File size: 18,787 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
""" ADOPT PyTorch Optimizer

ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853

Modified for reduced dependencies on PyTorch internals from original at: https://github.com/iShohei220/adopt

@inproceedings{taniguchi2024adopt,
 author={Taniguchi, Shohei and Harada, Keno and Minegishi, Gouki and Oshima, Yuta and Jeong, Seong Cheol and Nagahara, Go and Iiyama, Tomoshi and Suzuki, Masahiro and Iwasawa, Yusuke and Matsuo, Yutaka},
 booktitle = {Advances in Neural Information Processing Systems},
 title = {ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate},
 year = {2024}
}
"""
from typing import cast, List, Optional, Tuple, Union

import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer

from ._types import ParamsT

__all__ = ["Adopt", "adopt"]

def _view_as_real(params, *state_and_grads):
    for i, p in enumerate(params):
        if torch.is_complex(p):
            params[i] = torch.view_as_real(params[i])
            for s in state_and_grads:
                s[i] = torch.view_as_real(s[i])


def _get_scalar_dtype(is_fused=None):
    if is_fused:
        return torch.float32
    return (
        torch.float64 if torch.get_default_dtype() == torch.float64 else torch.float32
    )


def _is_compiling():
    if hasattr(torch, 'compiler') and hasattr(torch.compiler, 'is_compiling'):
        return torch.compiler.is_compiling()
    else:
        return False


def _get_value(x):
    # item is significantly faster than a cpu tensor in eager mode
    if not torch.jit.is_scripting() and _is_compiling():
        return x
    else:
        return x.item() if isinstance(x, torch.Tensor) else x


class Adopt(Optimizer):
    """
    ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853

    """
    def __init__(
            self,
            params: ParamsT,
            lr: Union[float, Tensor] = 1e-3,
            betas: Tuple[float, float] = (0.9, 0.9999),
            eps: float = 1e-6,
            clip_exp: Optional[float] = 0.333,
            weight_decay: float = 0.0,
            decoupled: bool = False,
            *,
            caution: bool = False,
            foreach: Optional[bool] = False,
            maximize: bool = False,
            capturable: bool = False,
            differentiable: bool = False,
    ):
        if isinstance(lr, Tensor):
            if foreach and not capturable:
                raise ValueError(
                    "lr as a Tensor is not supported for capturable=False and foreach=True"
                )
            if lr.numel() != 1:
                raise ValueError("Tensor lr must be 1-element")
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")

        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            clip_exp=clip_exp,
            decoupled=decoupled,
            caution=caution,
            maximize=maximize,
            foreach=foreach,
            capturable=capturable,
            differentiable=differentiable,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault("maximize", False)
            group.setdefault("foreach", None)
            group.setdefault("capturable", False)
            group.setdefault("differentiable", False)
            group.setdefault("clip_exp", None)
            group.setdefault("caution", False)
            for p in group["params"]:
                p_state = self.state.get(p, [])
                if len(p_state) != 0 and not torch.is_tensor(p_state["step"]):
                    step_val = float(p_state["step"])
                    p_state["step"] = (
                        torch.tensor(
                            step_val,
                            dtype=_get_scalar_dtype(),
                            device=p.device,
                        )
                        if group["capturable"]
                        else torch.tensor(step_val, dtype=_get_scalar_dtype())
                    )

    def _init_group(
            self,
            group,
            params_with_grad,
            grads,
            exp_avgs,
            exp_avg_sqs,
            state_steps,
    ):
        has_complex = False
        for p in group["params"]:
            if p.grad is None:
                continue
            has_complex |= torch.is_complex(p)
            params_with_grad.append(p)
            if p.grad.is_sparse:
                raise RuntimeError("ADOPT does not support sparse gradients")
            grads.append(p.grad)

            state = self.state[p]
            # Lazy state initialization
            if len(state) == 0:
                # note(crcrpar): [special device hosting for step]
                # Deliberately host `step` on CPU if both capturable and fused are off.
                # This is because kernel launches are costly on CUDA and XLA.
                state["step"] = (
                    torch.zeros((), dtype=_get_scalar_dtype(), device=p.grad.device)
                    if group["capturable"]
                    else torch.tensor(0.0, dtype=_get_scalar_dtype())
                )
                # Exponential moving average of gradient values
                state["exp_avg"] = torch.zeros_like(p.grad, memory_format=torch.preserve_format)
                # Exponential moving average of squared gradient values
                state["exp_avg_sq"] = torch.zeros_like(p.grad, memory_format=torch.preserve_format)

            exp_avgs.append(state["exp_avg"])
            exp_avg_sqs.append(state["exp_avg_sq"])

            if group["differentiable"] and state["step"].requires_grad:
                raise RuntimeError("`requires_grad` is not supported for `step` in differentiable mode")

            # Foreach without capturable does not support a tensor lr
            if group["foreach"] and torch.is_tensor(group["lr"]) and not group["capturable"]:
                raise RuntimeError("lr as a Tensor is not supported for capturable=False and foreach=True")

            state_steps.append(state["step"])
        return has_complex

    #@_use_grad_for_differentiable  # FIXME internal context mgr, can't use
    @torch.no_grad()
    def step(self, closure=None):
        """Perform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad: List[Tensor] = []
            grads: List[Tensor] = []
            exp_avgs: List[Tensor] = []
            exp_avg_sqs: List[Tensor] = []
            state_steps: List[Tensor] = []
            beta1, beta2 = group["betas"]

            has_complex = self._init_group(
                group,
                params_with_grad,
                grads,
                exp_avgs,
                exp_avg_sqs,
                state_steps,
            )

            adopt(
                params_with_grad,
                grads,
                exp_avgs,
                exp_avg_sqs,
                state_steps,
                has_complex=has_complex,
                beta1=beta1,
                beta2=beta2,
                lr=group["lr"],
                weight_decay=group["weight_decay"],
                clip_exp=group["clip_exp"],
                decoupled=group["decoupled"],
                eps=group["eps"],
                caution=group["caution"],
                maximize=group["maximize"],
                foreach=group["foreach"],
                capturable=group["capturable"],
                differentiable=group["differentiable"],
                grad_scale=getattr(self, "grad_scale", None),
                found_inf=getattr(self, "found_inf", None),
            )

        return loss


def _single_tensor_adopt(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        state_steps: List[Tensor],
        grad_scale: Optional[Tensor],
        found_inf: Optional[Tensor],
        *,
        has_complex: bool,
        beta1: float,
        beta2: float,
        lr: Union[float, Tensor],
        weight_decay: float,
        clip_exp: Optional[float],
        decoupled: bool,
        eps: float,
        caution: bool,
        maximize: bool,
        capturable: bool,
        differentiable: bool,
):
    assert grad_scale is None and found_inf is None

    if torch.jit.is_scripting():
        # this assert is due to JIT being dumb and not realizing that the ops below
        # have overloads to handle both float and Tensor lrs, so we just assert it's
        # a float since most people using JIT are using floats
        assert isinstance(lr, float)

    for i, param in enumerate(params):
        grad = grads[i] if not maximize else -grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        step_t = state_steps[i]

        # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
        if capturable and not _is_compiling():
            from torch.optim.optimizer import _get_capturable_supported_devices
            capturable_supported_devices = _get_capturable_supported_devices()
            assert param.device.type == step_t.device.type and param.device.type in capturable_supported_devices,\
                f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

        # update step
        step_t += 1

        if torch.is_complex(param):
            grad = torch.view_as_real(grad)
            if exp_avg is not None:
                exp_avg = torch.view_as_real(exp_avg)
            if exp_avg_sq is not None:
                exp_avg_sq = torch.view_as_real(exp_avg_sq)
            param = torch.view_as_real(param)

        if weight_decay != 0 and not decoupled:
            grad = grad.add(param, alpha=weight_decay)

        step = step_t if capturable or differentiable else _get_value(step_t)
        if step == 1:
            exp_avg_sq.addcmul_(grad, grad.conj())
            continue

        if weight_decay != 0 and decoupled:
            param.add_(param, alpha=-lr * weight_decay)

        denom = torch.clamp(exp_avg_sq.sqrt(), eps)
        normed_grad = grad.div(denom)

        if clip_exp is not None:
            clip_val = (step - 1) ** clip_exp
            normed_grad.clamp_(-clip_val, clip_val)

        exp_avg.lerp_(normed_grad, 1 - beta1)

        if caution:
            # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
            mask = (exp_avg * grad > 0).to(grad.dtype)
            mask.div_(mask.mean().clamp_(min=1e-3))
            exp_avg = exp_avg * mask

        param.add_(exp_avg, alpha=-lr)

        exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)


def _multi_tensor_adopt(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        state_steps: List[Tensor],
        grad_scale: Optional[Tensor],
        found_inf: Optional[Tensor],
        *,
        has_complex: bool,
        beta1: float,
        beta2: float,
        lr: Union[float, Tensor],
        weight_decay: float,
        clip_exp: Optional[float],
        decoupled: bool,
        eps: float,
        caution: bool,
        maximize: bool,
        capturable: bool,
        differentiable: bool,
):
    if len(params) == 0:
        return

    if isinstance(lr, Tensor) and not capturable:
        raise RuntimeError(
            "lr as a Tensor is not supported for capturable=False and foreach=True"
        )

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if capturable and not _is_compiling():
        from torch.optim.optimizer import _get_capturable_supported_devices
        capturable_supported_devices = _get_capturable_supported_devices(
            supports_xla=False
        )
        assert all(
            p.device.type == step.device.type and p.device.type in capturable_supported_devices
            for p, step in zip(params, state_steps)
        ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."

    assert grad_scale is None and found_inf is None

    assert not differentiable, "_foreach ops don't support autograd"

    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
        [params, grads, exp_avgs, exp_avg_sqs, state_steps]  # type: ignore[list-item]
    )
    for (
            device_params_,
            device_grads_,
            device_exp_avgs_,
            device_exp_avg_sqs_,
            device_state_steps_,
    ), _ in grouped_tensors.values():
        device_params = cast(List[Tensor], device_params_)
        device_grads = cast(List[Tensor], device_grads_)
        device_exp_avgs = cast(List[Tensor], device_exp_avgs_)
        device_exp_avg_sqs = cast(List[Tensor], device_exp_avg_sqs_)
        device_state_steps = cast(List[Tensor], device_state_steps_)

        # Handle complex parameters
        if has_complex:
            _view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs)

        if maximize:
            device_grads = torch._foreach_neg(device_grads)  # type: ignore[assignment]

        # Update steps
        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
        # wrapped it once now. The alpha is required to assure we go to the right overload.
        if not _is_compiling() and device_state_steps[0].is_cpu:
            torch._foreach_add_(device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0)
        else:
            torch._foreach_add_(device_state_steps, 1)

        if weight_decay != 0 and not decoupled:
            # Re-use the intermediate memory (device_grads) already allocated for maximize
            if maximize:
                torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
            else:
                device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)

        if device_state_steps[0] == 1:
            torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads)
            continue

        if weight_decay != 0 and decoupled:
            torch._foreach_add_(device_params, device_params, alpha=-lr * weight_decay)

        exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)
        torch._foreach_maximum_(exp_avg_sq_sqrt, eps)

        normed_grad = torch._foreach_div(device_grads, exp_avg_sq_sqrt)

        if clip_exp is not None:
            clip_val = (device_state_steps[0] - 1) ** clip_exp
            torch._foreach_maximum_(normed_grad, -clip_val)
            torch._foreach_minimum_(normed_grad, clip_val)

        torch._foreach_lerp_(device_exp_avgs, normed_grad, 1 - beta1)

        if caution:
            # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
            masks = torch._foreach_mul(device_exp_avgs, device_grads)
            masks = [(m > 0).to(g.dtype) for m, g in zip(masks, device_grads)]
            mask_scale = [m.mean() for m in masks]
            torch._foreach_maximum_(mask_scale, 1e-3)
            torch._foreach_div_(masks, mask_scale)
            device_exp_avgs = torch._foreach_mul(device_exp_avgs, masks)

        torch._foreach_add_(device_params, device_exp_avgs, alpha=-lr)

        torch._foreach_mul_(device_exp_avg_sqs, beta2)
        torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads, value=1 - beta2)


#@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adopt)  # FIXME internal context mgr, can't use
def adopt(
        params: List[Tensor],
        grads: List[Tensor],
        exp_avgs: List[Tensor],
        exp_avg_sqs: List[Tensor],
        state_steps: List[Tensor],
        # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
        # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
        foreach: Optional[bool] = None,
        capturable: bool = False,
        differentiable: bool = False,
        grad_scale: Optional[Tensor] = None,
        found_inf: Optional[Tensor] = None,
        has_complex: bool = False,
        *,
        beta1: float,
        beta2: float,
        lr: Union[float, Tensor],
        weight_decay: float,
        clip_exp: Optional[float],
        decoupled: bool,
        eps: float,
        caution: bool,
        maximize: bool,
):
    r"""Functional API that performs ADOPT algorithm computation.

    """
    if foreach is None:
        foreach = False

    # this check is slow during compilation, so we skip it
    # if it's strictly needed we can add this check back in dynamo
    if not _is_compiling() and not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError(
            "API has changed, `state_steps` argument must contain a list of singleton tensors"
        )

    if foreach and torch.jit.is_scripting():
        raise RuntimeError("torch.jit.script not supported with foreach optimizers")

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_adopt
    else:
        func = _single_tensor_adopt

    func(
        params,
        grads,
        exp_avgs,
        exp_avg_sqs,
        state_steps,
        has_complex=has_complex,
        beta1=beta1,
        beta2=beta2,
        lr=lr,
        weight_decay=weight_decay,
        clip_exp=clip_exp,
        decoupled=decoupled,
        eps=eps,
        caution=caution,
        maximize=maximize,
        capturable=capturable,
        differentiable=differentiable,
        grad_scale=grad_scale,
        found_inf=found_inf,
    )