File size: 8,608 Bytes
53a37bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
#!/usr/bin/env python3
""" Bulk Model Script Runner
Run validation or benchmark script in separate process for each model
Benchmark all 'vit*' models:
python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512
Validate all models:
python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py --data-dir /imagenet/validation/ --amp -b 512 --retry
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import os
import sys
import csv
import json
import subprocess
import time
from typing import Callable, List, Tuple, Union
from timm.models import is_model, list_models, get_pretrained_cfg, get_arch_pretrained_cfgs
parser = argparse.ArgumentParser(description='Per-model process launcher')
# model and results args
parser.add_argument(
'--model-list', metavar='NAME', default='',
help='txt file based list of model names to benchmark')
parser.add_argument(
'--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
parser.add_argument(
'--sort-key', default='', type=str, metavar='COL',
help='Specify sort key for results csv')
parser.add_argument(
"--pretrained", action='store_true',
help="only run models with pretrained weights")
parser.add_argument(
"--delay",
type=float,
default=0,
help="Interval, in seconds, to delay between model invocations.",
)
parser.add_argument(
"--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"],
help="Multiprocessing start method to use when creating workers.",
)
parser.add_argument(
"--no_python",
help="Skip prepending the script with 'python' - just execute it directly. Useful "
"when the script is not a Python script.",
)
parser.add_argument(
"-m",
"--module",
help="Change each process to interpret the launch script as a Python module, executing "
"with the same behavior as 'python -m'.",
)
# positional
parser.add_argument(
"script", type=str,
help="Full path to the program/script to be launched for each model config.",
)
parser.add_argument("script_args", nargs=argparse.REMAINDER)
def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]:
# If ``args`` not passed, defaults to ``sys.argv[:1]``
with_python = not args.no_python
cmd: Union[Callable, str]
cmd_args = []
if with_python:
cmd = os.getenv("PYTHON_EXEC", sys.executable)
cmd_args.append("-u")
if args.module:
cmd_args.append("-m")
cmd_args.append(args.script)
else:
if args.module:
raise ValueError(
"Don't use both the '--no_python' flag"
" and the '--module' flag at the same time."
)
cmd = args.script
cmd_args.extend(args.script_args)
return cmd, cmd_args
def _get_model_cfgs(
model_names,
num_classes=None,
expand_train_test=False,
include_crop=True,
expand_arch=False,
):
model_cfgs = set()
for name in model_names:
if expand_arch:
pt_cfgs = get_arch_pretrained_cfgs(name).values()
else:
pt_cfg = get_pretrained_cfg(name)
pt_cfgs = [pt_cfg] if pt_cfg is not None else []
for cfg in pt_cfgs:
if cfg.input_size is None:
continue
if num_classes is not None and getattr(cfg, 'num_classes', 0) != num_classes:
continue
# Add main configuration
size = cfg.input_size[-1]
if include_crop:
model_cfgs.add((name, size, cfg.crop_pct))
else:
model_cfgs.add((name, size))
# Add test configuration if required
if expand_train_test and cfg.test_input_size is not None:
test_size = cfg.test_input_size[-1]
if include_crop:
test_crop = cfg.test_crop_pct or cfg.crop_pct
model_cfgs.add((name, test_size, test_crop))
else:
model_cfgs.add((name, test_size))
# Format the output
if include_crop:
return [(n, {'img-size': r, 'crop-pct': cp}) for n, r, cp in sorted(model_cfgs)]
else:
return [(n, {'img-size': r}) for n, r in sorted(model_cfgs)]
def main():
args = parser.parse_args()
cmd, cmd_args = cmd_from_args(args)
model_cfgs = []
if args.model_list == 'all':
model_names = list_models(
pretrained=args.pretrained, # only include models w/ pretrained checkpoints if set
)
model_cfgs = [(n, None) for n in model_names]
elif args.model_list == 'all_in1k':
model_names = list_models(pretrained=True)
model_cfgs = _get_model_cfgs(model_names, num_classes=1000, expand_train_test=True)
elif args.model_list == 'all_res':
model_names = list_models()
model_cfgs = _get_model_cfgs(model_names, expand_train_test=True, include_crop=False, expand_arch=True)
elif not is_model(args.model_list):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model_list)
model_cfgs = [(n, None) for n in model_names]
if not model_cfgs and os.path.exists(args.model_list):
with open(args.model_list) as f:
model_names = [line.rstrip() for line in f]
model_cfgs = _get_model_cfgs(
model_names,
#num_classes=1000,
expand_train_test=True,
#include_crop=False,
)
if len(model_cfgs):
results_file = args.results_file or './results.csv'
results = []
errors = []
model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs])
print(f"Running script on these models:\n {model_strings}")
if not args.sort_key:
if 'benchmark' in args.script:
if any(['train' in a for a in args.script_args]):
sort_key = 'train_samples_per_sec'
else:
sort_key = 'infer_samples_per_sec'
else:
sort_key = 'top1'
else:
sort_key = args.sort_key
print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}')
try:
for m, ax in model_cfgs:
if not m:
continue
args_str = (cmd, *[str(e) for e in cmd_args], '--model', m)
if ax is not None:
extra_args = [(f'--{k}', str(v)) for k, v in ax.items()]
extra_args = [i for t in extra_args for i in t]
args_str += tuple(extra_args)
try:
o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1]
r = json.loads(o)
results.append(r)
except Exception as e:
# FIXME batch_size retry loop is currently done in either validation.py or benchmark.py
# for further robustness (but more overhead), we may want to manage that by looping here...
errors.append(dict(model=m, error=str(e)))
if args.delay:
time.sleep(args.delay)
except KeyboardInterrupt as e:
pass
errors.extend(list(filter(lambda x: 'error' in x, results)))
if errors:
print(f'{len(errors)} models had errors during run.')
for e in errors:
if 'model' in e:
print(f"\t {e['model']} ({e.get('error', 'Unknown')})")
else:
print(e)
results = list(filter(lambda x: 'error' not in x, results))
no_sortkey = list(filter(lambda x: sort_key not in x, results))
if no_sortkey:
print(f'{len(no_sortkey)} results missing sort key, skipping sort.')
else:
results = sorted(results, key=lambda x: x[sort_key], reverse=True)
if len(results):
print(f'{len(results)} models run successfully. Saving results to {results_file}.')
write_results(results_file, results)
def write_results(results_file, results):
with open(results_file, mode='w') as cf:
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()
|