File size: 10,662 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
""" Halo Self Attention

Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones`
    - https://arxiv.org/abs/2103.12731

@misc{2103.12731,
Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and
    Jonathon Shlens},
Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones},
Year = {2021},
}

Status:
This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me.
The attention mechanism works but it's slow as implemented.

Hacked together by / Copyright 2021 Ross Wightman
"""
from typing import List

import torch
from torch import nn
import torch.nn.functional as F

from .helpers import make_divisible
from .weight_init import trunc_normal_
from .trace_utils import _assert


def rel_logits_1d(q, rel_k, permute_mask: List[int]):
    """ Compute relative logits along one dimension

    As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
    Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925

    Args:
        q: (batch, height, width, dim)
        rel_k: (2 * window - 1, dim)
        permute_mask: permute output dim according to this
    """
    B, H, W, dim = q.shape
    rel_size = rel_k.shape[0]
    win_size = (rel_size + 1) // 2

    x = (q @ rel_k.transpose(-1, -2))
    x = x.reshape(-1, W, rel_size)

    # pad to shift from relative to absolute indexing
    x_pad = F.pad(x, [0, 1]).flatten(1)
    x_pad = F.pad(x_pad, [0, rel_size - W])

    # reshape and slice out the padded elements
    x_pad = x_pad.reshape(-1, W + 1, rel_size)
    x = x_pad[:, :W, win_size - 1:]

    # reshape and tile
    x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1)
    return x.permute(permute_mask)


class PosEmbedRel(nn.Module):
    """ Relative Position Embedding
    As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2
    Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925

    """
    def __init__(self, block_size, win_size, dim_head, scale):
        """
        Args:
            block_size (int): block size
            win_size (int): neighbourhood window size
            dim_head (int): attention head dim
            scale (float): scale factor (for init)
        """
        super().__init__()
        self.block_size = block_size
        self.dim_head = dim_head
        self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale)
        self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * scale)

    def forward(self, q):
        B, BB, HW, _ = q.shape

        # relative logits in width dimension.
        q = q.reshape(-1, self.block_size, self.block_size, self.dim_head)
        rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4))

        # relative logits in height dimension.
        q = q.transpose(1, 2)
        rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2))

        rel_logits = rel_logits_h + rel_logits_w
        rel_logits = rel_logits.reshape(B, BB, HW, -1)
        return rel_logits


class HaloAttn(nn.Module):
    """ Halo Attention

    Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones`
        - https://arxiv.org/abs/2103.12731

    The internal dimensions of the attention module are controlled by the interaction of several arguments.
      * the output dimension of the module is specified by dim_out, which falls back to input dim if not set
      * the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim
      * the query and key (qk) dimensions are determined by
        * num_heads * dim_head if dim_head is not None
        * num_heads * (dim_out * attn_ratio // num_heads) if dim_head is None
      * as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not used

    Args:
        dim (int): input dimension to the module
        dim_out (int): output dimension of the module, same as dim if not set
        feat_size (Tuple[int, int]): size of input feature_map (not used, for arg compat with bottle/lambda)
        stride: output stride of the module, query downscaled if > 1 (default: 1).
        num_heads: parallel attention heads (default: 8).
        dim_head: dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set
        block_size (int): size of blocks. (default: 8)
        halo_size (int): size of halo overlap. (default: 3)
        qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0)
        qkv_bias (bool) : add bias to q, k, and v projections
        avg_down (bool): use average pool downsample instead of strided query blocks
        scale_pos_embed (bool): scale the position embedding as well as Q @ K
    """
    def __init__(
            self, dim, dim_out=None, feat_size=None, stride=1, num_heads=8, dim_head=None, block_size=8, halo_size=3,
            qk_ratio=1.0, qkv_bias=False, avg_down=False, scale_pos_embed=False):
        super().__init__()
        dim_out = dim_out or dim
        assert dim_out % num_heads == 0
        assert stride in (1, 2)
        self.num_heads = num_heads
        self.dim_head_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads
        self.dim_head_v = dim_out // self.num_heads
        self.dim_out_qk = num_heads * self.dim_head_qk
        self.dim_out_v = num_heads * self.dim_head_v
        self.scale = self.dim_head_qk ** -0.5
        self.scale_pos_embed = scale_pos_embed
        self.block_size = self.block_size_ds = block_size
        self.halo_size = halo_size
        self.win_size = block_size + halo_size * 2  # neighbourhood window size
        self.block_stride = 1
        use_avg_pool = False
        if stride > 1:
            use_avg_pool = avg_down or block_size % stride != 0
            self.block_stride = 1 if use_avg_pool else stride
            self.block_size_ds = self.block_size // self.block_stride

        # FIXME not clear if this stride behaviour is what the paper intended
        # Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving
        # data in unfolded block form. I haven't wrapped my head around how that'd look.
        self.q = nn.Conv2d(dim, self.dim_out_qk, 1, stride=self.block_stride, bias=qkv_bias)
        self.kv = nn.Conv2d(dim, self.dim_out_qk + self.dim_out_v, 1, bias=qkv_bias)

        self.pos_embed = PosEmbedRel(
            block_size=self.block_size_ds, win_size=self.win_size, dim_head=self.dim_head_qk, scale=self.scale)

        self.pool = nn.AvgPool2d(2, 2) if use_avg_pool else nn.Identity()

        self.reset_parameters()

    def reset_parameters(self):
        std = self.q.weight.shape[1] ** -0.5  # fan-in
        trunc_normal_(self.q.weight, std=std)
        trunc_normal_(self.kv.weight, std=std)
        trunc_normal_(self.pos_embed.height_rel, std=self.scale)
        trunc_normal_(self.pos_embed.width_rel, std=self.scale)

    def forward(self, x):
        B, C, H, W = x.shape
        _assert(H % self.block_size == 0, '')
        _assert(W % self.block_size == 0, '')
        num_h_blocks = H // self.block_size
        num_w_blocks = W // self.block_size
        num_blocks = num_h_blocks * num_w_blocks

        q = self.q(x)
        # unfold
        q = q.reshape(
            -1, self.dim_head_qk,
            num_h_blocks, self.block_size_ds, num_w_blocks, self.block_size_ds).permute(0, 1, 3, 5, 2, 4)
        # B, num_heads * dim_head * block_size ** 2, num_blocks
        q = q.reshape(B * self.num_heads, self.dim_head_qk, -1, num_blocks).transpose(1, 3)
        # B * num_heads, num_blocks, block_size ** 2, dim_head

        kv = self.kv(x)
        # Generate overlapping windows for kv. This approach is good for GPU and CPU. However, unfold() is not
        # lowered for PyTorch XLA so it will be very slow. See code at bottom of file for XLA friendly approach.
        # FIXME figure out how to switch impl between this and conv2d if XLA being used.
        kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size])
        kv = kv.unfold(2, self.win_size, self.block_size).unfold(3, self.win_size, self.block_size).reshape(
            B * self.num_heads, self.dim_head_qk + self.dim_head_v, num_blocks, -1).permute(0, 2, 3, 1)
        k, v = torch.split(kv, [self.dim_head_qk, self.dim_head_v], dim=-1)
        # B * num_heads, num_blocks, win_size ** 2, dim_head_qk or dim_head_v

        if self.scale_pos_embed:
            attn = (q @ k.transpose(-1, -2) + self.pos_embed(q)) * self.scale
        else:
            attn = (q @ k.transpose(-1, -2)) * self.scale + self.pos_embed(q)
        # B * num_heads, num_blocks, block_size ** 2, win_size ** 2
        attn = attn.softmax(dim=-1)

        out = (attn @ v).transpose(1, 3)  # B * num_heads, dim_head_v, block_size ** 2, num_blocks
        # fold
        out = out.reshape(-1, self.block_size_ds, self.block_size_ds, num_h_blocks, num_w_blocks)
        out = out.permute(0, 3, 1, 4, 2).contiguous().view(
            B, self.dim_out_v, H // self.block_stride, W // self.block_stride)
        # B, dim_out, H // block_stride, W // block_stride
        out = self.pool(out)
        return out


""" Three alternatives for overlapping windows.

`.unfold().unfold()` is same speed as stride tricks with similar clarity as F.unfold()

    if is_xla:
        # This code achieves haloing on PyTorch XLA with reasonable runtime trade-off, it is
        # EXTREMELY slow for backward on a GPU though so I need a way of selecting based on environment.
        WW = self.win_size ** 2
        pw = torch.eye(WW, dtype=x.dtype, device=x.device).reshape(WW, 1, self.win_size, self.win_size)
        kv = F.conv2d(kv.reshape(-1, 1, H, W), pw, stride=self.block_size, padding=self.halo_size)
    elif self.stride_tricks:
        kv = F.pad(kv, [self.halo_size, self.halo_size, self.halo_size, self.halo_size]).contiguous()
        kv = kv.as_strided((
            B, self.dim_out_qk + self.dim_out_v, self.win_size, self.win_size, num_h_blocks, num_w_blocks),
            stride=(kv.stride(0), kv.stride(1), kv.shape[-1], 1, self.block_size * kv.shape[-1], self.block_size))
    else:
        kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size)

    kv = kv.reshape(
       B * self.num_heads, self.dim_head_qk + self.dim_head_v, -1, num_blocks).transpose(1, 3)
"""