File size: 4,458 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
""" PyTorch impl of LaProp optimizer

Code simplified from https://github.com/Z-T-WANG/LaProp-Optimizer, MIT License

Paper: LaProp: Separating Momentum and Adaptivity in Adam, https://arxiv.org/abs/2002.04839

@article{ziyin2020laprop,
  title={LaProp: a Better Way to Combine Momentum with Adaptive Gradient},
  author={Ziyin, Liu and Wang, Zhikang T and Ueda, Masahito},
  journal={arXiv preprint arXiv:2002.04839},
  year={2020}
}

"""
from typing import Tuple

from torch.optim import Optimizer
import torch

from ._types import ParamsT


class LaProp(Optimizer):
    """ LaProp Optimizer

    Paper: LaProp: Separating Momentum and Adaptivity in Adam, https://arxiv.org/abs/2002.04839
    """
    def __init__(
            self,
            params: ParamsT,
            lr: float = 4e-4,
            betas: Tuple[float, float] = (0.9, 0.999),
            eps: float = 1e-15,
            weight_decay: float = 0.,
            caution: bool = False,
    ):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(
            lr=lr,
            betas=betas,
            eps=eps,
            weight_decay=weight_decay,
            caution=caution,
        )
        super(LaProp, self).__init__(params, defaults)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('LaProp does not support sparse gradients')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p)
                    # Exponential moving average of learning rates
                    state['exp_avg_lr_1'] = 0.
                    state['exp_avg_lr_2'] = 0.
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1
                one_minus_beta2 = 1 - beta2
                one_minus_beta1 = 1 - beta1

                # Decay the first and second moment running average coefficient
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=one_minus_beta2)

                state['exp_avg_lr_1'] = state['exp_avg_lr_1'] * beta1 + one_minus_beta1 * group['lr']
                state['exp_avg_lr_2'] = state['exp_avg_lr_2'] * beta2 + one_minus_beta2

                # 1 - beta1 ** state['step']
                bias_correction1 = state['exp_avg_lr_1'] / group['lr'] if group['lr'] != 0. else 1.
                bias_correction2 = state['exp_avg_lr_2']
                step_size = 1 / bias_correction1

                denom = exp_avg_sq.div(bias_correction2).sqrt_().add_(group['eps'])
                step_of_this_grad = grad / denom
                exp_avg.mul_(beta1).add_(step_of_this_grad, alpha=group['lr'] * one_minus_beta1)

                if group['caution']:
                    # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
                    mask = (exp_avg * grad > 0).to(grad.dtype)
                    mask.div_(mask.mean().clamp_(min=1e-3))
                    exp_avg = exp_avg * mask

                p.add_(exp_avg, alpha=-step_size)

                if group['weight_decay'] != 0:
                    p.add_(p, alpha=-(group['lr'] * group['weight_decay']))

        return loss