|
""" Norm Layer Factory |
|
|
|
Create norm modules by string (to mirror create_act and creat_norm-act fns) |
|
|
|
Copyright 2022 Ross Wightman |
|
""" |
|
import functools |
|
import types |
|
from typing import Type |
|
|
|
import torch.nn as nn |
|
|
|
from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d, SimpleNorm, SimpleNorm2d |
|
from torchvision.ops.misc import FrozenBatchNorm2d |
|
|
|
_NORM_MAP = dict( |
|
batchnorm=nn.BatchNorm2d, |
|
batchnorm2d=nn.BatchNorm2d, |
|
batchnorm1d=nn.BatchNorm1d, |
|
groupnorm=GroupNorm, |
|
groupnorm1=GroupNorm1, |
|
layernorm=LayerNorm, |
|
layernorm2d=LayerNorm2d, |
|
rmsnorm=RmsNorm, |
|
rmsnorm2d=RmsNorm2d, |
|
simplenorm=SimpleNorm, |
|
simplenorm2d=SimpleNorm2d, |
|
frozenbatchnorm2d=FrozenBatchNorm2d, |
|
) |
|
_NORM_TYPES = {m for n, m in _NORM_MAP.items()} |
|
|
|
|
|
def create_norm_layer(layer_name, num_features, **kwargs): |
|
layer = get_norm_layer(layer_name) |
|
layer_instance = layer(num_features, **kwargs) |
|
return layer_instance |
|
|
|
|
|
def get_norm_layer(norm_layer): |
|
if norm_layer is None: |
|
return None |
|
assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) |
|
norm_kwargs = {} |
|
|
|
|
|
if isinstance(norm_layer, functools.partial): |
|
norm_kwargs.update(norm_layer.keywords) |
|
norm_layer = norm_layer.func |
|
|
|
if isinstance(norm_layer, str): |
|
if not norm_layer: |
|
return None |
|
layer_name = norm_layer.replace('_', '').lower() |
|
norm_layer = _NORM_MAP[layer_name] |
|
else: |
|
norm_layer = norm_layer |
|
|
|
if norm_kwargs: |
|
norm_layer = functools.partial(norm_layer, **norm_kwargs) |
|
return norm_layer |
|
|