"name": "AM", "type": "manufacturing process", "pos": [69, 71]}]}, {"sentence": "It is not difficult to image that embedding AM constraints into an evolutionary TO process would be more difficult than that of density or level set based methods since the process uses discrete optimization .", "entities": [{"name": "image", "type": "concept or principle", "pos": [23, 28]}, {"name": "AM", "type": "manufacturing process", "pos": [44, 46]}, {"name": "process", "type": "concept or principle", "pos": [83, 90]}, {"name": "be", "type": "material", "pos": [97, 99]}, {"name": "density", "type": "machanical property", "pos": [128, 135]}, {"name": "set", "type": "application", "pos": [145, 148]}, {"name": "process", "type": "concept or principle", "pos": [173, 180]}, {"name": "discrete optimization", "type": "enabling technology", "pos": [186, 207]}]}, {"sentence": "In addition , evolutionary based methods still have more difficulties in selection of stopping criteria or convergence analysis .", "entities": [{"name": "convergence analysis", "type": "concept or principle", "pos": [107, 127]}]}, {"sentence": "As shown and discussed above , though some commercial tools are ready for use , very little AM constraints are considered .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "tools", "type": "machine or equipment", "pos": [54, 59]}, {"name": "AM", "type": "manufacturing process", "pos": [92, 94]}]}, {"sentence": "The current TO methods and commercialized tools still stay very close to the traditional TO tools .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [42, 47]}, {"name": "tools", "type": "machine or equipment", "pos": [92, 97]}]}, {"sentence": "In addition , including both academic and industrial examples , those studies commonly lack experimental verification and there is no explicit agreement by the scientific community on their aspect ratio , which sets barriers for comparison and TO performance benchmarking .", "entities": [{"name": "industrial", "type": "application", "pos": [42, 52]}, {"name": "experimental", "type": "concept or principle", "pos": [92, 104]}, {"name": "aspect ratio", "type": "engineering feature", "pos": [190, 202]}, {"name": "performance", "type": "concept or principle", "pos": [247, 258]}]}, {"sentence": "Therefore , there is still slot of work to be done for developing standard testing and experimental benchmarking examples .", "entities": [{"name": "be", "type": "material", "pos": [43, 45]}, {"name": "standard", "type": "concept or principle", "pos": [66, 74]}, {"name": "experimental", "type": "concept or principle", "pos": [87, 99]}]}, {"sentence": "4.2 Generative design For the TO methods discussed above , people are trying to develop a fully automatic way to define a unique optimal lightweight structure design .", "entities": [{"name": "Generative design", "type": "enabling technology", "pos": [4, 21]}, {"name": "lightweight structure", "type": "machine or equipment", "pos": [137, 158]}, {"name": "design", "type": "engineering feature", "pos": [159, 165]}]}, {"sentence": "However , it is difficult to converge to the optimal solution , especially when multiple objectives are set .", "entities": [{"name": "solution", "type": "concept or principle", "pos": [53, 61]}, {"name": "set", "type": "application", "pos": [104, 107]}]}, {"sentence": "Hence , a compromise should be made to sample the solution space when the theoretical global optimal could not be located .", "entities": [{"name": "be", "type": "material", "pos": [28, 30]}, {"name": "sample", "type": "concept or principle", "pos": [39, 45]}, {"name": "solution", "type": "concept or principle", "pos": [50, 58]}, {"name": "theoretical", "type": "concept or principle", "pos": [74, 85]}, {"name": "be", "type": "material", "pos": [111, 113]}]}, {"sentence": "This introduces another design method for AM , generative design .", "entities": [{"name": "design", "type": "engineering feature", "pos": [24, 30]}, {"name": "AM", "type": "manufacturing process", "pos": [42, 44]}, {"name": "generative design", "type": "enabling technology", "pos": [47, 64]}]}, {"sentence": "GD is a set of methods that apply a generative system , rule-based or algorithm-based , to explore the design space and generate candidate solutions for designers .", "entities": [{"name": "GD", "type": "material", "pos": [0, 2]}, {"name": "set", "type": "application", "pos": [8, 11]}, {"name": "design space", "type": "concept or principle", "pos": [103, 115]}]}, {"sentence": "It is usually practiced for architectural design .", "entities": [{"name": "design", "type": "engineering feature", "pos": [42, 48]}]}, {"sentence": "In structure design , we usually use the second method , applying evolutionary algorithms to sample and generate design solutions that are close to predefined objectives and criteria .", "entities": [{"name": "structure design", "type": "engineering feature", "pos": [3, 19]}, {"name": "algorithms", "type": "concept or principle", "pos": [79, 89]}, {"name": "sample", "type": "concept or principle", "pos": [93, 99]}, {"name": "design", "type": "engineering feature", "pos": [113, 119]}]}, {"sentence": "in , it is easy to adapt to evolutionary generative design for AM .", "entities": [{"name": "generative design", "type": "enabling technology", "pos": [41, 58]}, {"name": "AM", "type": "manufacturing process", "pos": [63, 65]}]}, {"sentence": "Based on traditional TO methods , discretized version of the density based SIMP method , commercial software providers announced new functions of generative design for AM in their structure design tools and presented a couple of industrial design cases with numerical results .", "entities": [{"name": "density", "type": "machanical property", "pos": [61, 68]}, {"name": "software", "type": "concept or principle", "pos": [100, 108]}, {"name": "generative design", "type": "enabling technology", "pos": [146, 163]}, {"name": "AM", "type": "manufacturing process", "pos": [168, 170]}, {"name": "structure design", "type": "engineering feature", "pos": [180, 196]}, {"name": "industrial", "type": "application", "pos": [229, 239]}, {"name": "design", "type": "engineering feature", "pos": [240, 246]}]}, {"sentence": "For example , 16 gives one design example with a set of filtered candidate solutions .", "entities": [{"name": "design", "type": "engineering feature", "pos": [27, 33]}, {"name": "set", "type": "application", "pos": [49, 52]}]}, {"sentence": "Similarly , as TO , GD is not new , but introducing AM constraints in traditional GD is still difficult .", "entities": [{"name": "as", "type": "material", "pos": [12, 14]}, {"name": "GD", "type": "material", "pos": [20, 22]}, {"name": "AM", "type": "manufacturing process", "pos": [52, 54]}, {"name": "GD", "type": "material", "pos": [82, 84]}]}, {"sentence": "To solve this problem , recently , researchers developed a new evolutionary generative design method for AM lightweight design to mimic termite behavior for volume construction .", "entities": [{"name": "generative design", "type": "enabling technology", "pos": [76, 93]}, {"name": "AM", "type": "manufacturing process", "pos": [105, 107]}, {"name": "design", "type": "engineering feature", "pos": [120, 126]}, {"name": "mimic", "type": "machine or equipment", "pos": [130, 135]}, {"name": "volume", "type": "concept or principle", "pos": [157, 163]}, {"name": "construction", "type": "application", "pos": [164, 176]}]}, {"sentence": "The proposed methodology uses multi-agent algorithms that simultaneously design , structurally optimize and appraise the manufacturability of parts produced by additive manufacturing .", "entities": [{"name": "methodology", "type": "concept or principle", "pos": [13, 24]}, {"name": "algorithms", "type": "concept or principle", "pos": [42, 52]}, {"name": "design", "type": "engineering feature", "pos": [73, 79]}, {"name": "manufacturability", "type": "concept or principle", "pos": [121, 138]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [160, 182]}]}, {"sentence": "Voxels are used to carry the design rules and manufacturing constraints for reasoning and combination during the geometry evolution process .", "entities": [{"name": "Voxels", "type": "concept or principle", "pos": [0, 6]}, {"name": "design rules", "type": "concept or principle", "pos": [29, 41]}, {"name": "manufacturing constraints", "type": "concept or principle", "pos": [46, 71]}, {"name": "geometry evolution", "type": "concept or principle", "pos": [113, 131]}]}, {"sentence": "However , this method considers support structures as the only AM constraint and has difficulty to include more .", "entities": [{"name": "support structures", "type": "engineering feature", "pos": [32, 50]}, {"name": "as", "type": "material", "pos": [51, 53]}, {"name": "AM", "type": "manufacturing process", "pos": [63, 65]}]}, {"sentence": "For generative design for AM , there is still a lot of work to do to include more AM constraints and develop more efficient decision making tools to help designers define optimization criteria and candidate solution ranking schemes .", "entities": [{"name": "generative design", "type": "enabling technology", "pos": [4, 21]}, {"name": "AM", "type": "manufacturing process", "pos": [26, 28]}, {"name": "AM", "type": "manufacturing process", "pos": [82, 84]}, {"name": "tools", "type": "machine or equipment", "pos": [140, 145]}, {"name": "optimization", "type": "concept or principle", "pos": [171, 183]}, {"name": "solution", "type": "concept or principle", "pos": [207, 215]}]}, {"sentence": "Some commercial tools are now available however .", "entities": [{"name": "tools", "type": "machine or equipment", "pos": [16, 21]}]}, {"sentence": "On the other hand , when doing structure design via generative design methods , the global optimum and computational cost should be given attention .", "entities": [{"name": "structure design", "type": "engineering feature", "pos": [31, 47]}, {"name": "generative design", "type": "enabling technology", "pos": [52, 69]}, {"name": "be", "type": "material", "pos": [129, 131]}]}, {"sentence": "Recently , researchers began to combine TO with generative models , e.g. , generative adversarial networks , and proposed a new concept , deep generative design , which owns the learning capability from the iteration process and existing design data .", "entities": [{"name": "generative models", "type": "enabling technology", "pos": [48, 65]}, {"name": "generative adversarial networks", "type": "enabling technology", "pos": [75, 106]}, {"name": "deep generative design", "type": "engineering feature", "pos": [138, 160]}, {"name": "process", "type": "concept or principle", "pos": [217, 224]}, {"name": "design", "type": "engineering feature", "pos": [238, 244]}, {"name": "data", "type": "concept or principle", "pos": [245, 249]}]}, {"sentence": "These concepts hold the potential to better integrate existing AM processing knowledge into the generative design procedure to populate and explore more qualified AM design solutions .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [63, 65]}, {"name": "generative design", "type": "enabling technology", "pos": [96, 113]}, {"name": "AM", "type": "manufacturing process", "pos": [163, 165]}]}, {"sentence": "Certainly , generative design is not only used for topology optimization but also can be applied to form synthesis , lattice and surface structure optimization and trabecular structures as a way to explore more design freedom using AM .", "entities": [{"name": "generative design", "type": "enabling technology", "pos": [12, 29]}, {"name": "topology optimization", "type": "engineering feature", "pos": [51, 72]}, {"name": "be", "type": "material", "pos": [86, 88]}, {"name": "lattice", "type": "concept or principle", "pos": [117, 124]}, {"name": "surface structure", "type": "engineering feature", "pos": [129, 146]}, {"name": "optimization", "type": "concept or principle", "pos": [147, 159]}, {"name": "trabecular structures", "type": "engineering feature", "pos": [164, 185]}, {"name": "as", "type": "material", "pos": [186, 188]}, {"name": "design freedom", "type": "concept or principle", "pos": [211, 225]}, {"name": "AM", "type": "manufacturing process", "pos": [232, 234]}]}, {"sentence": "4.3 Lattice structure filling Directly removing or adding material in the design space to search for the global optimal material topology solution is common to TO and generative design methods and , as stated above , there are many difficulties .", "entities": [{"name": "Lattice structure", "type": "engineering feature", "pos": [4, 21]}, {"name": "material", "type": "material", "pos": [58, 66]}, {"name": "design space", "type": "concept or principle", "pos": [74, 86]}, {"name": "material", "type": "material", "pos": [120, 128]}, {"name": "solution", "type": "concept or principle", "pos": [138, 146]}, {"name": "generative design", "type": "enabling technology", "pos": [167, 184]}, {"name": "as", "type": "material", "pos": [199, 201]}]}, {"sentence": "As a compromise , generative design can include human knowledge to interactively select the candidate solutions so as to reduce the problem complexity .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "generative design", "type": "enabling technology", "pos": [18, 35]}, {"name": "as", "type": "material", "pos": [115, 117]}, {"name": "complexity", "type": "concept or principle", "pos": [140, 150]}]}, {"sentence": "Therefore , this is an indirect lightweight design method for AM , which is also called lattice configuration , 18 .", "entities": [{"name": "lightweight", "type": "concept or principle", "pos": [32, 43]}, {"name": "design", "type": "engineering feature", "pos": [44, 50]}, {"name": "AM", "type": "manufacturing process", "pos": [62, 64]}, {"name": "lattice configuration", "type": "concept or principle", "pos": [88, 109]}]}, {"sentence": "To obtain lattice structures , generally we have two approaches : 1 .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [10, 28]}]}, {"sentence": "Homogenization and 2 .", "entities": [{"name": "Homogenization", "type": "manufacturing process", "pos": [0, 14]}]}, {"sentence": "Density based mapping .", "entities": [{"name": "Density", "type": "machanical property", "pos": [0, 7]}]}, {"sentence": "The former homogenizes the lattice structure as representative volume elements , like solid material .", "entities": [{"name": "lattice structure", "type": "engineering feature", "pos": [27, 44]}, {"name": "as", "type": "material", "pos": [45, 47]}, {"name": "volume", "type": "concept or principle", "pos": [63, 69]}, {"name": "elements", "type": "material", "pos": [70, 78]}, {"name": "material", "type": "material", "pos": [92, 100]}]}, {"sentence": "The lattice structures are similar to the micro porous for the traditional solid structure in homogenized volumes .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [4, 22]}, {"name": "porous", "type": "machanical property", "pos": [48, 54]}, {"name": "structure", "type": "concept or principle", "pos": [81, 90]}, {"name": "homogenized volumes", "type": "machanical property", "pos": [94, 113]}]}, {"sentence": "In this way , special properties should be assigned to the representative volumes and then we can apply traditional TO or other structure optimization methods to operate the special volumes .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [22, 32]}, {"name": "be", "type": "material", "pos": [40, 42]}, {"name": "structure optimization", "type": "concept or principle", "pos": [128, 150]}]}, {"sentence": "Representative researches that apply this method can be found in and 19 illustrates the general workflow .", "entities": [{"name": "be", "type": "material", "pos": [53, 55]}, {"name": "workflow", "type": "concept or principle", "pos": [96, 104]}]}, {"sentence": "The second approach maps the density values obtained from non-penalized TO results onto the explicit predefined lattice structures with optional adaptation to improve the approximation accuracy of mechanical response .", "entities": [{"name": "density", "type": "machanical property", "pos": [29, 36]}, {"name": "lattice structures", "type": "engineering feature", "pos": [112, 130]}, {"name": "accuracy", "type": "process characterization", "pos": [185, 193]}, {"name": "mechanical response", "type": "concept or principle", "pos": [197, 216]}]}, {"sentence": "Based on this approach , uniform or graded lattice structures can be obtained .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [43, 61]}, {"name": "be", "type": "material", "pos": [66, 68]}]}, {"sentence": "Example studies can be found in .", "entities": [{"name": "be", "type": "material", "pos": [20, 22]}]}, {"sentence": "20 shows an example where different predefined lattice structures are used to map the solid volume TO contours .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [47, 65]}, {"name": "volume", "type": "concept or principle", "pos": [92, 98]}, {"name": "contours", "type": "engineering feature", "pos": [102, 110]}]}, {"sentence": "Although the two appraoches are not hard to understand , the operation and optimization of lattice structures is quite complicated , especially for large size structure design .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [75, 87]}, {"name": "lattice structures", "type": "engineering feature", "pos": [91, 109]}, {"name": "structure design", "type": "engineering feature", "pos": [159, 175]}]}, {"sentence": "The first problem is the representation/digitalization of lattice structures .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [58, 76]}]}, {"sentence": "Usually , solid representation or surface representation can be used for individual lattice units .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [34, 41]}, {"name": "be", "type": "material", "pos": [61, 63]}, {"name": "lattice units", "type": "engineering feature", "pos": [84, 97]}]}, {"sentence": "But when filled into solid hulls , the number of lattice units is very big , which makes the CAD file difficult to operate , including sweeping , meshing/mapping and tessellation .", "entities": [{"name": "solid hulls", "type": "machine or equipment", "pos": [21, 32]}, {"name": "lattice units", "type": "engineering feature", "pos": [49, 62]}, {"name": "CAD file", "type": "manufacturing standard", "pos": [93, 101]}, {"name": "tessellation", "type": "engineering feature", "pos": [166, 178]}]}, {"sentence": "Secondly , when doing numerical simulation , the computation cost is much higher since many more finite element units are required .", "entities": [{"name": "numerical simulation", "type": "enabling technology", "pos": [22, 42]}, {"name": "computation", "type": "concept or principle", "pos": [49, 60]}, {"name": "finite element", "type": "concept or principle", "pos": [97, 111]}]}, {"sentence": "Thirdly , when filling lattice structures into solid hulls , one needs to use uniform lattice in trimming or non-uniform lattice with conformal interface , which depends on specific design cases .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [23, 41]}, {"name": "solid hulls", "type": "machine or equipment", "pos": [47, 58]}, {"name": "lattice", "type": "concept or principle", "pos": [86, 93]}, {"name": "trimming", "type": "manufacturing process", "pos": [97, 105]}, {"name": "lattice", "type": "concept or principle", "pos": [121, 128]}, {"name": "interface", "type": "concept or principle", "pos": [144, 153]}, {"name": "design", "type": "engineering feature", "pos": [182, 188]}]}, {"sentence": "Some researchers stated that conformal lattice structures have better structural performance than that of uniformed .", "entities": [{"name": "conformal lattice structures", "type": "engineering feature", "pos": [29, 57]}, {"name": "structural performance", "type": "process characterization", "pos": [70, 92]}]}, {"sentence": "However , the operation of conformal lattice is more complicated and more difficult to control the manufacturability since they are not , like uniform lattices usually are , derived from benchmarking results .", "entities": [{"name": "conformal lattice", "type": "engineering feature", "pos": [27, 44]}, {"name": "manufacturability", "type": "concept or principle", "pos": [99, 116]}, {"name": "lattices", "type": "concept or principle", "pos": [151, 159]}]}, {"sentence": "After that , the computation cost is a big issue , not only for the representation , but also for simulation and manufacturing .", "entities": [{"name": "computation", "type": "concept or principle", "pos": [17, 28]}, {"name": "simulation", "type": "enabling technology", "pos": [98, 108]}, {"name": "manufacturing", "type": "manufacturing process", "pos": [113, 126]}]}, {"sentence": "That is why some researchers proposed to use kernel or symbolic representations for lattice units .", "entities": [{"name": "lattice units", "type": "engineering feature", "pos": [84, 97]}]}, {"sentence": "Finally , the most important challenge is how to obtain the global optimum when using lattice structures .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [86, 104]}]}, {"sentence": "The approximation process further reduces the original design space and introduces more errors .", "entities": [{"name": "process", "type": "concept or principle", "pos": [18, 25]}, {"name": "design space", "type": "concept or principle", "pos": [55, 67]}, {"name": "errors", "type": "concept or principle", "pos": [88, 94]}]}, {"sentence": "Predefined and benchmarked limited lattice structures with fixed parameters are just a subset of the design variants .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [35, 53]}, {"name": "parameters", "type": "concept or principle", "pos": [65, 75]}, {"name": "design", "type": "engineering feature", "pos": [101, 107]}]}, {"sentence": "Actually , even for predefined lattice units , there are more parameters that can be modified and adjusted to specific design cases .", "entities": [{"name": "lattice units", "type": "engineering feature", "pos": [31, 44]}, {"name": "parameters", "type": "concept or principle", "pos": [62, 72]}, {"name": "be", "type": "material", "pos": [82, 84]}, {"name": "design", "type": "engineering feature", "pos": [119, 125]}]}, {"sentence": "Currently , many optimization studies for lattice structures are only limited to density , represented by strut diameter , and very little work focuses on parameter optimization and computation benchmarking for large lattice structure design cases .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [17, 29]}, {"name": "lattice structures", "type": "engineering feature", "pos": [42, 60]}, {"name": "density", "type": "machanical property", "pos": [81, 88]}, {"name": "strut diameter", "type": "process parameter", "pos": [106, 120]}, {"name": "parameter", "type": "concept or principle", "pos": [155, 164]}, {"name": "optimization", "type": "concept or principle", "pos": [165, 177]}, {"name": "computation", "type": "concept or principle", "pos": [182, 193]}, {"name": "lattice structure design", "type": "engineering feature", "pos": [217, 241]}]}, {"sentence": "Therefore , to be practical , current methods and tools from academic codes or commercial software tools all adopt knowledge based methods with TO methods for lattice filling .", "entities": [{"name": "be", "type": "material", "pos": [15, 17]}, {"name": "tools", "type": "machine or equipment", "pos": [50, 55]}, {"name": "software", "type": "concept or principle", "pos": [90, 98]}, {"name": "lattice filling", "type": "engineering feature", "pos": [159, 174]}]}, {"sentence": "Usually , a lattice library is built to store predefined lattice units , benchmarked with numerical simulation or manufacturability analysis , and then a limited set of control options , concerning the lattice unit size , strut diameter , layout orientation , etc. , are available for the filling operation .", "entities": [{"name": "lattice", "type": "concept or principle", "pos": [12, 19]}, {"name": "lattice units", "type": "engineering feature", "pos": [57, 70]}, {"name": "numerical simulation", "type": "enabling technology", "pos": [90, 110]}, {"name": "manufacturability", "type": "concept or principle", "pos": [114, 131]}, {"name": "set", "type": "application", "pos": [162, 165]}, {"name": "lattice unit size", "type": "engineering feature", "pos": [202, 219]}, {"name": "strut diameter", "type": "process parameter", "pos": [222, 236]}, {"name": "layout", "type": "concept or principle", "pos": [239, 245]}]}, {"sentence": "This is the main workflow of current tools .", "entities": [{"name": "workflow", "type": "concept or principle", "pos": [17, 25]}, {"name": "tools", "type": "machine or equipment", "pos": [37, 42]}]}, {"sentence": "As said before , although relatively small or medium sized lattice structures can be obtained , one not only sacrifices the stiffness but also it may be more difficult to search for the original global optimal lightweight design solution .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "lattice structures", "type": "engineering feature", "pos": [59, 77]}, {"name": "be", "type": "material", "pos": [82, 84]}, {"name": "stiffness", "type": "machanical property", "pos": [124, 133]}, {"name": "be", "type": "material", "pos": [150, 152]}, {"name": "lightweight", "type": "concept or principle", "pos": [210, 221]}, {"name": "design", "type": "engineering feature", "pos": [222, 228]}]}, {"sentence": "If one only considers the lightweight effect in the design , lattice filling may not be the optimal choice .", "entities": [{"name": "lightweight", "type": "concept or principle", "pos": [26, 37]}, {"name": "design", "type": "engineering feature", "pos": [52, 58]}, {"name": "lattice filling", "type": "engineering feature", "pos": [61, 76]}, {"name": "be", "type": "material", "pos": [85, 87]}]}, {"sentence": "However , lattice structures can bring other benefits , e.g .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [10, 28]}]}, {"sentence": "energy absorption and heat conduction that solid structures may not have .", "entities": [{"name": "energy absorption", "type": "process characterization", "pos": [0, 17]}, {"name": "heat conduction", "type": "concept or principle", "pos": [22, 37]}]}, {"sentence": "This would be an important factor to encourage research and practice in the lattice domain .", "entities": [{"name": "be", "type": "material", "pos": [11, 13]}, {"name": "research", "type": "concept or principle", "pos": [47, 55]}, {"name": "lattice domain", "type": "concept or principle", "pos": [76, 90]}]}, {"sentence": "5 Tools and methods for optimizing surface structure As discussed above , the global optimal for structure design is usually hard to obtain .", "entities": [{"name": "Tools", "type": "machine or equipment", "pos": [2, 7]}, {"name": "surface structure", "type": "engineering feature", "pos": [35, 52]}, {"name": "As", "type": "material", "pos": [53, 55]}, {"name": "structure design", "type": "engineering feature", "pos": [97, 113]}]}, {"sentence": "Similar to lattice structures , which are made artificially , natural porous structures become a set of special elements to deal with specific design requirements .", "entities": [{"name": "lattice structures", "type": "engineering feature", "pos": [11, 29]}, {"name": "porous", "type": "machanical property", "pos": [70, 76]}, {"name": "set", "type": "application", "pos": [97, 100]}, {"name": "elements", "type": "material", "pos": [112, 120]}, {"name": "design", "type": "engineering feature", "pos": [143, 149]}]}, {"sentence": "Examples include among others lightweight infill , porous scaffolds , energy absorbers , micro-reactors , heat conductors , or self-adaptating structures .", "entities": [{"name": "lightweight", "type": "concept or principle", "pos": [30, 41]}, {"name": "infill", "type": "process parameter", "pos": [42, 48]}, {"name": "porous scaffolds", "type": "engineering feature", "pos": [51, 67]}, {"name": "micro-reactors", "type": "machine or equipment", "pos": [89, 103]}, {"name": "heat conductors", "type": "machine or equipment", "pos": [106, 121]}]}, {"sentence": "These structures/functionalities have been known for some time , but due to the ability of AM to produce these complex structures , they now become part of the solution principles that can be applied by the product designer .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [91, 93]}, {"name": "complex structures", "type": "concept or principle", "pos": [111, 129]}, {"name": "solution", "type": "concept or principle", "pos": [160, 168]}, {"name": "be", "type": "material", "pos": [189, 191]}]}, {"sentence": "Hence , the mimicking and post-processing of natural inspired or randomly generated complex topologies become a new design practice , which is called bio-inspired or biomimetic design .", "entities": [{"name": "post-processing", "type": "concept or principle", "pos": [26, 41]}, {"name": "topologies", "type": "concept or principle", "pos": [92, 102]}, {"name": "design", "type": "engineering feature", "pos": [116, 122]}, {"name": "bio-inspired", "type": "concept or principle", "pos": [150, 162]}, {"name": "biomimetic design", "type": "engineering feature", "pos": [166, 183]}]}, {"sentence": "Its goal is to generate either lightweight structures with unexpected mechanical properties , similar to the lightweight design methods mentioned in the last section , or multi-functional surface structures as addressed here .", "entities": [{"name": "lightweight structures", "type": "machine or equipment", "pos": [31, 53]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [70, 91]}, {"name": "lightweight", "type": "concept or principle", "pos": [109, 120]}, {"name": "design", "type": "engineering feature", "pos": [121, 127]}, {"name": "surface structures", "type": "engineering feature", "pos": [188, 206]}, {"name": "as", "type": "material", "pos": [207, 209]}]}, {"sentence": "This type of design is more difficult than that of relatively regular or conformal periodic lattice structures .", "entities": [{"name": "design", "type": "engineering feature", "pos": [13, 19]}, {"name": "lattice structures", "type": "engineering feature", "pos": [92, 110]}]}, {"sentence": "Hence , the design and simulation focuses more on the form and shape of the surfaces while the mechanical properties and AM constraints are hard to consider due to their extreme complexity .", "entities": [{"name": "design", "type": "engineering feature", "pos": [12, 18]}, {"name": "simulation", "type": "enabling technology", "pos": [23, 33]}, {"name": "surfaces", "type": "concept or principle", "pos": [76, 84]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [95, 116]}, {"name": "AM", "type": "manufacturing process", "pos": [121, 123]}, {"name": "complexity", "type": "concept or principle", "pos": [178, 188]}]}, {"sentence": "Generally , two design approaches , direct/indirect reproduction of natural topologies via reverse engineering and generic bio-inspiration using design rules or guidelines , are conducted in this domain .", "entities": [{"name": "design", "type": "engineering feature", "pos": [16, 22]}, {"name": "topologies", "type": "concept or principle", "pos": [76, 86]}, {"name": "reverse engineering", "type": "concept or principle", "pos": [91, 110]}, {"name": "bio-inspiration", "type": "concept or principle", "pos": [123, 138]}, {"name": "design rules", "type": "concept or principle", "pos": [145, 157]}, {"name": "domain", "type": "concept or principle", "pos": [196, 202]}]}, {"sentence": "Driven by the wide application in the medical domain , scaffolds and implants usually require similar internal surface topologies to the natural structures they are mimicing .", "entities": [{"name": "medical", "type": "application", "pos": [38, 45]}, {"name": "domain", "type": "concept or principle", "pos": [46, 52]}, {"name": "scaffolds", "type": "engineering feature", "pos": [55, 64]}, {"name": "implants", "type": "application", "pos": [69, 77]}, {"name": "surface topologies", "type": "engineering feature", "pos": [111, 129]}]}, {"sentence": "cell spreading , strength distribution .", "entities": [{"name": "cell", "type": "application", "pos": [0, 4]}, {"name": "strength", "type": "machanical property", "pos": [17, 25]}, {"name": "distribution", "type": "concept or principle", "pos": [26, 38]}]}, {"sentence": "The main methods to generate irregular porous structures with complex internal surface topologies are either filling or hollowing materials from an initial design via specific algorithms .", "entities": [{"name": "porous", "type": "machanical property", "pos": [39, 45]}, {"name": "surface topologies", "type": "engineering feature", "pos": [79, 97]}, {"name": "materials", "type": "concept or principle", "pos": [130, 139]}, {"name": "design", "type": "engineering feature", "pos": [156, 162]}, {"name": "algorithms", "type": "concept or principle", "pos": [176, 186]}]}, {"sentence": "A representative filling method is Triply Periodic Minimal Surface , which is an implicit surface with intricate structures .", "entities": [{"name": "Triply Periodic Minimal Surface", "type": "concept or principle", "pos": [35, 66]}, {"name": "implicit surface", "type": "engineering feature", "pos": [81, 97]}]}, {"sentence": "Researchers add different operation algorithms to do the filling with these surface units so as to approximate the original CAD model 's skin .", "entities": [{"name": "operation algorithms", "type": "enabling technology", "pos": [26, 46]}, {"name": "surface", "type": "concept or principle", "pos": [76, 83]}, {"name": "as", "type": "material", "pos": [93, 95]}, {"name": "CAD model", "type": "enabling technology", "pos": [124, 133]}]}, {"sentence": "For the hollowing process , sub-volumes are generated via a set of specific algorithms within the original 3D CAD model and used to do Boolean operations .", "entities": [{"name": "process", "type": "concept or principle", "pos": [18, 25]}, {"name": "set", "type": "application", "pos": [60, 63]}, {"name": "algorithms", "type": "concept or principle", "pos": [76, 86]}, {"name": "3D", "type": "concept or principle", "pos": [107, 109]}, {"name": "model", "type": "concept or principle", "pos": [114, 119]}, {"name": "Boolean operations", "type": "enabling technology", "pos": [135, 153]}]}, {"sentence": "A shape function is applied in to design a pore model and then a subtractive Boolean operation is conducted between the pore and the original solid CAD models to obtain the final scaffold model .", "entities": [{"name": "design", "type": "engineering feature", "pos": [34, 40]}, {"name": "pore", "type": "machanical property", "pos": [43, 47]}, {"name": "model", "type": "concept or principle", "pos": [48, 53]}, {"name": "subtractive", "type": "manufacturing process", "pos": [65, 76]}, {"name": "Boolean operation", "type": "enabling technology", "pos": [77, 94]}, {"name": "pore", "type": "machanical property", "pos": [120, 124]}, {"name": "CAD models", "type": "enabling technology", "pos": [148, 158]}, {"name": "scaffold model", "type": "concept or principle", "pos": [179, 193]}]}, {"sentence": "The process is illustrated in 23 .", "entities": [{"name": "process", "type": "concept or principle", "pos": [4, 11]}]}, {"sentence": "Similarly , a Voronoi tessellation method is adopted in to do the material hollowing .", "entities": [{"name": "Voronoi tessellation", "type": "engineering feature", "pos": [14, 34]}, {"name": "material hollowing", "type": "concept or principle", "pos": [66, 84]}]}, {"sentence": "Apart from the internal surface structure generation , external surface structure design also attracts attention since using AM to print complex shapes for art or customized shapes has become popular .", "entities": [{"name": "surface structure", "type": "engineering feature", "pos": [24, 41]}, {"name": "surface structure", "type": "engineering feature", "pos": [64, 81]}, {"name": "design", "type": "engineering feature", "pos": [82, 88]}, {"name": "AM", "type": "manufacturing process", "pos": [125, 127]}, {"name": "print", "type": "manufacturing process", "pos": [131, 136]}, {"name": "complex shapes", "type": "machanical property", "pos": [137, 151]}, {"name": "art", "type": "application", "pos": [156, 159]}]}, {"sentence": "In artistic design , T-splines and Voronoi tessellation or predefined pattern bases are commonly used for defining complex surface topologies .", "entities": [{"name": "design", "type": "engineering feature", "pos": [12, 18]}, {"name": "T-splines", "type": "engineering feature", "pos": [21, 30]}, {"name": "Voronoi tessellation", "type": "engineering feature", "pos": [35, 55]}, {"name": "pattern", "type": "concept or principle", "pos": [70, 77]}, {"name": "surface topologies", "type": "engineering feature", "pos": [123, 141]}]}, {"sentence": "In , a generative design method is applied to populate complex surface topologies via the use of predefined patterns .", "entities": [{"name": "generative design", "type": "enabling technology", "pos": [7, 24]}, {"name": "surface topologies", "type": "engineering feature", "pos": [63, 81]}]}, {"sentence": "A recursive grammar is set for the generation of solid boundary surface models , suitable for a variety of design domains .", "entities": [{"name": "set", "type": "application", "pos": [23, 26]}, {"name": "boundary", "type": "engineering feature", "pos": [55, 63]}, {"name": "design", "type": "engineering feature", "pos": [107, 113]}]}, {"sentence": "Freeform 3D surface topologies can be formed by a set of 2-manifold polygonal sub meshes as shown in 24 .", "entities": [{"name": "Freeform 3D", "type": "concept or principle", "pos": [0, 11]}, {"name": "topologies", "type": "concept or principle", "pos": [20, 30]}, {"name": "be", "type": "material", "pos": [35, 37]}, {"name": "set", "type": "application", "pos": [50, 53]}, {"name": "as", "type": "material", "pos": [89, 91]}]}, {"sentence": "However , the optimization for artistic design is not so obvious .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [14, 26]}, {"name": "design", "type": "engineering feature", "pos": [40, 46]}]}, {"sentence": "To develop special surface structures for personalized casts/braces , a new topology optimization method is proposed in .", "entities": [{"name": "surface structures", "type": "engineering feature", "pos": [19, 37]}, {"name": "topology optimization", "type": "engineering feature", "pos": [76, 97]}]}, {"sentence": "The novel TO method is based on thin plate elements on the two-dimensional manifold surfaces instead of 3D solid elements so as to reduce the computation cost for shape optimization .", "entities": [{"name": "elements", "type": "material", "pos": [43, 51]}, {"name": "two-dimensional", "type": "concept or principle", "pos": [59, 74]}, {"name": "manifold surfaces", "type": "engineering feature", "pos": [75, 92]}, {"name": "3D solid elements", "type": "engineering feature", "pos": [104, 121]}, {"name": "as", "type": "material", "pos": [125, 127]}, {"name": "computation", "type": "concept or principle", "pos": [142, 153]}, {"name": "optimization", "type": "concept or principle", "pos": [169, 181]}]}, {"sentence": "To decrease the threshold of customization of surface structure for the public when using AM , in , an interactive CAD design tool is proposed .", "entities": [{"name": "surface structure", "type": "engineering feature", "pos": [46, 63]}, {"name": "AM", "type": "manufacturing process", "pos": [90, 92]}, {"name": "CAD", "type": "enabling technology", "pos": [115, 118]}, {"name": "tool", "type": "machine or equipment", "pos": [126, 130]}]}, {"sentence": "This tool uses predefined reference unit models with the inputs of user 's stylings to automatically generate customized hollowed surface topologies for fashion .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [5, 9]}, {"name": "surface topologies", "type": "engineering feature", "pos": [130, 148]}, {"name": "fashion", "type": "concept or principle", "pos": [153, 160]}]}, {"sentence": "Similar to other existing 3D porous structure design methods , this tool is mainly based on Voronoi tessellation and curve fitting methods .", "entities": [{"name": "3D", "type": "concept or principle", "pos": [26, 28]}, {"name": "structure design", "type": "engineering feature", "pos": [36, 52]}, {"name": "tool", "type": "machine or equipment", "pos": [68, 72]}, {"name": "Voronoi tessellation", "type": "engineering feature", "pos": [92, 112]}]}, {"sentence": "26 shows the surface topology generation process .", "entities": [{"name": "surface topology", "type": "engineering feature", "pos": [13, 29]}, {"name": "process", "type": "concept or principle", "pos": [41, 48]}]}, {"sentence": "The main advantage of this tool is that its predefined reference models can be benchmarked and tested to ensure manufacturability , which will avoid problems during AM .", "entities": [{"name": "tool", "type": "machine or equipment", "pos": [27, 31]}, {"name": "be", "type": "material", "pos": [76, 78]}, {"name": "manufacturability", "type": "concept or principle", "pos": [112, 129]}, {"name": "AM", "type": "manufacturing process", "pos": [165, 167]}]}, {"sentence": "Similar to structure topology optimization , surface structure design and optimization face more difficulties in the modelling , simulation and embracing of AM constraints .", "entities": [{"name": "structure", "type": "concept or principle", "pos": [11, 20]}, {"name": "optimization", "type": "concept or principle", "pos": [30, 42]}, {"name": "surface structure", "type": "engineering feature", "pos": [45, 62]}, {"name": "design", "type": "engineering feature", "pos": [63, 69]}, {"name": "optimization face", "type": "concept or principle", "pos": [74, 91]}, {"name": "modelling", "type": "enabling technology", "pos": [117, 126]}, {"name": "simulation", "type": "enabling technology", "pos": [129, 139]}, {"name": "AM", "type": "manufacturing process", "pos": [157, 159]}]}, {"sentence": "This requires more work on the data structure , simulation driven analysis and optimization .", "entities": [{"name": "data", "type": "concept or principle", "pos": [31, 35]}, {"name": "simulation", "type": "enabling technology", "pos": [48, 58]}, {"name": "optimization", "type": "concept or principle", "pos": [79, 91]}]}, {"sentence": "A lightweight and convenient analysis platform should be developed to efficiently acquire the calculation results for valid surface structure design and optimization .", "entities": [{"name": "lightweight", "type": "concept or principle", "pos": [2, 13]}, {"name": "platform", "type": "machine or equipment", "pos": [38, 46]}, {"name": "be", "type": "material", "pos": [54, 56]}, {"name": "surface structure", "type": "engineering feature", "pos": [124, 141]}, {"name": "design", "type": "engineering feature", "pos": [142, 148]}, {"name": "optimization", "type": "concept or principle", "pos": [153, 165]}]}, {"sentence": "Currently , there is very little research invesigating the design guidelines of surface structure in AM .", "entities": [{"name": "research", "type": "concept or principle", "pos": [33, 41]}, {"name": "design", "type": "engineering feature", "pos": [59, 65]}, {"name": "surface structure", "type": "engineering feature", "pos": [80, 97]}, {"name": "AM", "type": "manufacturing process", "pos": [101, 103]}]}, {"sentence": "Most of the design pratices are limited at non-metallic AM processes .", "entities": [{"name": "design", "type": "engineering feature", "pos": [12, 18]}, {"name": "AM processes", "type": "manufacturing process", "pos": [56, 68]}]}, {"sentence": "However , there is an ugent need in the medical application domain where special functional surface structures are critical .", "entities": [{"name": "medical application", "type": "application", "pos": [40, 59]}, {"name": "domain", "type": "concept or principle", "pos": [60, 66]}, {"name": "surface structures", "type": "engineering feature", "pos": [92, 110]}]}, {"sentence": "27 presents a dental component where a bio-insipred surface structure with a special treatment function is printed using L-PBF .", "entities": [{"name": "dental", "type": "application", "pos": [14, 20]}, {"name": "component", "type": "machine or equipment", "pos": [21, 30]}, {"name": "bio-insipred surface structure", "type": "engineering feature", "pos": [39, 69]}, {"name": "L-PBF", "type": "manufacturing process", "pos": [121, 126]}]}, {"sentence": "Reverse engineering is used to generate the surface structure .", "entities": [{"name": "Reverse engineering", "type": "concept or principle", "pos": [0, 19]}, {"name": "surface structure", "type": "engineering feature", "pos": [44, 61]}]}, {"sentence": "However , the modelling and function validation of such surface structure has not yet been studied .", "entities": [{"name": "modelling", "type": "enabling technology", "pos": [14, 23]}, {"name": "validation", "type": "concept or principle", "pos": [37, 47]}, {"name": "surface structure", "type": "engineering feature", "pos": [56, 73]}]}, {"sentence": "Hence , design methods and modelling tools should be developed to support the medical fabrication application for metal AM processes .", "entities": [{"name": "design", "type": "engineering feature", "pos": [8, 14]}, {"name": "modelling", "type": "enabling technology", "pos": [27, 36]}, {"name": "be", "type": "material", "pos": [50, 52]}, {"name": "support", "type": "application", "pos": [66, 73]}, {"name": "medical", "type": "application", "pos": [78, 85]}, {"name": "fabrication", "type": "manufacturing process", "pos": [86, 97]}, {"name": "metal AM", "type": "manufacturing process", "pos": [114, 122]}]}, {"sentence": "6 Manual optimization of internal part topology One of the enablers within AM is the ability to optimize the internal part topology .", "entities": [{"name": "optimization", "type": "concept or principle", "pos": [9, 21]}, {"name": "internal part topology", "type": "engineering feature", "pos": [25, 47]}, {"name": "AM", "type": "manufacturing process", "pos": [75, 77]}, {"name": "internal part topology", "type": "engineering feature", "pos": [109, 131]}]}, {"sentence": "In the previous sections automated topology optimization procedures for internal and surface part geometry were discussed .", "entities": [{"name": "topology optimization", "type": "engineering feature", "pos": [35, 56]}, {"name": "surface", "type": "concept or principle", "pos": [85, 92]}, {"name": "geometry", "type": "concept or principle", "pos": [98, 106]}]}, {"sentence": "In many cases these automated methods are not required or applicable and other ways of defining the internal part topology are used .", "entities": [{"name": "internal part topology", "type": "engineering feature", "pos": [100, 122]}]}, {"sentence": "With subtractive methods , structuring the product internal surfaces is hard or limited to very basic geometric features and production steps .", "entities": [{"name": "subtractive", "type": "manufacturing process", "pos": [5, 16]}, {"name": "surfaces", "type": "concept or principle", "pos": [60, 68]}, {"name": "production", "type": "manufacturing process", "pos": [125, 135]}]}, {"sentence": "Many of the commercially successful AM applications relate to internal transport of media through the AM product .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [36, 38]}, {"name": "transport", "type": "process characterization", "pos": [71, 80]}, {"name": "AM", "type": "manufacturing process", "pos": [102, 104]}]}, {"sentence": "In relation to the additive manufacturing challenges , three subsets of AM features for internal transport of media can be identified ; macro channel geometry , mini/micro channels and printed permeability .", "entities": [{"name": "additive manufacturing", "type": "manufacturing process", "pos": [19, 41]}, {"name": "AM", "type": "manufacturing process", "pos": [72, 74]}, {"name": "transport", "type": "process characterization", "pos": [97, 106]}, {"name": "be", "type": "material", "pos": [120, 122]}, {"name": "macro channel geometry", "type": "engineering feature", "pos": [136, 158]}, {"name": "mini/micro channels", "type": "concept or principle", "pos": [161, 180]}, {"name": "permeability", "type": "machanical property", "pos": [193, 205]}]}, {"sentence": "For macro channel geometry , down-facing surfaces of the channel may experience stability problems during printing .", "entities": [{"name": "macro channel geometry", "type": "engineering feature", "pos": [4, 26]}, {"name": "surfaces", "type": "concept or principle", "pos": [41, 49]}, {"name": "channel", "type": "application", "pos": [57, 64]}, {"name": "stability", "type": "machanical property", "pos": [80, 89]}]}, {"sentence": "For mini/micro channels , the feature size may be close to the limitations of the printing device which may result in walls failing to print , channels being blocked and cumbersome removal of excess print material .", "entities": [{"name": "mini/micro channels", "type": "concept or principle", "pos": [4, 23]}, {"name": "feature size", "type": "process parameter", "pos": [30, 42]}, {"name": "be", "type": "material", "pos": [47, 49]}, {"name": "print", "type": "manufacturing process", "pos": [82, 87]}, {"name": "print", "type": "manufacturing process", "pos": [135, 140]}, {"name": "material", "type": "material", "pos": [205, 213]}]}, {"sentence": "Finally , AM permeable structures are created by ensuring procesB-induced porosity .", "entities": [{"name": "AM permeable structures", "type": "engineering feature", "pos": [10, 33]}, {"name": "porosity", "type": "machanical property", "pos": [74, 82]}]}, {"sentence": "Here the main challenge is finding stable process settings that allow for both the production of permeable and solid structures .", "entities": [{"name": "process settings", "type": "process parameter", "pos": [42, 58]}, {"name": "production", "type": "manufacturing process", "pos": [83, 93]}, {"name": "permeable and solid structures", "type": "engineering feature", "pos": [97, 127]}]}, {"sentence": "6.1 Internal geometry at macro level In classical part production , channels for the transportation of viscous media are manufactured using conventional subtractive production methods like drilling , thus resulting in straight channels with round cross section and sharp corners .", "entities": [{"name": "Internal geometry", "type": "engineering feature", "pos": [4, 21]}, {"name": "macro level", "type": "engineering feature", "pos": [25, 36]}, {"name": "classical part production", "type": "manufacturing process", "pos": [40, 65]}, {"name": "manufactured", "type": "concept or principle", "pos": [121, 133]}, {"name": "conventional subtractive production methods", "type": "manufacturing process", "pos": [140, 183]}, {"name": "drilling", "type": "manufacturing process", "pos": [189, 197]}, {"name": "straight channels", "type": "engineering feature", "pos": [218, 235]}, {"name": "round cross section", "type": "engineering feature", "pos": [241, 260]}]}, {"sentence": "With the use of AM the location and shape of these channels can be optimized .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [16, 18]}, {"name": "be", "type": "material", "pos": [64, 66]}]}, {"sentence": "In L-PBF and at macro level , the top surfaces of the round holes have the tendency to sag or collapse , and the cross section of the channel has to be optimized .", "entities": [{"name": "L-PBF", "type": "manufacturing process", "pos": [3, 8]}, {"name": "macro level", "type": "engineering feature", "pos": [16, 27]}, {"name": "surfaces", "type": "concept or principle", "pos": [38, 46]}, {"name": "cross section", "type": "concept or principle", "pos": [113, 126]}, {"name": "channel", "type": "application", "pos": [134, 141]}, {"name": "be", "type": "material", "pos": [149, 151]}]}, {"sentence": "Thomas investigated the quality of produced channels and found that round holes up to a diameter of 7mm could be printed with minimal problems .", "entities": [{"name": "quality", "type": "concept or principle", "pos": [24, 31]}, {"name": "diameter", "type": "concept or principle", "pos": [88, 96]}, {"name": "be", "type": "material", "pos": [110, 112]}]}, {"sentence": "Above that , sagging of the overhanging surface is noticed , as well as possible curl , leading to recoater collisions .", "entities": [{"name": "surface", "type": "concept or principle", "pos": [40, 47]}, {"name": "as", "type": "material", "pos": [61, 63]}, {"name": "as", "type": "material", "pos": [69, 71]}]}, {"sentence": "Other channel designs have been proposed .", "entities": [{"name": "channel", "type": "application", "pos": [6, 13]}]}, {"sentence": "With the use of AM , cooling channels in injection molding inserts can be made conformal to the mold 's product surface and located in areas critical to the quality of the die 's function .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [16, 18]}, {"name": "cooling channels", "type": "machine or equipment", "pos": [21, 37]}, {"name": "injection molding", "type": "manufacturing process", "pos": [41, 58]}, {"name": "be", "type": "material", "pos": [71, 73]}, {"name": "mold", "type": "machine or equipment", "pos": [96, 100]}, {"name": "surface", "type": "concept or principle", "pos": [112, 119]}, {"name": "areas", "type": "process parameter", "pos": [135, 140]}, {"name": "quality", "type": "concept or principle", "pos": [157, 164]}, {"name": "die", "type": "machine or equipment", "pos": [172, 175]}]}, {"sentence": "Conformal cooling channels have been used to reduce cycle time and product warpage .", "entities": [{"name": "Conformal cooling channels", "type": "machine or equipment", "pos": [0, 26]}, {"name": "product warpage", "type": "process characterization", "pos": [67, 82]}]}, {"sentence": "Kitayama compared the effect of conformal cooling channels and conventional cooling channels for injection molding .", "entities": [{"name": "conformal cooling channels", "type": "machine or equipment", "pos": [32, 58]}, {"name": "conventional cooling channels", "type": "machine or equipment", "pos": [63, 92]}, {"name": "injection molding", "type": "manufacturing process", "pos": [97, 114]}]}, {"sentence": "Results showed an improvement of the cycle time of 53 % and a reduction of product warpage by 46 % compared to conventional cooling channels .", "entities": [{"name": "reduction", "type": "concept or principle", "pos": [62, 71]}, {"name": "product warpage", "type": "process characterization", "pos": [75, 90]}, {"name": "conventional cooling channels", "type": "machine or equipment", "pos": [111, 140]}]}, {"sentence": "Although conformal cooling for IM is widely researched and benefits have been proven , actual application in industry lags behind .", "entities": [{"name": "conformal cooling", "type": "concept or principle", "pos": [9, 26]}, {"name": "industry", "type": "application", "pos": [109, 117]}]}, {"sentence": "It is considered beneficial only for complex plastic geometries , that are difficult to cool quickly and uniformly and for very high production volumes .", "entities": [{"name": "plastic", "type": "material", "pos": [45, 52]}, {"name": "geometries", "type": "concept or principle", "pos": [53, 63]}, {"name": "production", "type": "manufacturing process", "pos": [133, 143]}]}, {"sentence": "H researched using conformal cooling channels in hot metal extrusion and also found significant production efficiency improvements .", "entities": [{"name": "conformal cooling channels", "type": "machine or equipment", "pos": [19, 45]}, {"name": "hot metal extrusion", "type": "manufacturing process", "pos": [49, 68]}, {"name": "production", "type": "manufacturing process", "pos": [96, 106]}]}, {"sentence": "Current research into manifold design has two main themes ; mass reduction and flow optimization .", "entities": [{"name": "research", "type": "concept or principle", "pos": [8, 16]}, {"name": "design", "type": "engineering feature", "pos": [31, 37]}, {"name": "reduction", "type": "concept or principle", "pos": [65, 74]}, {"name": "optimization", "type": "concept or principle", "pos": [84, 96]}]}, {"sentence": "Conventional methods create straight cooling channels , where connections result in pressure loss , increase the temperature and noise , which influences the reliability and lifetime of the system .", "entities": [{"name": "cooling channels", "type": "machine or equipment", "pos": [37, 53]}, {"name": "pressure", "type": "concept or principle", "pos": [84, 92]}, {"name": "temperature", "type": "process parameter", "pos": [113, 124]}, {"name": "reliability", "type": "process characterization", "pos": [158, 169]}]}, {"sentence": "Ma investigated multiple geometry adjustments which can be made when using AM .", "entities": [{"name": "geometry", "type": "concept or principle", "pos": [25, 33]}, {"name": "be", "type": "material", "pos": [56, 58]}, {"name": "AM", "type": "manufacturing process", "pos": [75, 77]}]}, {"sentence": "AM enables the design of fluent corners , smooth transitions between cooling channel diameters and the removal of unwanted drilling cavities , resulting in decrease in pressure loss by up to a factor of 3 .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [0, 2]}, {"name": "design", "type": "engineering feature", "pos": [15, 21]}, {"name": "fluent corners", "type": "engineering feature", "pos": [25, 39]}, {"name": "cooling channel", "type": "machine or equipment", "pos": [69, 84]}, {"name": "drilling", "type": "manufacturing process", "pos": [123, 131]}, {"name": "pressure", "type": "concept or principle", "pos": [168, 176]}]}, {"sentence": "6.2 Mini and Micro internal geometry in AM For mini and micro levels of geometry , used for transport of fluidic media , the minimal feature size of the AM technology chosen is often the limiting factor .", "entities": [{"name": "internal geometry", "type": "engineering feature", "pos": [19, 36]}, {"name": "AM", "type": "manufacturing process", "pos": [40, 42]}, {"name": "micro levels", "type": "concept or principle", "pos": [56, 68]}, {"name": "geometry", "type": "concept or principle", "pos": [72, 80]}, {"name": "transport", "type": "process characterization", "pos": [92, 101]}, {"name": "feature size", "type": "process parameter", "pos": [133, 145]}, {"name": "AM technology", "type": "manufacturing process", "pos": [153, 166]}]}, {"sentence": "Thomas investigated some of these limits , for example as shown in 31 .", "entities": [{"name": "limits", "type": "concept or principle", "pos": [34, 40]}, {"name": "as", "type": "material", "pos": [55, 57]}]}, {"sentence": "Printing of free standing walls and pilars is also a limiting factor as both the achievable minimal cross sectional area and maximal aspect ratio are limited .", "entities": [{"name": "as", "type": "material", "pos": [69, 71]}, {"name": "area", "type": "process parameter", "pos": [116, 120]}, {"name": "aspect ratio", "type": "engineering feature", "pos": [133, 145]}]}, {"sentence": "In sectors like heating , ventilation , and air conditioning , automotive , aero and electro-cooling , heat exchangers play a vital role in the energy efficiency .", "entities": [{"name": "heating", "type": "manufacturing process", "pos": [16, 23]}, {"name": "automotive", "type": "application", "pos": [63, 73]}, {"name": "electro-cooling", "type": "process characterization", "pos": [85, 100]}, {"name": "heat exchangers", "type": "machine or equipment", "pos": [103, 118]}]}, {"sentence": "The heat transfer performance is dependent on the surface area to volume ratio .", "entities": [{"name": "heat transfer", "type": "concept or principle", "pos": [4, 17]}, {"name": "surface area", "type": "process parameter", "pos": [50, 62]}, {"name": "volume", "type": "concept or principle", "pos": [66, 72]}]}, {"sentence": "Using mini and micro channels , this ratio can be increased , thus increasing the performance/mass ratio of the heat exchanger .", "entities": [{"name": "be", "type": "material", "pos": [47, 49]}, {"name": "heat exchanger", "type": "machine or equipment", "pos": [112, 126]}]}, {"sentence": "Arie investigated the performance of Ti64 air-water manifold-microchannel heat exchangers .", "entities": [{"name": "performance", "type": "concept or principle", "pos": [22, 33]}, {"name": "Ti64", "type": "material", "pos": [37, 41]}, {"name": "heat exchangers", "type": "machine or equipment", "pos": [74, 89]}]}, {"sentence": "Key to the intended efficiency increase was the production of thin fins with high aspect ratio 's .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [48, 58]}, {"name": "high aspect ratio", "type": "engineering feature", "pos": [77, 94]}]}, {"sentence": "Non AM-based production alternatives were considered slow , costly , not able to meet the aspect ratios or not possible to produce in the desired material .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [13, 23]}, {"name": "aspect ratios", "type": "engineering feature", "pos": [90, 103]}, {"name": "material", "type": "material", "pos": [146, 154]}]}, {"sentence": "Compared to classical designs the manifold micro-channel show respectively 30performance increase in gravimetric heat transfer density .", "entities": [{"name": "designs", "type": "engineering feature", "pos": [22, 29]}, {"name": "heat transfer density", "type": "process parameter", "pos": [113, 134]}]}, {"sentence": "It was argued that inaccuracy of the production process reduced the manifold performance as some of the channels were blocked and the ideal fin thickness of 150 could not be realized .", "entities": [{"name": "production", "type": "manufacturing process", "pos": [37, 47]}, {"name": "process", "type": "concept or principle", "pos": [48, 55]}, {"name": "performance", "type": "concept or principle", "pos": [77, 88]}, {"name": "as", "type": "material", "pos": [89, 91]}, {"name": "be", "type": "material", "pos": [171, 173]}]}, {"sentence": "Mei put the use of AM to a case study where they produced a highly integrated catalytic burner for auxiliary power units based on PEM-fuel cells .", "entities": [{"name": "AM", "type": "manufacturing process", "pos": [19, 21]}, {"name": "case study", "type": "concept or principle", "pos": [27, 37]}, {"name": "catalytic burner", "type": "machine or equipment", "pos": [78, 94]}, {"name": "auxiliary power units", "type": "machine or equipment", "pos": [99, 120]}, {"name": "PEM-fuel cells", "type": "machine or equipment", "pos": [130, 144]}]}, {"sentence": "This resulted in a volume reduction of 70 % from 41L to 11L and a weight reduction of 60 % from 30 kg to 12 kg .", "entities": [{"name": "volume reduction", "type": "concept or principle", "pos": [19, 35]}, {"name": "weight", "type": "process parameter", "pos": [66, 72]}, {"name": "reduction", "type": "concept or principle", "pos": [73, 82]}]}, {"sentence": "6.3 Printed permeability Calignano investigated the relation between material and process properties to fabricate both stochastic and non-stochastic porous structures .", "entities": [{"name": "permeability", "type": "machanical property", "pos": [12, 24]}, {"name": "material", "type": "material", "pos": [69, 77]}, {"name": "process", "type": "concept or principle", "pos": [82, 89]}, {"name": "fabricate", "type": "manufacturing process", "pos": [104, 113]}, {"name": "stochastic", "type": "concept or principle", "pos": [119, 129]}, {"name": "non-stochastic porous structures", "type": "engineering feature", "pos": [134, 166]}]}, {"sentence": "Parts were created using three different scanning strategies scanning lines , and rotating scanning patterns for each new layer ) and by modifying the hatch distance hd .", "entities": [{"name": "scanning strategies", "type": "concept or principle", "pos": [41, 60]}, {"name": "scanning", "type": "concept or principle", "pos": [61, 69]}, {"name": "scanning patterns", "type": "process parameter", "pos": [91, 108]}, {"name": "layer", "type": "process parameter", "pos": [122, 127]}, {"name": "hatch distance", "type": "process parameter", "pos": [151, 165]}]}, {"sentence": "It was found that hatch distances in excess of 0.20 mm were needed to be able to create distinct walls .", "entities": [{"name": "hatch distances", "type": "process parameter", "pos": [18, 33]}, {"name": "mm", "type": "manufacturing process", "pos": [52, 54]}, {"name": "be", "type": "material", "pos": [70, 72]}]}, {"sentence": "Below that , wall formation was hampered by agglomeration of powder particles .", "entities": [{"name": "powder particles", "type": "material", "pos": [61, 77]}]}, {"sentence": "The rotating scanning strategy using hd of 0.5 mm resulted in stochastic , foam-like structures , both with open and closed pores and porosity values of 43Collins investigated the use and production of a permeable membrane heatsink produced by AM .", "entities": [{"name": "scanning strategy", "type": "concept or principle", "pos": [13, 30]}, {"name": "mm", "type": "manufacturing process", "pos": [47, 49]}, {"name": "stochastic", "type": "concept or principle", "pos": [62, 72]}, {"name": "foam-like structures", "type": "concept or principle", "pos": [75, 95]}, {"name": "pores", "type": "machanical property", "pos": [124, 129]}, {"name": "porosity", "type": "machanical property", "pos": [134, 142]}, {"name": "production", "type": "manufacturing process", "pos": [188, 198]}, {"name": "permeable membrane", "type": "biomedical", "pos": [204, 222]}, {"name": "AM", "type": "manufacturing process", "pos": [244, 246]}]}, {"sentence": "In order to find the process settings that will result in permeable walls , test cubes were printed with fins on top with a height of 1 mm and wall thicknesses varying from 150 to 500 The core of the cubes was used to determine bulk porosity .", "entities": [{"name": "process settings", "type": "process parameter", "pos": [21, 37]}, {"name": "mm", "type": "manufacturing process", "pos": [136, 138]}, {"name": "wall thicknesses", "type": "engineering feature", "pos": [143, 159]}, {"name": "core", "type": "machine or equipment", "pos": [188, 192]}, {"name": "bulk porosity", "type": "machanical property", "pos": [228, 241]}]}, {"sentence": "All fins below 300 failed to print while 300 fins were successfully printed only for process settings resulting in low bulk porosity .", "entities": [{"name": "print", "type": "manufacturing process", "pos": [29, 34]}, {"name": "process settings", "type": "process parameter", "pos": [85, 101]}, {"name": "bulk porosity", "type": "machanical property", "pos": [119, 132]}]}, {"sentence": "The 400 and 500 fins printed successfully for all process settings used .", "entities": [{"name": "process settings", "type": "process parameter", "pos": [50, 66]}]}, {"sentence": "7 Functional material complexity The design process can also consider that to solve some technological problems or to optimise some local properties , some processes allow building up multi-material objects or objects with material gradients .", "entities": [{"name": "Functional material complexity", "type": "concept or principle", "pos": [2, 32]}, {"name": "design process", "type": "concept or principle", "pos": [37, 51]}, {"name": "properties", "type": "concept or principle", "pos": [138, 148]}, {"name": "processes", "type": "concept or principle", "pos": [156, 165]}, {"name": "multi-material", "type": "concept or principle", "pos": [184, 198]}, {"name": "material gradients", "type": "concept or principle", "pos": [223, 241]}]}, {"sentence": "In some cases there has been significant progress although it increases the complexity of simulation and of process planning of AM-based value chains .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [76, 86]}, {"name": "simulation", "type": "enabling technology", "pos": [90, 100]}, {"name": "process planning", "type": "concept or principle", "pos": [108, 124]}]}, {"sentence": "In addition , there are no standard functionalities in the commercial software that could support such definitions , which must be managed manually or directly defined on the legacy software associated to specific processes .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [27, 35]}, {"name": "software", "type": "concept or principle", "pos": [70, 78]}, {"name": "support", "type": "application", "pos": [90, 97]}, {"name": "be", "type": "material", "pos": [128, 130]}, {"name": "software", "type": "concept or principle", "pos": [182, 190]}, {"name": "processes", "type": "concept or principle", "pos": [214, 223]}]}, {"sentence": "One basic functionality relates to material gradient of polymers and elastomer parts manufactured with voxel-based technologies .", "entities": [{"name": "material gradient", "type": "concept or principle", "pos": [35, 52]}, {"name": "polymers", "type": "material", "pos": [56, 64]}, {"name": "elastomer", "type": "material", "pos": [69, 78]}, {"name": "manufactured", "type": "concept or principle", "pos": [85, 97]}, {"name": "technologies", "type": "concept or principle", "pos": [115, 127]}]}, {"sentence": "The design process criticaly addresses the local characteristics of the material for each voxel of the object .", "entities": [{"name": "design process", "type": "concept or principle", "pos": [4, 18]}, {"name": "material", "type": "material", "pos": [72, 80]}, {"name": "voxel", "type": "concept or principle", "pos": [90, 95]}]}, {"sentence": "Another feature that is mostly used for metallic parts is lattice structure that could help in designing internal structures used to support the parts but also to minimize weight with respect to given functionalities .", "entities": [{"name": "feature", "type": "engineering feature", "pos": [8, 15]}, {"name": "metallic parts", "type": "machine or equipment", "pos": [40, 54]}, {"name": "lattice structure", "type": "engineering feature", "pos": [58, 75]}, {"name": "internal structures", "type": "machanical property", "pos": [105, 124]}, {"name": "support", "type": "application", "pos": [133, 140]}, {"name": "weight", "type": "process parameter", "pos": [172, 178]}]}, {"sentence": "In highly developed sectors for metal fabrication , in particular aeronautic and medical applications , AM processes use many metals like stainless steel , titanium , aluminum , cobalt chrome and nickel alloys .", "entities": [{"name": "metal", "type": "material", "pos": [32, 37]}, {"name": "fabrication", "type": "manufacturing process", "pos": [38, 49]}, {"name": "medical applications", "type": "application", "pos": [81, 101]}, {"name": "AM processes", "type": "manufacturing process", "pos": [104, 116]}, {"name": "metals", "type": "material", "pos": [126, 132]}, {"name": "stainless steel", "type": "material", "pos": [138, 153]}, {"name": "titanium", "type": "material", "pos": [156, 164]}, {"name": "aluminum", "type": "material", "pos": [167, 175]}, {"name": "cobalt chrome", "type": "material", "pos": [178, 191]}, {"name": "nickel alloys", "type": "material", "pos": [196, 209]}]}, {"sentence": "An important feature of metal is its microstructure .", "entities": [{"name": "feature", "type": "engineering feature", "pos": [13, 20]}, {"name": "metal", "type": "material", "pos": [24, 29]}, {"name": "microstructure", "type": "concept or principle", "pos": [37, 51]}]}, {"sentence": "For a given metal , there can be a variety of microstructural features that affect its mechanical properties .", "entities": [{"name": "metal", "type": "material", "pos": [12, 17]}, {"name": "be", "type": "material", "pos": [30, 32]}, {"name": "microstructural", "type": "concept or principle", "pos": [46, 61]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [87, 108]}]}, {"sentence": "The size of grains , micro-segregation of alloying elements , phases within the metal and size of dendrites relates to the tensile strength and ductility .", "entities": [{"name": "grains", "type": "concept or principle", "pos": [12, 18]}, {"name": "micro-segregation", "type": "concept or principle", "pos": [21, 38]}, {"name": "alloying elements", "type": "material", "pos": [42, 59]}, {"name": "metal", "type": "material", "pos": [80, 85]}, {"name": "dendrites", "type": "biomedical", "pos": [98, 107]}, {"name": "tensile strength", "type": "machanical property", "pos": [123, 139]}, {"name": "ductility", "type": "machanical property", "pos": [144, 153]}]}, {"sentence": "During the AM process , the microstructure is formed in-situ and would depend obviously on the process parameters and material used .", "entities": [{"name": "AM process", "type": "manufacturing process", "pos": [11, 21]}, {"name": "microstructure", "type": "concept or principle", "pos": [28, 42]}, {"name": "in-situ", "type": "concept or principle", "pos": [53, 60]}, {"name": "process parameters", "type": "concept or principle", "pos": [95, 113]}, {"name": "material", "type": "material", "pos": [118, 126]}]}, {"sentence": "The microstructure of metals determines the mechanical properties of the part such as yield strength , ductility and hardness .", "entities": [{"name": "microstructure", "type": "concept or principle", "pos": [4, 18]}, {"name": "metals", "type": "material", "pos": [22, 28]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [44, 65]}, {"name": "as", "type": "material", "pos": [83, 85]}, {"name": "strength", "type": "machanical property", "pos": [92, 100]}, {"name": "ductility", "type": "machanical property", "pos": [103, 112]}, {"name": "hardness", "type": "machanical property", "pos": [117, 125]}]}, {"sentence": "Varying the process parameters like the energy sources and fill patterns can lead to differences in grain structure .", "entities": [{"name": "process parameters", "type": "concept or principle", "pos": [12, 30]}, {"name": "lead", "type": "material", "pos": [77, 81]}, {"name": "grain structure", "type": "concept or principle", "pos": [100, 115]}]}, {"sentence": "Such issues are both a very important potential advantage but also an additional complexity when considering the AM design process .", "entities": [{"name": "complexity", "type": "concept or principle", "pos": [81, 91]}, {"name": "AM", "type": "manufacturing process", "pos": [113, 115]}, {"name": "process", "type": "concept or principle", "pos": [123, 130]}]}, {"sentence": "Functionally Graded Materials are defined as a class of advanced materials characterised by spatial variation in material composition across the volume , contributing to corresponding changes in material properties in line with the functional requirements .", "entities": [{"name": "Functionally Graded Materials", "type": "material", "pos": [0, 29]}, {"name": "as", "type": "material", "pos": [42, 44]}, {"name": "class of advanced materials", "type": "material", "pos": [47, 74]}, {"name": "spatial variation", "type": "engineering feature", "pos": [92, 109]}, {"name": "material", "type": "material", "pos": [113, 121]}, {"name": "composition", "type": "concept or principle", "pos": [122, 133]}, {"name": "volume", "type": "concept or principle", "pos": [145, 151]}, {"name": "material properties", "type": "concept or principle", "pos": [195, 214]}]}, {"sentence": "The multi-functional status of a component is tailored through the material allocation at microstructure to meet an intended performance requirement .", "entities": [{"name": "component", "type": "machine or equipment", "pos": [33, 42]}, {"name": "material", "type": "material", "pos": [67, 75]}, {"name": "microstructure", "type": "concept or principle", "pos": [90, 104]}, {"name": "performance", "type": "concept or principle", "pos": [125, 136]}]}, {"sentence": "Microstructural gradation contributes to a smooth transition between properties of the material .", "entities": [{"name": "Microstructural", "type": "concept or principle", "pos": [0, 15]}, {"name": "transition", "type": "concept or principle", "pos": [50, 60]}, {"name": "properties", "type": "concept or principle", "pos": [69, 79]}, {"name": "material", "type": "material", "pos": [87, 95]}]}, {"sentence": "Another approach is based on Young 's modulus variation for the determination of the mechanical propertiesgradients , and consequently material microstructure or composition variations .", "entities": [{"name": "variation", "type": "concept or principle", "pos": [46, 55]}, {"name": "mechanical", "type": "application", "pos": [85, 95]}, {"name": "material", "type": "material", "pos": [135, 143]}, {"name": "composition", "type": "concept or principle", "pos": [162, 173]}]}, {"sentence": "Another interesting proposition comes from who proposes an interpretation of the material with intermediary density as a lattice cellular structure that could be composed by several materials .", "entities": [{"name": "material", "type": "material", "pos": [81, 89]}, {"name": "intermediary density", "type": "machine or equipment", "pos": [95, 115]}, {"name": "as", "type": "material", "pos": [116, 118]}, {"name": "lattice cellular structure", "type": "engineering feature", "pos": [121, 147]}, {"name": "be", "type": "material", "pos": [159, 161]}, {"name": "materials", "type": "concept or principle", "pos": [182, 191]}]}, {"sentence": "Homogeneous FGM composition creates porosity or density gradients by modulating the spatial microstructure or morphology of lattice structures across the volume of material through a voxel approach .", "entities": [{"name": "Homogeneous FGM composition", "type": "machanical property", "pos": [0, 27]}, {"name": "porosity", "type": "machanical property", "pos": [36, 44]}, {"name": "density gradients", "type": "machanical property", "pos": [48, 65]}, {"name": "spatial microstructure", "type": "engineering feature", "pos": [84, 106]}, {"name": "morphology", "type": "concept or principle", "pos": [110, 120]}, {"name": "lattice structures", "type": "engineering feature", "pos": [124, 142]}, {"name": "volume", "type": "concept or principle", "pos": [154, 160]}, {"name": "material", "type": "material", "pos": [164, 172]}, {"name": "voxel", "type": "concept or principle", "pos": [183, 188]}]}, {"sentence": "This method can be called densification FGMThe directionality , magnitude and density concentration of the material substance in a monolithic anisotropic composite structure contributes to functional deviations such as stiffness and elasticity .", "entities": [{"name": "be", "type": "material", "pos": [16, 18]}, {"name": "densification", "type": "manufacturing process", "pos": [26, 39]}, {"name": "magnitude", "type": "process parameter", "pos": [64, 73]}, {"name": "density concentration", "type": "enabling technology", "pos": [78, 99]}, {"name": "material", "type": "material", "pos": [107, 115]}, {"name": "monolithic", "type": "machanical property", "pos": [131, 141]}, {"name": "anisotropic composite", "type": "material", "pos": [142, 163]}, {"name": "as", "type": "material", "pos": [216, 218]}, {"name": "elasticity", "type": "machanical property", "pos": [233, 243]}]}, {"sentence": "The gradual transition from a solid exterior to a porous core leads to an excellent strength-to-weight ratio .", "entities": [{"name": "transition", "type": "concept or principle", "pos": [12, 22]}, {"name": "porous", "type": "machanical property", "pos": [50, 56]}, {"name": "core", "type": "machine or equipment", "pos": [57, 61]}]}, {"sentence": "Even if new standards are partly addressing such models , the development of mathematical representations useful for both design and simulation is still in progress .", "entities": [{"name": "standards", "type": "concept or principle", "pos": [12, 21]}, {"name": "mathematical", "type": "concept or principle", "pos": [77, 89]}, {"name": "design", "type": "engineering feature", "pos": [122, 128]}, {"name": "simulation", "type": "enabling technology", "pos": [133, 143]}]}, {"sentence": "FGM can also address the aspect of multi-materiality through an approach of dynamically composed gradients or complex morphology .", "entities": [{"name": "FGM", "type": "manufacturing process", "pos": [0, 3]}, {"name": "complex morphology", "type": "concept or principle", "pos": [110, 128]}]}, {"sentence": "The geometric and material arrangement of the phases controls the overall functions and properties of the FGM component .", "entities": [{"name": "material", "type": "material", "pos": [18, 26]}, {"name": "properties", "type": "concept or principle", "pos": [88, 98]}, {"name": "FGM", "type": "manufacturing process", "pos": [106, 109]}, {"name": "component", "type": "machine or equipment", "pos": [110, 119]}]}, {"sentence": "Multi-material FGM seeks to improve the interfacial bond between dissimilar or incompatible materials .", "entities": [{"name": "Multi-material", "type": "concept or principle", "pos": [0, 14]}, {"name": "FGM", "type": "manufacturing process", "pos": [15, 18]}, {"name": "interfacial bond", "type": "material", "pos": [40, 56]}, {"name": "materials", "type": "concept or principle", "pos": [92, 101]}]}, {"sentence": "Distinct boundaries can be removed through a heterogeneous compositional transition from a dispersed to an interconnected second phase structure , graded layers with discrete compositional parameters or smooth concentration gradients .", "entities": [{"name": "boundaries", "type": "engineering feature", "pos": [9, 19]}, {"name": "be", "type": "material", "pos": [24, 26]}, {"name": "heterogeneous", "type": "concept or principle", "pos": [45, 58]}, {"name": "transition", "type": "concept or principle", "pos": [73, 83]}, {"name": "phase", "type": "concept or principle", "pos": [129, 134]}, {"name": "parameters", "type": "concept or principle", "pos": [189, 199]}]}, {"sentence": "Once again , material models are too complicated to be used for simulation .", "entities": [{"name": "material", "type": "material", "pos": [13, 21]}, {"name": "be", "type": "material", "pos": [52, 54]}, {"name": "simulation", "type": "enabling technology", "pos": [64, 74]}]}, {"sentence": "Demonstration and validation during the design phase of expected characteristics is still to be expected in a general manner .", "entities": [{"name": "validation", "type": "concept or principle", "pos": [18, 28]}, {"name": "design", "type": "engineering feature", "pos": [40, 46]}, {"name": "be", "type": "material", "pos": [93, 95]}]}, {"sentence": "But this is an interesting issue to be expected because , by fusing one material to another three-dimensionally using a dynamic gradient , the printed component can have the optimum properties of both materials .", "entities": [{"name": "be", "type": "material", "pos": [36, 38]}, {"name": "fusing", "type": "concept or principle", "pos": [61, 67]}, {"name": "material", "type": "material", "pos": [72, 80]}, {"name": "three-dimensionally", "type": "concept or principle", "pos": [92, 111]}, {"name": "dynamic", "type": "concept or principle", "pos": [120, 127]}, {"name": "component", "type": "machine or equipment", "pos": [151, 160]}, {"name": "properties", "type": "concept or principle", "pos": [182, 192]}, {"name": "materials", "type": "concept or principle", "pos": [201, 210]}]}, {"sentence": "It can be transitional in weight , yet retaining its toughness , wear resistance , impact resistance or its physical , chemical , biochemical or mechanical properties .", "entities": [{"name": "be", "type": "material", "pos": [7, 9]}, {"name": "weight", "type": "process parameter", "pos": [26, 32]}, {"name": "toughness", "type": "machanical property", "pos": [53, 62]}, {"name": "wear resistance", "type": "machanical property", "pos": [65, 80]}, {"name": "impact", "type": "concept or principle", "pos": [83, 89]}, {"name": "mechanical properties", "type": "concept or principle", "pos": [145, 166]}]}, {"sentence": "Multi-material FGM can also provide location-specific properties tailored at small sections or strategic locations around pre-determined parts .", "entities": [{"name": "Multi-material", "type": "concept or principle", "pos": [0, 14]}, {"name": "FGM", "type": "manufacturing process", "pos": [15, 18]}, {"name": "properties", "type": "concept or principle", "pos": [54, 64]}]}, {"sentence": "Some AM technologies are providing such opportunities .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [5, 20]}]}, {"sentence": "Construction of such parts could be of interest to solve design issues in order to avoid multi-part assemblies or complex joints for example .", "entities": [{"name": "Construction", "type": "application", "pos": [0, 12]}, {"name": "be", "type": "material", "pos": [33, 35]}, {"name": "design", "type": "engineering feature", "pos": [57, 63]}]}, {"sentence": "Simulation models are still to be implemented and validated mostly because the design of heterogeneous compositional gradients are very complex .", "entities": [{"name": "Simulation", "type": "enabling technology", "pos": [0, 10]}, {"name": "be", "type": "material", "pos": [31, 33]}, {"name": "design", "type": "engineering feature", "pos": [79, 85]}, {"name": "heterogeneous", "type": "concept or principle", "pos": [89, 102]}]}, {"sentence": "They can be divided into four types : a transition between two materials , three materials or above , switched composition between different locations or a combination of density and compositional gradation .", "entities": [{"name": "be", "type": "material", "pos": [9, 11]}, {"name": "transition", "type": "concept or principle", "pos": [40, 50]}, {"name": "materials", "type": "concept or principle", "pos": [63, 72]}, {"name": "materials", "type": "concept or principle", "pos": [81, 90]}, {"name": "composition", "type": "concept or principle", "pos": [111, 122]}, {"name": "density", "type": "machanical property", "pos": [171, 178]}]}, {"sentence": "The key design parameters of FGM include the dimension of the gradient vector , the geometric shape and the repartition of the equipotential surfaces .", "entities": [{"name": "design", "type": "engineering feature", "pos": [8, 14]}, {"name": "FGM", "type": "manufacturing process", "pos": [29, 32]}, {"name": "dimension", "type": "engineering feature", "pos": [45, 54]}, {"name": "geometric shape", "type": "engineering feature", "pos": [84, 99]}, {"name": "equipotential surfaces", "type": "concept or principle", "pos": [127, 149]}]}, {"sentence": "The features and functionality of the component are further determined by the direction of the gradient within the material composition .", "entities": [{"name": "component", "type": "machine or equipment", "pos": [38, 47]}, {"name": "material", "type": "material", "pos": [115, 123]}, {"name": "composition", "type": "concept or principle", "pos": [124, 135]}]}, {"sentence": "The design and types of the volumetric gradient can be classified according to 1D , 2D and 3D , and distribution of materials uniformly or through special patterns .", "entities": [{"name": "design", "type": "engineering feature", "pos": [4, 10]}, {"name": "be", "type": "material", "pos": [52, 54]}, {"name": "2D", "type": "concept or principle", "pos": [84, 86]}, {"name": "3D", "type": "concept or principle", "pos": [91, 93]}, {"name": "distribution", "type": "concept or principle", "pos": [100, 112]}, {"name": "materials", "type": "concept or principle", "pos": [116, 125]}]}, {"sentence": "Defining the optimum material distribution function requires extensive knowledge of material data that includes the chemical composition , its characteristics and the manufacturing constraints .", "entities": [{"name": "material", "type": "material", "pos": [21, 29]}, {"name": "distribution", "type": "concept or principle", "pos": [30, 42]}, {"name": "material", "type": "material", "pos": [84, 92]}, {"name": "data", "type": "concept or principle", "pos": [93, 97]}, {"name": "chemical composition", "type": "concept or principle", "pos": [116, 136]}, {"name": "manufacturing constraints", "type": "concept or principle", "pos": [167, 192]}]}, {"sentence": "At present , there are no design guidelines on material compatibility , mixing range for materials with variable and non-uniform properties and a framework for optimal property distribution such as choice of spatial , gradient distribution and the arrangement of transition phases is also lacking .", "entities": [{"name": "design", "type": "engineering feature", "pos": [26, 32]}, {"name": "material", "type": "material", "pos": [47, 55]}, {"name": "mixing", "type": "concept or principle", "pos": [72, 78]}, {"name": "materials", "type": "concept or principle", "pos": [89, 98]}, {"name": "properties", "type": "concept or principle", "pos": [129, 139]}, {"name": "framework", "type": "concept or principle", "pos": [146, 155]}, {"name": "property", "type": "concept or principle", "pos": [168, 176]}, {"name": "distribution", "type": "concept or principle", "pos": [177, 189]}, {"name": "as", "type": "material", "pos": [195, 197]}, {"name": "distribution", "type": "concept or principle", "pos": [227, 239]}, {"name": "transition phases", "type": "concept or principle", "pos": [263, 280]}]}, {"sentence": "When generating graded components of high to low strength , the changing material properties brought about by modifications to the microstructure have to be carefully measured and quantified .", "entities": [{"name": "components", "type": "machine or equipment", "pos": [23, 33]}, {"name": "strength", "type": "machanical property", "pos": [49, 57]}, {"name": "material properties", "type": "concept or principle", "pos": [73, 92]}, {"name": "microstructure", "type": "concept or principle", "pos": [131, 145]}, {"name": "be", "type": "material", "pos": [154, 156]}]}, {"sentence": "TamaB-Williams suggested two useful approaches to model the response of functionally graded components using the exponential law idealisation and material elements Finite Element Method analysis can also be used to show and suggest an optimised set of elements under pre-determined circumstances to provide a better understanding of how the material properties will behave .", "entities": [{"name": "model", "type": "concept or principle", "pos": [50, 55]}, {"name": "functionally graded components", "type": "engineering feature", "pos": [72, 102]}, {"name": "material elements", "type": "material", "pos": [146, 163]}, {"name": "Finite Element Method analysis", "type": "concept or principle", "pos": [164, 194]}, {"name": "be", "type": "material", "pos": [204, 206]}, {"name": "set", "type": "application", "pos": [245, 248]}, {"name": "elements", "type": "material", "pos": [252, 260]}, {"name": "material properties", "type": "concept or principle", "pos": [341, 360]}]}, {"sentence": "In order to generalise the use of FGM , it is crucial to understand the resulting differences between the predicted and real components .", "entities": [{"name": "FGM", "type": "manufacturing process", "pos": [34, 37]}, {"name": "predicted", "type": "concept or principle", "pos": [106, 115]}, {"name": "components", "type": "machine or equipment", "pos": [125, 135]}]}, {"sentence": "By knowing the required mix of properties , the required arrangement of phases , and compatibility of materials design rules and methods have to be established to avoid undesirable results .", "entities": [{"name": "properties", "type": "concept or principle", "pos": [31, 41]}, {"name": "materials", "type": "concept or principle", "pos": [102, 111]}, {"name": "design rules", "type": "concept or principle", "pos": [112, 124]}, {"name": "be", "type": "material", "pos": [145, 147]}]}, {"sentence": "Knowledge of the relationship can be gained through shared databases as a catalogue of material performance information .", "entities": [{"name": "be", "type": "material", "pos": [34, 36]}, {"name": "databases", "type": "enabling technology", "pos": [59, 68]}, {"name": "as", "type": "material", "pos": [69, 71]}, {"name": "material", "type": "material", "pos": [87, 95]}]}, {"sentence": "Richards first proposed a computational approach of using CPPN encodings and a scalable algorithm using NEAT to embed functional morphologies and macro-properties of physical features using multi-material FGM through voxel-based descriptions by a function of its Cartesian coordinates .", "entities": [{"name": "algorithm", "type": "concept or principle", "pos": [88, 97]}, {"name": "morphologies", "type": "concept or principle", "pos": [129, 141]}, {"name": "macro-properties", "type": "machanical property", "pos": [146, 162]}, {"name": "multi-material", "type": "concept or principle", "pos": [190, 204]}, {"name": "FGM", "type": "manufacturing process", "pos": [205, 208]}, {"name": "coordinates", "type": "process parameter", "pos": [273, 284]}]}, {"sentence": "Some progresses are still expected but FGM or multi-material parts in general are being seriously considered as solutions for design evolution of products in the future .", "entities": [{"name": "FGM", "type": "manufacturing process", "pos": [39, 42]}, {"name": "multi-material", "type": "concept or principle", "pos": [46, 60]}, {"name": "as", "type": "material", "pos": [109, 111]}, {"name": "design", "type": "engineering feature", "pos": [126, 132]}]}, {"sentence": "This is already used for polymers and elastomers and this is in progress for metallic products .", "entities": [{"name": "polymers", "type": "material", "pos": [25, 33]}, {"name": "elastomers", "type": "material", "pos": [38, 48]}, {"name": "metallic", "type": "material", "pos": [77, 85]}]}, {"sentence": "8 Assembly and part integration considerations It is well recognized that it is possible to exploit the potential of additive manufacturing at product level .", "entities": [{"name": "Assembly", "type": "manufacturing process", "pos": [2, 10]}, {"name": "additive manufacturing", "type": "manufacturing process", "pos": [117, 139]}]}, {"sentence": "As one may infer by the existing standards , AM technologies already play a significant role not only for single parts but also at product level .", "entities": [{"name": "As", "type": "material", "pos": [0, 2]}, {"name": "standards", "type": "concept or principle", "pos": [33, 42]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [45, 60]}]}, {"sentence": "Therefore , the classical Design for Assembly approaches have to be reconsidered in order to take advantage of these AM opportunities .", "entities": [{"name": "Design for Assembly", "type": "engineering feature", "pos": [26, 45]}, {"name": "be", "type": "material", "pos": [65, 67]}, {"name": "AM", "type": "manufacturing process", "pos": [117, 119]}]}, {"sentence": "An n-part product may be classified as static , movable , or compliant assembly and it may have components of the same or different materials .", "entities": [{"name": "be", "type": "material", "pos": [22, 24]}, {"name": "as", "type": "material", "pos": [27, 29]}, {"name": "assembly", "type": "manufacturing process", "pos": [71, 79]}, {"name": "components", "type": "machine or equipment", "pos": [96, 106]}, {"name": "materials", "type": "concept or principle", "pos": [132, 141]}]}, {"sentence": "AM technologies enable the possibility to produce not only a single part of an assembly , but directly the assembled product .", "entities": [{"name": "AM technologies", "type": "manufacturing process", "pos": [0, 15]}, {"name": "assembly", "type": "manufacturing process", "pos": [79, 87]}]}, {"sentence": "This review shows many possible joints directly fabricated either using polymers or metals .", "entities": [{"name": "fabricated", "type": "concept or principle", "pos": [48, 58]}, {"name": "polymers", "type": "material", "pos": [72, 80]}, {"name": "metals", "type": "material", "pos": [84, 90]}]}, {"sentence": "Furthermore a deep discussion of polymer-based non-assembly mechanisms may be found in , proving that the polymer-based AM technologies are close to maturity for this kind of application .", "entities": [{"name": "be", "type": "material", "pos": [75, 77]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [120, 135]}]}, {"sentence": "35 shows a metallic compliant joint for a snake-like surgical robot , produced by PBF .", "entities": [{"name": "metallic compliant joint", "type": "engineering feature", "pos": [11, 35]}, {"name": "robot", "type": "machine or equipment", "pos": [62, 67]}, {"name": "PBF", "type": "manufacturing process", "pos": [82, 85]}]}, {"sentence": "In 36 , the detail design of a rotational joint and a snap-fit feature are shown for a nanosatellite metallic cubic structure fabricated by L-PBF .", "entities": [{"name": "design", "type": "engineering feature", "pos": [19, 25]}, {"name": "joint", "type": "concept or principle", "pos": [42, 47]}, {"name": "snap-fit feature", "type": "engineering feature", "pos": [54, 70]}, {"name": "metallic", "type": "material", "pos": [101, 109]}, {"name": "cubic structure", "type": "engineering feature", "pos": [110, 125]}, {"name": "L-PBF", "type": "manufacturing process", "pos": [140, 145]}]}, {"sentence": "But what about the design rules to fully exploit the AM technologies in assembly manufacturing ? In the following , a brief analysis of the design rules and in particular of the part consolidation steps in designing a product will be considered .", "entities": [{"name": "design rules", "type": "concept or principle", "pos": [19, 31]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [53, 68]}, {"name": "assembly", "type": "manufacturing process", "pos": [72, 80]}, {"name": "design rules", "type": "concept or principle", "pos": [140, 152]}, {"name": "part consolidation", "type": "concept or principle", "pos": [178, 196]}, {"name": "be", "type": "material", "pos": [231, 233]}]}, {"sentence": "8.1 Assembly design rules As deeply discussed in , when dealing with assemblies and AM technologies , one main issue still to be adequately addressed is the geometrical product specification .", "entities": [{"name": "Assembly", "type": "manufacturing process", "pos": [4, 12]}, {"name": "As", "type": "material", "pos": [26, 28]}, {"name": "AM technologies", "type": "manufacturing process", "pos": [84, 99]}, {"name": "be", "type": "material", "pos": [126, 128]}, {"name": "specification", "type": "process parameter", "pos": [177, 190]}]}, {"sentence": "In fact , no specific ISO-GPS or ASME-GD & T standard dedicated to AM processes exists , leaving design as a cumbersome process of defining geometrical requirements of assembly features or of single parts using a language dedicated to conventionally manufactured products .", "entities": [{"name": "standard", "type": "concept or principle", "pos": [45, 53]}, {"name": "AM processes", "type": "manufacturing process", "pos": [67, 79]}, {"name": "design", "type": "engineering feature", "pos": [97, 103]}, {"name": "as", "type": "material", "pos": [104, 106]}, {"name": "process", "type": "concept or principle", "pos": [120, 127]}, {"name": "assembly", "type": "manufacturing process", "pos": [168, 176]}, {"name": "manufactured products", "type": "concept or principle", "pos": [250, 271]}]}, {"sentence": "Referring to an assembly with fixed connection type , general rules to design fasteners/connectors , in particular snap-fit features , are presented with respect to polymer-based AM processes in , and to metal-based ones in .", "entities": [{"name": "assembly", "type": "manufacturing process", "pos": [16, 24]}, {"name": "design", "type": "engineering feature", "pos": [71, 77]}, {"name": "snap-fit features", "type": "engineering feature", "pos": [115, 132]}, {"name": "AM processes", "type": "manufacturing process", "pos": [179, 191]}]}, {"sentence": "These general rules address issues on fastener/connector shape , wall thickness , gap width , staircase effect on sloped surfaces , and on the influence of anisotropy on the assembly product mechanical behavior .", "entities": [{"name": "wall thickness", "type": "engineering feature", "pos": [65, 79]}, {"name": "surfaces", "type": "concept or principle", "pos": [121, 129]}, {"name": "anisotropy", "type": "machanical property", "pos": [156, 166]}, {"name": "assembly", "type": "manufacturing process", "pos": [174, 182]}, {"name": "mechanical", "type": "application", "pos": [191, 201]}]}, {"sentence": "Dealing with non-assembly mechanisms , design rules are discussed mainly referring to polymer-based AM processes like extrusion-based , material jetting , and vat photopolymerization processes .", "entities": [{"name": "design rules", "type": "concept or principle", "pos": [39, 51]}, {"name": "AM processes", "type": "manufacturing process", "pos": [100, 112]}, {"name": "material jetting", "type": "manufacturing process", "pos": [136, 152]}, {"name": "vat photopolymerization", "type": "manufacturing process", "pos": [159, 182]}, {"name": "processes", "type": "concept or principle", "pos": [183, 192]}]}, {"sentence": "The design rules refer to the minimization and the removal of the supports used during the non-assembly product fabrication , the effect of build orientation on the smoothness of the mechanism , and the selection of the clearance between assembled parts .", "entities": [{"name": "design rules", "type": "concept or principle", "pos": [4, 16]}, {"name": "supports", "type": "application", "pos": [66, 74]}, {"name": "fabrication", "type": "manufacturing process", "pos": [112, 123]}, {"name": "build orientation", "type": "process parameter", "pos": [140, 157]}, {"name": "smoothness", "type": "concept or principle", "pos": [165, 175]}, {"name": "mechanism", "type": "concept or principle", "pos": [183, 192]}, {"name": "clearance", "type": "concept or principle", "pos": [220, 229]}]}, {"sentence": "Considering the latter issue , in a benchmark is proposed to assess the lowest clearance limits for non-assembly mechanisms .", "entities": [{"name": "benchmark", "type": "manufacturing standard", "pos": [36, 45]}, {"name": "clearance limits", "type": "machanical property", "pos": [79, 95]}]}, {"sentence": "8.2 Part consolidation Part consolidation is the first and most relevant step in design for assembly .", "entities": [{"name": "Part consolidation", "type": "concept or principle", "pos": [4, 22]}, {"name": "consolidation", "type": "concept or principle", "pos": [28, 41]}, {"name": "step", "type": "concept or principle", "pos": [73, 77]}, {"name": "design for assembly", "type": "engineering feature", "pos": [81, 100]}]}, {"sentence": "But this is not the case when exploiting AM processes since they enable non-assembly mechanisms , multi-material printing , and easier functional integration .", "entities": [{"name": "AM processes", "type": "manufacturing process", "pos": [41, 53]}, {"name": "multi-material printing", "type": "manufacturing process", "pos": [98, 121]}]}, {"sentence": "A significant example of AM part consolidation is the one reported in .", "entities": [{"name": "AM part", "type": "machine or equipment", "pos": [25, 32]}]}] \ No newline at end of file