|
""" Conv2d + BN + Act |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from typing import Any, Dict, Optional, Type |
|
|
|
from torch import nn as nn |
|
|
|
from .typing import LayerType, PadType |
|
from .blur_pool import create_aa |
|
from .create_conv2d import create_conv2d |
|
from .create_norm_act import get_norm_act_layer |
|
|
|
|
|
class ConvNormAct(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int = 1, |
|
stride: int = 1, |
|
padding: PadType = '', |
|
dilation: int = 1, |
|
groups: int = 1, |
|
bias: bool = False, |
|
apply_norm: bool = True, |
|
apply_act: bool = True, |
|
norm_layer: LayerType = nn.BatchNorm2d, |
|
act_layer: Optional[LayerType] = nn.ReLU, |
|
aa_layer: Optional[LayerType] = None, |
|
drop_layer: Optional[Type[nn.Module]] = None, |
|
conv_kwargs: Optional[Dict[str, Any]] = None, |
|
norm_kwargs: Optional[Dict[str, Any]] = None, |
|
act_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
super(ConvNormAct, self).__init__() |
|
conv_kwargs = conv_kwargs or {} |
|
norm_kwargs = norm_kwargs or {} |
|
act_kwargs = act_kwargs or {} |
|
use_aa = aa_layer is not None and stride > 1 |
|
|
|
self.conv = create_conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1 if use_aa else stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
**conv_kwargs, |
|
) |
|
|
|
if apply_norm: |
|
|
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
|
|
if drop_layer: |
|
norm_kwargs['drop_layer'] = drop_layer |
|
self.bn = norm_act_layer( |
|
out_channels, |
|
apply_act=apply_act, |
|
act_kwargs=act_kwargs, |
|
**norm_kwargs, |
|
) |
|
else: |
|
self.bn = nn.Sequential() |
|
if drop_layer: |
|
norm_kwargs['drop_layer'] = drop_layer |
|
self.bn.add_module('drop', drop_layer()) |
|
|
|
self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa, noop=None) |
|
|
|
@property |
|
def in_channels(self): |
|
return self.conv.in_channels |
|
|
|
@property |
|
def out_channels(self): |
|
return self.conv.out_channels |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
aa = getattr(self, 'aa', None) |
|
if aa is not None: |
|
x = self.aa(x) |
|
return x |
|
|
|
|
|
ConvBnAct = ConvNormAct |
|
ConvNormActAa = ConvNormAct |
|
|