File size: 4,577 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
""" Model / Layer Config singleton state
"""
import os
import warnings
from typing import Any, Optional

import torch

__all__ = [
    'is_exportable', 'is_scriptable', 'is_no_jit', 'use_fused_attn',
    'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config', 'set_fused_attn',
    'set_reentrant_ckpt', 'use_reentrant_ckpt'
]

# Set to True if prefer to have layers with no jit optimization (includes activations)
_NO_JIT = False

# Set to True if prefer to have activation layers with no jit optimization
# NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying
# the jit flags so far are activations. This will change as more layers are updated and/or added.
_NO_ACTIVATION_JIT = False

# Set to True if exporting a model with Same padding via ONNX
_EXPORTABLE = False

# Set to True if wanting to use torch.jit.script on a model
_SCRIPTABLE = False


# use torch.scaled_dot_product_attention where possible
_HAS_FUSED_ATTN = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if 'TIMM_FUSED_ATTN' in os.environ:
    _USE_FUSED_ATTN = int(os.environ['TIMM_FUSED_ATTN'])
else:
    _USE_FUSED_ATTN = 1  # 0 == off, 1 == on (for tested use), 2 == on (for experimental use)


if 'TIMM_REENTRANT_CKPT' in os.environ:
    _USE_REENTRANT_CKPT = bool(os.environ['TIMM_REENTRANT_CKPT'])
else:
    _USE_REENTRANT_CKPT = False  # defaults to disabled (off)


def is_no_jit():
    return _NO_JIT


class set_no_jit:
    def __init__(self, mode: bool) -> None:
        global _NO_JIT
        self.prev = _NO_JIT
        _NO_JIT = mode

    def __enter__(self) -> None:
        pass

    def __exit__(self, *args: Any) -> bool:
        global _NO_JIT
        _NO_JIT = self.prev
        return False


def is_exportable():
    return _EXPORTABLE


class set_exportable:
    def __init__(self, mode: bool) -> None:
        global _EXPORTABLE
        self.prev = _EXPORTABLE
        _EXPORTABLE = mode

    def __enter__(self) -> None:
        pass

    def __exit__(self, *args: Any) -> bool:
        global _EXPORTABLE
        _EXPORTABLE = self.prev
        return False


def is_scriptable():
    return _SCRIPTABLE


class set_scriptable:
    def __init__(self, mode: bool) -> None:
        global _SCRIPTABLE
        self.prev = _SCRIPTABLE
        _SCRIPTABLE = mode

    def __enter__(self) -> None:
        pass

    def __exit__(self, *args: Any) -> bool:
        global _SCRIPTABLE
        _SCRIPTABLE = self.prev
        return False


class set_layer_config:
    """ Layer config context manager that allows setting all layer config flags at once.
    If a flag arg is None, it will not change the current value.
    """
    def __init__(
            self,
            scriptable: Optional[bool] = None,
            exportable: Optional[bool] = None,
            no_jit: Optional[bool] = None,
            no_activation_jit: Optional[bool] = None):
        global _SCRIPTABLE
        global _EXPORTABLE
        global _NO_JIT
        global _NO_ACTIVATION_JIT
        self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT
        if scriptable is not None:
            _SCRIPTABLE = scriptable
        if exportable is not None:
            _EXPORTABLE = exportable
        if no_jit is not None:
            _NO_JIT = no_jit
        if no_activation_jit is not None:
            _NO_ACTIVATION_JIT = no_activation_jit

    def __enter__(self) -> None:
        pass

    def __exit__(self, *args: Any) -> bool:
        global _SCRIPTABLE
        global _EXPORTABLE
        global _NO_JIT
        global _NO_ACTIVATION_JIT
        _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev
        return False


def use_fused_attn(experimental: bool = False) -> bool:
    # NOTE: ONNX export cannot handle F.scaled_dot_product_attention as of pytorch 2.0
    if not _HAS_FUSED_ATTN or _EXPORTABLE:
        return False
    if experimental:
        return _USE_FUSED_ATTN > 1
    return _USE_FUSED_ATTN > 0


def set_fused_attn(enable: bool = True, experimental: bool = False):
    global _USE_FUSED_ATTN
    if not _HAS_FUSED_ATTN:
        warnings.warn('This version of pytorch does not have F.scaled_dot_product_attention, fused_attn flag ignored.')
        return
    if experimental and enable:
        _USE_FUSED_ATTN = 2
    elif enable:
        _USE_FUSED_ATTN = 1
    else:
        _USE_FUSED_ATTN = 0


def use_reentrant_ckpt() -> bool:
    return _USE_REENTRANT_CKPT


def set_reentrant_ckpt(enable: bool = True):
    global _USE_REENTRANT_CKPT
    _USE_REENTRANT_CKPT = enable