|
""" Attention Pool 2D |
|
|
|
Implementations of 2D spatial feature pooling using multi-head attention instead of average pool. |
|
|
|
Based on idea in CLIP by OpenAI, licensed Apache 2.0 |
|
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py |
|
|
|
Hacked together by / Copyright 2021 Ross Wightman |
|
""" |
|
from typing import Optional, Union, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from. config import use_fused_attn |
|
from .helpers import to_2tuple |
|
from .pos_embed import resample_abs_pos_embed |
|
from .pos_embed_sincos import apply_rot_embed, RotaryEmbedding |
|
from .weight_init import trunc_normal_ |
|
|
|
|
|
class RotAttentionPool2d(nn.Module): |
|
""" Attention based 2D feature pooling w/ rotary (relative) pos embedding. |
|
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. |
|
|
|
Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed. |
|
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py |
|
|
|
NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from |
|
train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: Optional[int] = None, |
|
ref_feat_size: Union[int, Tuple[int, int]] = 7, |
|
embed_dim: Optional[int] = None, |
|
head_dim: Optional[int] = 64, |
|
num_heads: Optional[int] = None, |
|
qkv_bias: bool = True, |
|
qkv_separate: bool = False, |
|
pool_type: str = 'token', |
|
class_token: bool = False, |
|
drop_rate: float = 0., |
|
): |
|
super().__init__() |
|
assert pool_type in ('', 'token') |
|
self.embed_dim = embed_dim = embed_dim or in_features |
|
self.in_features = in_features |
|
self.out_features = out_features or in_features |
|
ref_feat_size = to_2tuple(ref_feat_size) |
|
if num_heads is not None: |
|
assert embed_dim % num_heads == 0 |
|
head_dim = embed_dim // num_heads |
|
else: |
|
assert embed_dim % head_dim == 0 |
|
num_heads = embed_dim // head_dim |
|
self.num_heads = num_heads |
|
self.head_dim = head_dim |
|
self.pool_type = pool_type.lower() |
|
self.scale = self.head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
if class_token: |
|
self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) |
|
else: |
|
self.cls_token = None |
|
|
|
if qkv_separate: |
|
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) |
|
self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) |
|
self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) |
|
self.qkv = None |
|
else: |
|
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) |
|
self.drop = nn.Dropout(drop_rate) |
|
self.proj = nn.Linear(embed_dim, self.out_features) |
|
self.pos_embed = RotaryEmbedding(self.head_dim, in_pixels=False, ref_feat_shape=ref_feat_size) |
|
|
|
def init_weights(self, zero_init_last: bool = False): |
|
if self.qkv is None: |
|
in_features = self.q.in_features |
|
trunc_normal_(self.q.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.q.bias) |
|
trunc_normal_(self.k.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.k.bias) |
|
trunc_normal_(self.v.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.v.bias) |
|
else: |
|
in_features = self.qkv.in_features |
|
trunc_normal_(self.qkv.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.qkv.bias) |
|
|
|
def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): |
|
|
|
if pool_type is not None: |
|
assert pool_type in ('', 'token') |
|
self.pool_type = pool_type |
|
if num_classes is not None: |
|
self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() |
|
self.out_features = num_classes if num_classes > 0 else self.embed_dim |
|
|
|
def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: |
|
if self.pool_type == 'token': |
|
x = x[:, 0] |
|
else: |
|
|
|
x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) |
|
return x |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
B, _, H, W = x.shape |
|
N = H * W |
|
x = x.flatten(2).transpose(1, 2) |
|
if self.cls_token is None: |
|
x = torch.cat([x.mean(1, keepdim=True), x], dim=1) |
|
else: |
|
x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) |
|
if self.qkv is None: |
|
q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) |
|
k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) |
|
v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) |
|
else: |
|
x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) |
|
q, k, v = x.unbind(0) |
|
|
|
rse, rce = self.pos_embed.get_embed((H, W)) |
|
q = torch.cat([q[:, :, :1, :], apply_rot_embed(q[:, :, 1:, :], rse, rce)], dim=2).type_as(v) |
|
k = torch.cat([k[:, :, :1, :], apply_rot_embed(k[:, :, 1:, :], rse, rce)], dim=2).type_as(v) |
|
|
|
if self.fused_attn: |
|
x = nn.functional.scaled_dot_product_attention(q, k, v) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
x = attn @ v |
|
x = x.transpose(1, 2).reshape(B, N + 1, -1) |
|
x = self.drop(x) |
|
if pre_logits: |
|
x = self._pool(x, H, W) |
|
return x |
|
x = self.proj(x) |
|
x = self._pool(x, H, W) |
|
return x |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
""" Attention based 2D feature pooling w/ learned (absolute) pos embedding. |
|
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. |
|
|
|
It was based on impl in CLIP by OpenAI |
|
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py |
|
|
|
NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network. |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
feat_size: Union[int, Tuple[int, int]] = 7, |
|
out_features: Optional[int] = None, |
|
embed_dim: Optional[int] = None, |
|
head_dim: Optional[int] = 64, |
|
num_heads: Optional[int] = None, |
|
qkv_bias: bool = True, |
|
qkv_separate: bool = False, |
|
pool_type: str = 'token', |
|
class_token: bool = False, |
|
drop_rate: float = 0., |
|
): |
|
super().__init__() |
|
assert pool_type in ('', 'token') |
|
self.embed_dim = embed_dim = embed_dim or in_features |
|
self.in_features = in_features |
|
self.out_features = out_features or in_features |
|
if num_heads is not None: |
|
assert embed_dim % num_heads == 0 |
|
head_dim = embed_dim // num_heads |
|
else: |
|
assert embed_dim % head_dim == 0 |
|
num_heads = embed_dim // head_dim |
|
self.feat_size = to_2tuple(feat_size) |
|
self.seq_len = self.feat_size[0] * self.feat_size[1] |
|
self.num_heads = num_heads |
|
self.head_dim = head_dim |
|
self.pool_type = pool_type |
|
self.scale = self.head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
if class_token: |
|
self.cls_token = nn.Parameter(torch.zeros(1, embed_dim)) |
|
else: |
|
self.cls_token = None |
|
|
|
if qkv_separate: |
|
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias) |
|
self.k = nn.Linear(in_features, embed_dim, bias=qkv_bias) |
|
self.v = nn.Linear(in_features, embed_dim, bias=qkv_bias) |
|
self.qkv = None |
|
else: |
|
self.q = self.k = self.v = None |
|
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) |
|
self.drop = nn.Dropout(drop_rate) |
|
self.proj = nn.Linear(embed_dim, self.out_features) |
|
self.pos_embed = nn.Parameter(torch.zeros(self.seq_len + 1, in_features)) |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self, zero_init_last: bool = False): |
|
if self.qkv is None: |
|
in_features = self.q.in_features |
|
trunc_normal_(self.q.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.q.bias) |
|
trunc_normal_(self.k.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.k.bias) |
|
trunc_normal_(self.v.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.v.bias) |
|
else: |
|
in_features = self.qkv.in_features |
|
trunc_normal_(self.qkv.weight, std=in_features ** -0.5) |
|
nn.init.zeros_(self.qkv.bias) |
|
trunc_normal_(self.pos_embed, std=in_features ** -0.5) |
|
|
|
def reset(self, num_classes: Optional[int] = None, pool_type: Optional[str] = None): |
|
|
|
if pool_type is not None: |
|
assert pool_type in ('', 'token') |
|
self.pool_type = pool_type |
|
if num_classes is not None: |
|
self.proj = nn.Linear(self.in_features, num_classes) if num_classes > 0 else nn.Identity() |
|
self.out_features = num_classes if num_classes > 0 else self.embed_dim |
|
|
|
def _pool(self, x: torch.Tensor, H: int, W: int) -> torch.Tensor: |
|
if self.pool_type == 'token': |
|
x = x[:, 0] |
|
else: |
|
|
|
x = x[:, 1:].reshape(x.shape[0], H, W, -1).permute(0, 3, 1, 2) |
|
return x |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
B, _, H, W = x.shape |
|
N = H * W |
|
x = x.flatten(2).transpose(1, 2) |
|
if self.cls_token is None: |
|
x = torch.cat([x.mean(1, keepdim=True), x], dim=1) |
|
else: |
|
x = torch.cat([self.cls_token.expand(x.shape[0], -1, -1), x], dim=1) |
|
pos_embed = resample_abs_pos_embed(self.pos_embed.unsqueeze(0), (H, W), num_prefix_tokens=1) |
|
x = x + pos_embed |
|
|
|
if self.qkv is None: |
|
q = self.q(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) |
|
k = self.k(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) |
|
v = self.v(x).reshape(B, N + 1, self.num_heads, self.head_dim).transpose(1, 2) |
|
else: |
|
x = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) |
|
q, k, v = x.unbind(0) |
|
|
|
if self.fused_attn: |
|
x = nn.functional.scaled_dot_product_attention(q, k, v) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
x = attn @ v |
|
x = x.transpose(1, 2).reshape(B, N + 1, -1) |
|
x = self.drop(x) |
|
if pre_logits: |
|
x = self._pool(x, H, W) |
|
return x |
|
x = self.proj(x) |
|
x = self._pool(x, H, W) |
|
return x |
|
|