File size: 2,487 Bytes
53a37bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
"""
SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217
Code: https://github.com/clovaai/AdamP
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import torch
import torch.nn.functional as F
from torch.optim.optimizer import Optimizer, required
import math
from .adamp import projection
class SGDP(Optimizer):
def __init__(
self,
params,
lr=required,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
eps=1e-8,
delta=0.1,
wd_ratio=0.1
):
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
eps=eps,
delta=delta,
wd_ratio=wd_ratio,
)
super(SGDP, self).__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
state = self.state[p]
# State initialization
if len(state) == 0:
state['momentum'] = torch.zeros_like(p)
# SGD
buf = state['momentum']
buf.mul_(momentum).add_(grad, alpha=1. - dampening)
if nesterov:
d_p = grad + momentum * buf
else:
d_p = buf
# Projection
wd_ratio = 1.
if len(p.shape) > 1:
d_p, wd_ratio = projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps'])
# Weight decay
if weight_decay != 0:
p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum))
# Step
p.add_(d_p, alpha=-group['lr'])
return loss
|