File size: 11,747 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
""" Adan Optimizer

Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
    https://arxiv.org/abs/2208.06677

Implementation adapted from https://github.com/sail-sg/Adan
"""
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import List, Optional, Tuple

import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer


class MultiTensorApply(object):
    available = False
    warned = False

    def __init__(self, chunk_size):
        try:
            MultiTensorApply.available = True
            self.chunk_size = chunk_size
        except ImportError as err:
            MultiTensorApply.available = False
            MultiTensorApply.import_err = err

    def __call__(self, op, noop_flag_buffer, tensor_lists, *args):
        return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args)


class Adan(Optimizer):
    """ Implements a pytorch variant of Adan.

    Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
    https://arxiv.org/abs/2208.06677

    Arguments:
        params: Iterable of parameters to optimize or dicts defining parameter groups.
        lr: Learning rate.
        betas: Coefficients used for first- and second-order moments.
        eps: Term added to the denominator to improve numerical stability.
        weight_decay: Decoupled weight decay (L2 penalty)
        no_prox: How to perform the weight decay
        caution: Enable caution from 'Cautious Optimizers'
        foreach: If True would use torch._foreach implementation. Faster but uses slightly more memory.
    """

    def __init__(self,
            params,
            lr: float = 1e-3,
            betas: Tuple[float, float, float] = (0.98, 0.92, 0.99),
            eps: float = 1e-8,
            weight_decay: float = 0.0,
            no_prox: bool = False,
            caution: bool = False,
            foreach: Optional[bool] = None,
    ):
        if not 0.0 <= lr:
            raise ValueError('Invalid learning rate: {}'.format(lr))
        if not 0.0 <= eps:
            raise ValueError('Invalid epsilon value: {}'.format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
        if not 0.0 <= betas[2] < 1.0:
            raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2]))

        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            no_prox=no_prox,
            caution=caution,
            foreach=foreach,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super(Adan, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('no_prox', False)
            group.setdefault('caution', False)

    @torch.no_grad()
    def restart_opt(self):
        for group in self.param_groups:
            group['step'] = 0
            for p in group['params']:
                if p.requires_grad:
                    state = self.state[p]
                    # State initialization

                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p)
                    # Exponential moving average of gradient difference
                    state['exp_avg_diff'] = torch.zeros_like(p)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step."""
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        try:
            has_scalar_maximum = 'Scalar' in torch.ops.aten._foreach_maximum_.overloads()
        except:
            has_scalar_maximum = False

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            exp_avg_diffs = []
            neg_pre_grads = []

            beta1, beta2, beta3 = group['betas']
            # assume same step across group now to simplify things
            # per parameter step can be easily supported by making it a tensor, or pass list into kernel
            if 'step' in group:
                group['step'] += 1
            else:
                group['step'] = 1

            bias_correction1 = 1.0 - beta1 ** group['step']
            bias_correction2 = 1.0 - beta2 ** group['step']
            bias_correction3 = 1.0 - beta3 ** group['step']

            for p in group['params']:
                if p.grad is None:
                    continue
                params_with_grad.append(p)
                grads.append(p.grad)

                state = self.state[p]
                if len(state) == 0:
                    state['exp_avg'] = torch.zeros_like(p)
                    state['exp_avg_sq'] = torch.zeros_like(p)
                    state['exp_avg_diff'] = torch.zeros_like(p)

                if 'neg_pre_grad' not in state or group['step'] == 1:
                    state['neg_pre_grad'] = -p.grad.clone()

                exp_avgs.append(state['exp_avg'])
                exp_avg_sqs.append(state['exp_avg_sq'])
                exp_avg_diffs.append(state['exp_avg_diff'])
                neg_pre_grads.append(state['neg_pre_grad'])

            if not params_with_grad:
                continue

            if group['foreach'] is None:
                use_foreach = not group['caution'] or has_scalar_maximum
            else:
                use_foreach = group['foreach']

            if use_foreach:
                func = _multi_tensor_adan
            else:
                func = _single_tensor_adan

            func(
                params_with_grad,
                grads,
                exp_avgs=exp_avgs,
                exp_avg_sqs=exp_avg_sqs,
                exp_avg_diffs=exp_avg_diffs,
                neg_pre_grads=neg_pre_grads,
                beta1=beta1,
                beta2=beta2,
                beta3=beta3,
                bias_correction1=bias_correction1,
                bias_correction2=bias_correction2,
                bias_correction3_sqrt=math.sqrt(bias_correction3),
                lr=group['lr'],
                weight_decay=group['weight_decay'],
                eps=group['eps'],
                no_prox=group['no_prox'],
                caution=group['caution'],
            )

        return loss


def _single_tensor_adan(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        exp_avg_diffs: List[Tensor],
        neg_pre_grads: List[Tensor],
        *,
        beta1: float,
        beta2: float,
        beta3: float,
        bias_correction1: float,
        bias_correction2: float,
        bias_correction3_sqrt: float,
        lr: float,
        weight_decay: float,
        eps: float,
        no_prox: bool,
        caution: bool,
):
    for i, param in enumerate(params):
        grad = grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        exp_avg_diff = exp_avg_diffs[i]
        neg_grad_or_diff = neg_pre_grads[i]

        # for memory saving, we use `neg_grad_or_diff` to get some temp variable in an inplace way
        neg_grad_or_diff.add_(grad)

        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)  # m_t
        exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2)  # diff_t

        neg_grad_or_diff.mul_(beta2).add_(grad)
        exp_avg_sq.mul_(beta3).addcmul_(neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3)  # n_t

        denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps)
        step_size_diff = lr * beta2 / bias_correction2
        step_size = lr / bias_correction1

        if caution:
            # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
            mask = (exp_avg * grad > 0).to(grad.dtype)
            mask.div_(mask.mean().clamp_(min=1e-3))
            exp_avg = exp_avg * mask

        if no_prox:
            param.mul_(1 - lr * weight_decay)
            param.addcdiv_(exp_avg, denom, value=-step_size)
            param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
        else:
            param.addcdiv_(exp_avg, denom, value=-step_size)
            param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
            param.div_(1 + lr * weight_decay)

        neg_grad_or_diff.zero_().add_(grad, alpha=-1.0)


def _multi_tensor_adan(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        exp_avg_diffs: List[Tensor],
        neg_pre_grads: List[Tensor],
        *,
        beta1: float,
        beta2: float,
        beta3: float,
        bias_correction1: float,
        bias_correction2: float,
        bias_correction3_sqrt: float,
        lr: float,
        weight_decay: float,
        eps: float,
        no_prox: bool,
        caution: bool,
):
    if len(params) == 0:
        return

    # for memory saving, we use `neg_pre_grads` to get some temp variable in a inplace way
    torch._foreach_add_(neg_pre_grads, grads)

    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)  # m_t

    torch._foreach_mul_(exp_avg_diffs, beta2)
    torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2)  # diff_t

    torch._foreach_mul_(neg_pre_grads, beta2)
    torch._foreach_add_(neg_pre_grads, grads)
    torch._foreach_mul_(exp_avg_sqs, beta3)
    torch._foreach_addcmul_(exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3)  # n_t

    denom = torch._foreach_sqrt(exp_avg_sqs)
    torch._foreach_div_(denom, bias_correction3_sqrt)
    torch._foreach_add_(denom, eps)

    step_size_diff = lr * beta2 / bias_correction2
    step_size = lr / bias_correction1

    if caution:
        # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
        masks = torch._foreach_mul(exp_avgs, grads)
        masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]
        mask_scale = [m.mean() for m in masks]
        torch._foreach_maximum_(mask_scale, 1e-3)
        torch._foreach_div_(masks, mask_scale)
        exp_avgs = torch._foreach_mul(exp_avgs, masks)

    if no_prox:
        torch._foreach_mul_(params, 1 - lr * weight_decay)
        torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
        torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
    else:
        torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
        torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
        torch._foreach_div_(params, 1 + lr * weight_decay)

    torch._foreach_zero_(neg_pre_grads)
    torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0)