meg's picture
meg HF staff
Upload folder using huggingface_hub
53a37bd verified
import pytest
import torch
import torch.nn as nn
from timm.layers import create_act_layer, set_layer_config, get_act_layer, get_act_fn, Attention2d, MultiQueryAttentionV2
import importlib
import os
torch_backend = os.environ.get('TORCH_BACKEND')
if torch_backend is not None:
importlib.import_module(torch_backend)
torch_device = os.environ.get('TORCH_DEVICE', 'cpu')
class MLP(nn.Module):
def __init__(self, act_layer="relu", inplace=True):
super(MLP, self).__init__()
self.fc1 = nn.Linear(1000, 100)
self.act = create_act_layer(act_layer, inplace=inplace)
self.fc2 = nn.Linear(100, 10)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
def _run_act_layer_grad(act_type, inplace=True):
x = torch.rand(10, 1000) * 10
m = MLP(act_layer=act_type, inplace=inplace)
def _run(x, act_layer=''):
if act_layer:
# replace act layer if set
m.act = create_act_layer(act_layer, inplace=inplace)
out = m(x)
l = (out - 0).pow(2).sum()
return l
x = x.to(device=torch_device)
m.to(device=torch_device)
out_me = _run(x)
with set_layer_config(scriptable=True):
out_jit = _run(x, act_type)
assert torch.isclose(out_jit, out_me)
with set_layer_config(no_jit=True):
out_basic = _run(x, act_type)
assert torch.isclose(out_basic, out_jit)
def test_swish_grad():
for _ in range(100):
_run_act_layer_grad('swish')
def test_mish_grad():
for _ in range(100):
_run_act_layer_grad('mish')
def test_hard_sigmoid_grad():
for _ in range(100):
_run_act_layer_grad('hard_sigmoid', inplace=None)
def test_hard_swish_grad():
for _ in range(100):
_run_act_layer_grad('hard_swish')
def test_hard_mish_grad():
for _ in range(100):
_run_act_layer_grad('hard_mish')
def test_get_act_layer_empty_string():
# Empty string should return None
assert get_act_layer('') is None
def test_create_act_layer_inplace_error():
class NoInplaceAct(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
# Should recover when inplace arg causes TypeError
layer = create_act_layer(NoInplaceAct, inplace=True)
assert isinstance(layer, NoInplaceAct)
def test_create_act_layer_edge_cases():
# Test None input
assert create_act_layer(None) is None
# Test TypeError handling for inplace
class CustomAct(nn.Module):
def __init__(self, **kwargs):
super().__init__()
def forward(self, x):
return x
result = create_act_layer(CustomAct, inplace=True)
assert isinstance(result, CustomAct)
def test_get_act_fn_callable():
def custom_act(x):
return x
assert get_act_fn(custom_act) is custom_act
def test_get_act_fn_none():
assert get_act_fn(None) is None
assert get_act_fn('') is None
@pytest.mark.parametrize("dim", [128])
@pytest.mark.parametrize("dim_out", [128, 256])
@pytest.mark.parametrize("use_m", [True, False])
def test_mqa_v2(dim, dim_out, use_m):
mqa = MultiQueryAttentionV2(dim, dim_out)
x = torch.randn(1, dim, 32, 48)
if use_m:
m = torch.randn(1, dim, 16, 24)
else:
m = None
y = mqa(x, m=m)
assert (y.shape) == (1, dim_out, 32, 48)
@pytest.mark.parametrize("bias", [True, False])
@pytest.mark.parametrize("expand_first", [True, False])
@pytest.mark.parametrize("head_first", [True, False])
@pytest.mark.parametrize("attn_mask", [True, False])
def test_attn2d(bias, expand_first, head_first, attn_mask):
x = torch.randn(1, 128, 32, 48)
attn = Attention2d(
128, 128, num_heads=4, bias=bias, expand_first=expand_first, head_first=head_first
)
if attn_mask:
mask = torch.randint(0, 1, size=(32 * 48, 32 * 48), dtype=torch.float32)
else:
mask = None
o1 = attn(x, mask)
attn.fused_attn = False
o2 = attn(x, mask)
assert torch.allclose(o1, o2, atol=1e-5), f"{torch.abs(o1 - o2).max()}"