File size: 16,697 Bytes
53a37bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
#!/usr/bin/env python3
"""PyTorch Inference Script
An example inference script that outputs top-k class ids for images in a folder into a csv.
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import argparse
import json
import logging
import os
import time
from contextlib import suppress
from functools import partial
from sys import maxsize
import numpy as np
import pandas as pd
import torch
from timm.data import create_dataset, create_loader, resolve_data_config, ImageNetInfo, infer_imagenet_subset
from timm.layers import apply_test_time_pool
from timm.models import create_model
from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser, ParseKwargs
try:
from apex import amp
has_apex = True
except ImportError:
has_apex = False
try:
from functorch.compile import memory_efficient_fusion
has_functorch = True
except ImportError as e:
has_functorch = False
has_compile = hasattr(torch, 'compile')
_FMT_EXT = {
'json': '.json',
'json-record': '.json',
'json-split': '.json',
'parquet': '.parquet',
'csv': '.csv',
}
torch.backends.cudnn.benchmark = True
_logger = logging.getLogger('inference')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference')
parser.add_argument('data', nargs='?', metavar='DIR', const=None,
help='path to dataset (*deprecated*, use --data-dir)')
parser.add_argument('--data-dir', metavar='DIR',
help='path to dataset (root dir)')
parser.add_argument('--dataset', metavar='NAME', default='',
help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)')
parser.add_argument('--split', metavar='NAME', default='validation',
help='dataset split (default: validation)')
parser.add_argument('--model', '-m', metavar='MODEL', default='resnet50',
help='model architecture (default: resnet50)')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--in-chans', type=int, default=None, metavar='N',
help='Image input channels (default: None => 3)')
parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N',
help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
parser.add_argument('--use-train-size', action='store_true', default=False,
help='force use of train input size, even when test size is specified in pretrained cfg')
parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop pct')
parser.add_argument('--crop-mode', default=None, type=str,
metavar='N', help='Input image crop mode (squash, border, center). Model default if None.')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=None,
help='Number classes in dataset')
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME',
help='path to class to idx mapping file (default: "")')
parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--test-pool', dest='test_pool', action='store_true',
help='enable test time pool')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--device', default='cuda', type=str,
help="Device (accelerator) to use.")
parser.add_argument('--amp', action='store_true', default=False,
help='use Native AMP for mixed precision training')
parser.add_argument('--amp-dtype', default='float16', type=str,
help='lower precision AMP dtype (default: float16)')
parser.add_argument('--model-dtype', default=None, type=str,
help='Model dtype override (non-AMP) (default: float32)')
parser.add_argument('--fuser', default='', type=str,
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs)
parser.add_argument('--torchcompile-mode', type=str, default=None,
help="torch.compile mode (default: None).")
scripting_group = parser.add_mutually_exclusive_group()
scripting_group.add_argument('--torchscript', default=False, action='store_true',
help='torch.jit.script the full model')
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor',
help="Enable compilation w/ specified backend (default: inductor).")
scripting_group.add_argument('--aot-autograd', default=False, action='store_true',
help="Enable AOT Autograd support.")
parser.add_argument('--results-dir', type=str, default=None,
help='folder for output results')
parser.add_argument('--results-file', type=str, default=None,
help='results filename (relative to results-dir)')
parser.add_argument('--results-format', type=str, nargs='+', default=['csv'],
help='results format (one of "csv", "json", "json-split", "parquet")')
parser.add_argument('--results-separate-col', action='store_true', default=False,
help='separate output columns per result index.')
parser.add_argument('--topk', default=1, type=int,
metavar='N', help='Top-k to output to CSV')
parser.add_argument('--fullname', action='store_true', default=False,
help='use full sample name in output (not just basename).')
parser.add_argument('--filename-col', type=str, default='filename',
help='name for filename / sample name column')
parser.add_argument('--index-col', type=str, default='index',
help='name for output indices column(s)')
parser.add_argument('--label-col', type=str, default='label',
help='name for output indices column(s)')
parser.add_argument('--output-col', type=str, default=None,
help='name for logit/probs output column(s)')
parser.add_argument('--output-type', type=str, default='prob',
help='output type colum ("prob" for probabilities, "logit" for raw logits)')
parser.add_argument('--label-type', type=str, default='description',
help='type of label to output, one of "none", "name", "description", "detailed"')
parser.add_argument('--include-index', action='store_true', default=False,
help='include the class index in results')
parser.add_argument('--exclude-output', action='store_true', default=False,
help='exclude logits/probs from results, just indices. topk must be set !=0.')
parser.add_argument('--no-console-results', action='store_true', default=False,
help='disable printing the inference results to the console')
def main():
setup_default_logging()
args = parser.parse_args()
# might as well try to do something useful...
args.pretrained = args.pretrained or not args.checkpoint
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
device = torch.device(args.device)
model_dtype = None
if args.model_dtype:
assert args.model_dtype in ('float32', 'float16', 'bfloat16')
model_dtype = getattr(torch, args.model_dtype)
# resolve AMP arguments based on PyTorch / Apex availability
amp_autocast = suppress
if args.amp:
assert model_dtype is None or model_dtype == torch.float32, 'float32 model dtype must be used with AMP'
assert args.amp_dtype in ('float16', 'bfloat16')
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
_logger.info('Running inference in mixed precision with native PyTorch AMP.')
else:
_logger.info('Running inference in float32. AMP not enabled.')
if args.fuser:
set_jit_fuser(args.fuser)
# create model
in_chans = 3
if args.in_chans is not None:
in_chans = args.in_chans
elif args.input_size is not None:
in_chans = args.input_size[0]
model = create_model(
args.model,
num_classes=args.num_classes,
in_chans=in_chans,
pretrained=args.pretrained,
checkpoint_path=args.checkpoint,
**args.model_kwargs,
)
if args.num_classes is None:
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
args.num_classes = model.num_classes
_logger.info(
f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}')
data_config = resolve_data_config(vars(args), model=model)
test_time_pool = False
if args.test_pool:
model, test_time_pool = apply_test_time_pool(model, data_config)
model = model.to(device=device, dtype=model_dtype)
model.eval()
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
if args.torchscript:
model = torch.jit.script(model)
elif args.torchcompile:
assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.'
torch._dynamo.reset()
model = torch.compile(model, backend=args.torchcompile, mode=args.torchcompile_mode)
elif args.aot_autograd:
assert has_functorch, "functorch is needed for --aot-autograd"
model = memory_efficient_fusion(model)
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu)))
root_dir = args.data or args.data_dir
dataset = create_dataset(
root=root_dir,
name=args.dataset,
split=args.split,
class_map=args.class_map,
)
if test_time_pool:
data_config['crop_pct'] = 1.0
workers = 1 if 'tfds' in args.dataset or 'wds' in args.dataset else args.workers
loader = create_loader(
dataset,
batch_size=args.batch_size,
use_prefetcher=True,
num_workers=workers,
device=device,
img_dtype=model_dtype or torch.float32,
**data_config,
)
to_label = None
if args.label_type in ('name', 'description', 'detail'):
imagenet_subset = infer_imagenet_subset(model)
if imagenet_subset is not None:
dataset_info = ImageNetInfo(imagenet_subset)
if args.label_type == 'name':
to_label = lambda x: dataset_info.index_to_label_name(x)
elif args.label_type == 'detail':
to_label = lambda x: dataset_info.index_to_description(x, detailed=True)
else:
to_label = lambda x: dataset_info.index_to_description(x)
to_label = np.vectorize(to_label)
else:
_logger.error("Cannot deduce ImageNet subset from model, no labelling will be performed.")
top_k = min(args.topk, args.num_classes)
batch_time = AverageMeter()
end = time.time()
all_indices = []
all_labels = []
all_outputs = []
use_probs = args.output_type == 'prob'
with torch.no_grad():
for batch_idx, (input, _) in enumerate(loader):
with amp_autocast():
output = model(input)
if use_probs:
output = output.softmax(-1)
if top_k:
output, indices = output.topk(top_k)
np_indices = indices.cpu().numpy()
if args.include_index:
all_indices.append(np_indices)
if to_label is not None:
np_labels = to_label(np_indices)
all_labels.append(np_labels)
all_outputs.append(output.float().cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_idx % args.log_freq == 0:
_logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format(
batch_idx, len(loader), batch_time=batch_time))
all_indices = np.concatenate(all_indices, axis=0) if all_indices else None
all_labels = np.concatenate(all_labels, axis=0) if all_labels else None
all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32)
filenames = loader.dataset.filenames(basename=not args.fullname)
output_col = args.output_col or ('prob' if use_probs else 'logit')
data_dict = {args.filename_col: filenames}
if args.results_separate_col and all_outputs.shape[-1] > 1:
if all_indices is not None:
for i in range(all_indices.shape[-1]):
data_dict[f'{args.index_col}_{i}'] = all_indices[:, i]
if all_labels is not None:
for i in range(all_labels.shape[-1]):
data_dict[f'{args.label_col}_{i}'] = all_labels[:, i]
for i in range(all_outputs.shape[-1]):
data_dict[f'{output_col}_{i}'] = all_outputs[:, i]
else:
if all_indices is not None:
if all_indices.shape[-1] == 1:
all_indices = all_indices.squeeze(-1)
data_dict[args.index_col] = list(all_indices)
if all_labels is not None:
if all_labels.shape[-1] == 1:
all_labels = all_labels.squeeze(-1)
data_dict[args.label_col] = list(all_labels)
if all_outputs.shape[-1] == 1:
all_outputs = all_outputs.squeeze(-1)
data_dict[output_col] = list(all_outputs)
df = pd.DataFrame(data=data_dict)
results_filename = args.results_file
if results_filename:
filename_no_ext, ext = os.path.splitext(results_filename)
if ext and ext in _FMT_EXT.values():
# if filename provided with one of expected ext,
# remove it as it will be added back
results_filename = filename_no_ext
else:
# base default filename on model name + img-size
img_size = data_config["input_size"][1]
results_filename = f'{args.model}-{img_size}'
if args.results_dir:
results_filename = os.path.join(args.results_dir, results_filename)
for fmt in args.results_format:
save_results(df, results_filename, fmt)
if not args.no_console_results:
print(f'--result')
print(df.set_index(args.filename_col).to_json(orient='index', indent=4))
def save_results(df, results_filename, results_format='csv', filename_col='filename'):
np.set_printoptions(threshold=maxsize)
results_filename += _FMT_EXT[results_format]
if results_format == 'parquet':
df.set_index(filename_col).to_parquet(results_filename)
elif results_format == 'json':
df.set_index(filename_col).to_json(results_filename, indent=4, orient='index')
elif results_format == 'json-records':
df.to_json(results_filename, lines=True, orient='records')
elif results_format == 'json-split':
df.to_json(results_filename, indent=4, orient='split', index=False)
else:
df.to_csv(results_filename, index=False)
if __name__ == '__main__':
main()
|