meg's picture
meg HF staff
Upload folder using huggingface_hub
53a37bd verified
""" NormAct (Normalization + Activation Layer) Factory
Create norm + act combo modules that attempt to be backwards compatible with separate norm + act
instances in models. Where these are used it will be possible to swap separate BN + act layers with
combined modules like IABN or EvoNorms.
Hacked together by / Copyright 2020 Ross Wightman
"""
import types
import functools
from .evo_norm import *
from .filter_response_norm import FilterResponseNormAct2d, FilterResponseNormTlu2d
from .norm_act import BatchNormAct2d, GroupNormAct, LayerNormAct, LayerNormAct2d
from .inplace_abn import InplaceAbn
_NORM_ACT_MAP = dict(
batchnorm=BatchNormAct2d,
batchnorm2d=BatchNormAct2d,
groupnorm=GroupNormAct,
groupnorm1=functools.partial(GroupNormAct, num_groups=1),
layernorm=LayerNormAct,
layernorm2d=LayerNormAct2d,
evonormb0=EvoNorm2dB0,
evonormb1=EvoNorm2dB1,
evonormb2=EvoNorm2dB2,
evonorms0=EvoNorm2dS0,
evonorms0a=EvoNorm2dS0a,
evonorms1=EvoNorm2dS1,
evonorms1a=EvoNorm2dS1a,
evonorms2=EvoNorm2dS2,
evonorms2a=EvoNorm2dS2a,
frn=FilterResponseNormAct2d,
frntlu=FilterResponseNormTlu2d,
inplaceabn=InplaceAbn,
iabn=InplaceAbn,
)
_NORM_ACT_TYPES = {m for n, m in _NORM_ACT_MAP.items()}
# has act_layer arg to define act type
_NORM_ACT_REQUIRES_ARG = {
BatchNormAct2d, GroupNormAct, LayerNormAct, LayerNormAct2d, FilterResponseNormAct2d, InplaceAbn}
def create_norm_act_layer(layer_name, num_features, act_layer=None, apply_act=True, jit=False, **kwargs):
layer = get_norm_act_layer(layer_name, act_layer=act_layer)
layer_instance = layer(num_features, apply_act=apply_act, **kwargs)
if jit:
layer_instance = torch.jit.script(layer_instance)
return layer_instance
def get_norm_act_layer(norm_layer, act_layer=None):
if norm_layer is None:
return None
assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial))
assert act_layer is None or isinstance(act_layer, (type, str, types.FunctionType, functools.partial))
norm_act_kwargs = {}
# unbind partial fn, so args can be rebound later
if isinstance(norm_layer, functools.partial):
norm_act_kwargs.update(norm_layer.keywords)
norm_layer = norm_layer.func
if isinstance(norm_layer, str):
if not norm_layer:
return None
layer_name = norm_layer.replace('_', '').lower().split('-')[0]
norm_act_layer = _NORM_ACT_MAP[layer_name]
elif norm_layer in _NORM_ACT_TYPES:
norm_act_layer = norm_layer
elif isinstance(norm_layer, types.FunctionType):
# if function type, must be a lambda/fn that creates a norm_act layer
norm_act_layer = norm_layer
else:
type_name = norm_layer.__name__.lower()
if type_name.startswith('batchnorm'):
norm_act_layer = BatchNormAct2d
elif type_name.startswith('groupnorm'):
norm_act_layer = GroupNormAct
elif type_name.startswith('groupnorm1'):
norm_act_layer = functools.partial(GroupNormAct, num_groups=1)
elif type_name.startswith('layernorm2d'):
norm_act_layer = LayerNormAct2d
elif type_name.startswith('layernorm'):
norm_act_layer = LayerNormAct
else:
assert False, f"No equivalent norm_act layer for {type_name}"
if norm_act_layer in _NORM_ACT_REQUIRES_ARG:
# pass `act_layer` through for backwards compat where `act_layer=None` implies no activation.
# In the future, may force use of `apply_act` with `act_layer` arg bound to relevant NormAct types
norm_act_kwargs.setdefault('act_layer', act_layer)
if norm_act_kwargs:
norm_act_layer = functools.partial(norm_act_layer, **norm_act_kwargs) # bind/rebind args
return norm_act_layer