File size: 9,975 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
""" Image to Patch Hybird Embedding Layer

Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
import math
from typing import List, Optional, Tuple, Union

import torch
from torch import nn as nn
import torch.nn.functional as F

from .format import Format, nchw_to
from .helpers import to_2tuple
from .patch_embed import resample_patch_embed


_logger = logging.getLogger(__name__)


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """
    output_fmt: Format
    dynamic_img_pad: torch.jit.Final[bool]

    def __init__(
            self,
            backbone: nn.Module,
            img_size: Union[int, Tuple[int, int]] = 224,
            patch_size: Union[int, Tuple[int, int]] = 1,
            feature_size: Optional[Union[int, Tuple[int, int]]] = None,
            feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
            in_chans: int = 3,
            embed_dim: int = 768,
            bias: bool = True,
            proj: bool = True,
            flatten: bool = True,
            output_fmt: Optional[str] = None,
            strict_img_size: bool = True,
            dynamic_img_pad: bool = False,
    ):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        self.backbone = backbone
        self.in_chans = in_chans
        (
            self.img_size,
            self.patch_size,
            self.feature_size,
            self.feature_ratio,
            self.feature_dim,
            self.grid_size,
            self.num_patches,
        ) = self._init_backbone(
            img_size=img_size,
            patch_size=patch_size,
            feature_size=feature_size,
            feature_ratio=feature_ratio,
        )

        if output_fmt is not None:
            self.flatten = False
            self.output_fmt = Format(output_fmt)
        else:
            # flatten spatial dim and transpose to channels last, kept for bwd compat
            self.flatten = flatten
            self.output_fmt = Format.NCHW
        self.strict_img_size = strict_img_size
        self.dynamic_img_pad = dynamic_img_pad
        if not dynamic_img_pad:
            assert self.feature_size[0] % self.patch_size[0] == 0 and self.feature_size[1] % self.patch_size[1] == 0

        if proj:
            self.proj = nn.Conv2d(
                self.feature_dim,
                embed_dim,
                kernel_size=patch_size,
                stride=patch_size,
                bias=bias,
            )
        else:
            assert self.feature_dim == embed_dim, \
                f'The feature dim ({self.feature_dim} must match embed dim ({embed_dim}) when projection disabled.'
            self.proj = nn.Identity()

    def _init_backbone(
            self,
            img_size: Union[int, Tuple[int, int]] = 224,
            patch_size: Union[int, Tuple[int, int]] = 1,
            feature_size: Optional[Union[int, Tuple[int, int]]] = None,
            feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
            feature_dim: Optional[int] = None,
    ):
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        if feature_size is None:
            with torch.no_grad():
                # NOTE Most reliable way of determining output dims is to run forward pass
                training = self.backbone.training
                if training:
                    self.backbone.eval()
                o = self.backbone(torch.zeros(1, self.in_chans, img_size[0], img_size[1]))
                if isinstance(o, (list, tuple)):
                    o = o[-1]  # last feature if backbone outputs list/tuple of features
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                self.backbone.train(training)
            feature_ratio = tuple([s // f for s, f in zip(img_size, feature_size)])
        else:
            feature_size = to_2tuple(feature_size)
            feature_ratio = to_2tuple(feature_ratio or 16)
            if feature_dim is None:
                if hasattr(self.backbone, 'feature_info'):
                    feature_dim = self.backbone.feature_info.channels()[-1]
                else:
                    feature_dim = self.backbone.num_features
        grid_size = tuple([f // p for f, p in zip(feature_size, patch_size)])
        num_patches = grid_size[0] * grid_size[1]
        return img_size, patch_size, feature_size, feature_ratio, feature_dim, grid_size, num_patches

    def set_input_size(
            self,
            img_size: Optional[Union[int, Tuple[int, int]]] = None,
            patch_size: Optional[Union[int, Tuple[int, int]]] = None,
            feature_size: Optional[Union[int, Tuple[int, int]]] = None,
            feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
            feature_dim: Optional[int] = None,
    ):
        assert img_size is not None or patch_size is not None
        img_size = img_size or self.img_size
        new_patch_size = None
        if patch_size is not None:
            new_patch_size = to_2tuple(patch_size)
        if new_patch_size is not None and new_patch_size != self.patch_size:
            assert isinstance(self.proj, nn.Conv2d), 'HybridEmbed must have a projection layer to change patch size.'
            with torch.no_grad():
                new_proj = nn.Conv2d(
                    self.proj.in_channels,
                    self.proj.out_channels,
                    kernel_size=new_patch_size,
                    stride=new_patch_size,
                    bias=self.proj.bias is not None,
                )
                new_proj.weight.copy_(resample_patch_embed(self.proj.weight, new_patch_size, verbose=True))
                if self.proj.bias is not None:
                    new_proj.bias.copy_(self.proj.bias)
                self.proj = new_proj
            patch_size = new_patch_size
        patch_size = patch_size or self.patch_size

        if img_size != self.img_size or patch_size != self.patch_size:
            (
                self.img_size,
                self.patch_size,
                self.feature_size,
                self.feature_ratio,
                self.feature_dim,
                self.grid_size,
                self.num_patches,
            ) = self._init_backbone(
                img_size=img_size,
                patch_size=patch_size,
                feature_size=feature_size,
                feature_ratio=feature_ratio,
                feature_dim=feature_dim,
            )

    def feat_ratio(self, as_scalar=True) -> Union[Tuple[int, int], int]:
        total_reduction = (
            self.feature_ratio[0] * self.patch_size[0],
            self.feature_ratio[1] * self.patch_size[1]
        )
        if as_scalar:
            return max(total_reduction)
        else:
            return total_reduction

    def dynamic_feat_size(self, img_size: Tuple[int, int]) -> Tuple[int, int]:
        """ Get feature grid size taking account dynamic padding and backbone network feat reduction
        """
        feat_size = (img_size[0] // self.feature_ratio[0], img_size[1] // self.feature_ratio[1])
        if self.dynamic_img_pad:
            return math.ceil(feat_size[0] / self.patch_size[0]), math.ceil(feat_size[1] / self.patch_size[1])
        else:
            return feat_size[0] // self.patch_size[0], feat_size[1] // self.patch_size[1]

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable: bool = True):
        if hasattr(self.backbone, 'set_grad_checkpointing'):
            self.backbone.set_grad_checkpointing(enable=enable)
        elif hasattr(self.backbone, 'grad_checkpointing'):
            self.backbone.grad_checkpointing = enable

    def forward(self, x):
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features
        _, _, H, W = x.shape
        if self.dynamic_img_pad:
            pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
            pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
            x = F.pad(x, (0, pad_w, 0, pad_h))
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        elif self.output_fmt != Format.NCHW:
            x = nchw_to(x, self.output_fmt)
        return x


class HybridEmbedWithSize(HybridEmbed):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """
    def __init__(
            self,
            backbone: nn.Module,
            img_size: Union[int, Tuple[int, int]] = 224,
            patch_size: Union[int, Tuple[int, int]] = 1,
            feature_size: Optional[Union[int, Tuple[int, int]]] = None,
            feature_ratio: Optional[Union[int, Tuple[int, int]]] = None,
            in_chans: int = 3,
            embed_dim: int = 768,
            bias=True,
            proj=True,
    ):
        super().__init__(
            backbone=backbone,
            img_size=img_size,
            patch_size=patch_size,
            feature_size=feature_size,
            feature_ratio=feature_ratio,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=bias,
            proj=proj,
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable: bool = True):
        if hasattr(self.backbone, 'set_grad_checkpointing'):
            self.backbone.set_grad_checkpointing(enable=enable)
        elif hasattr(self.backbone, 'grad_checkpointing'):
            self.backbone.grad_checkpointing = enable

    def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features
        x = self.proj(x)
        return x.flatten(2).transpose(1, 2), x.shape[-2:]