File size: 6,894 Bytes
53a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
""" Checkpoint Saver

Track top-n training checkpoints and maintain recovery checkpoints on specified intervals.

Hacked together by / Copyright 2020 Ross Wightman
"""

import glob
import logging
import operator
import os
import shutil

import torch

from .model import unwrap_model, get_state_dict


_logger = logging.getLogger(__name__)


class CheckpointSaver:
    def __init__(
            self,
            model,
            optimizer,
            args=None,
            model_ema=None,
            amp_scaler=None,
            checkpoint_prefix='checkpoint',
            recovery_prefix='recovery',
            checkpoint_dir='',
            recovery_dir='',
            decreasing=False,
            max_history=10,
            unwrap_fn=unwrap_model
    ):

        # objects to save state_dicts of
        self.model = model
        self.optimizer = optimizer
        self.args = args
        self.model_ema = model_ema
        self.amp_scaler = amp_scaler

        # state
        self.checkpoint_files = []  # (filename, metric) tuples in order of decreasing betterness
        self.best_epoch = None
        self.best_metric = None
        self.curr_recovery_file = ''
        self.prev_recovery_file = ''
        self.can_hardlink = True

        # config
        self.checkpoint_dir = checkpoint_dir
        self.recovery_dir = recovery_dir
        self.save_prefix = checkpoint_prefix
        self.recovery_prefix = recovery_prefix
        self.extension = '.pth.tar'
        self.decreasing = decreasing  # a lower metric is better if True
        self.cmp = operator.lt if decreasing else operator.gt  # True if lhs better than rhs
        self.max_history = max_history
        self.unwrap_fn = unwrap_fn
        assert self.max_history >= 1

    def _replace(self, src, dst):
        if self.can_hardlink:
            try:
                if os.path.exists(dst):
                    os.unlink(dst)  # required for Windows support.
            except (OSError, NotImplementedError) as e:
                self.can_hardlink = False
        os.replace(src, dst)

    def _duplicate(self, src, dst):
        if self.can_hardlink:
            try:
                if os.path.exists(dst):
                    # for Windows
                    os.unlink(dst)
                os.link(src, dst)
                return
            except (OSError, NotImplementedError) as e:
                self.can_hardlink = False
        shutil.copy2(src, dst)

    def _save(self, save_path, epoch, metric=None):
        save_state = {
            'epoch': epoch,
            'arch': type(self.model).__name__.lower(),
            'state_dict': get_state_dict(self.model, self.unwrap_fn),
            'optimizer': self.optimizer.state_dict(),
            'version': 2,  # version < 2 increments epoch before save
        }
        if self.args is not None:
            save_state['arch'] = self.args.model
            save_state['args'] = self.args
        if self.amp_scaler is not None:
            save_state[self.amp_scaler.state_dict_key] = self.amp_scaler.state_dict()
        if self.model_ema is not None:
            save_state['state_dict_ema'] = get_state_dict(self.model_ema, self.unwrap_fn)
        if metric is not None:
            save_state['metric'] = metric
        torch.save(save_state, save_path)

    def _cleanup_checkpoints(self, trim=0):
        trim = min(len(self.checkpoint_files), trim)
        delete_index = self.max_history - trim
        if delete_index < 0 or len(self.checkpoint_files) <= delete_index:
            return
        to_delete = self.checkpoint_files[delete_index:]
        for d in to_delete:
            try:
                _logger.debug("Cleaning checkpoint: {}".format(d))
                os.remove(d[0])
            except Exception as e:
                _logger.error("Exception '{}' while deleting checkpoint".format(e))
        self.checkpoint_files = self.checkpoint_files[:delete_index]

    def save_checkpoint(self, epoch, metric=None):
        assert epoch >= 0
        tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension)
        last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension)
        self._save(tmp_save_path, epoch, metric)
        self._replace(tmp_save_path, last_save_path)

        worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None
        if (
            len(self.checkpoint_files) < self.max_history
            or metric is None
            or self.cmp(metric, worst_file[1])
        ):
            if len(self.checkpoint_files) >= self.max_history:
                self._cleanup_checkpoints(1)
            filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension
            save_path = os.path.join(self.checkpoint_dir, filename)
            self._duplicate(last_save_path, save_path)

            self.checkpoint_files.append((save_path, metric))
            self.checkpoint_files = sorted(
                self.checkpoint_files,
                key=lambda x: x[1],
                reverse=not self.decreasing  # sort in descending order if a lower metric is not better
            )

            checkpoints_str = "Current checkpoints:\n"
            for c in self.checkpoint_files:
                checkpoints_str += ' {}\n'.format(c)
            _logger.info(checkpoints_str)

            if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)):
                self.best_epoch = epoch
                self.best_metric = metric
                best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension)
                self._duplicate(last_save_path, best_save_path)

        return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch)

    def save_recovery(self, epoch, batch_idx=0):
        assert epoch >= 0
        tmp_save_path = os.path.join(self.recovery_dir, 'recovery_tmp' + self.extension)
        self._save(tmp_save_path, epoch)

        filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension
        save_path = os.path.join(self.recovery_dir, filename)
        self._replace(tmp_save_path, save_path)

        if os.path.exists(self.prev_recovery_file):
            try:
                _logger.debug("Cleaning recovery: {}".format(self.prev_recovery_file))
                os.remove(self.prev_recovery_file)
            except Exception as e:
                _logger.error("Exception '{}' while removing {}".format(e, self.prev_recovery_file))
        self.prev_recovery_file = self.curr_recovery_file
        self.curr_recovery_file = save_path

    def find_recovery(self):
        recovery_path = os.path.join(self.recovery_dir, self.recovery_prefix)
        files = glob.glob(recovery_path + '*' + self.extension)
        files = sorted(files)
        return files[0] if len(files) else ''