|
""" 'Fast' Normalization Functions |
|
|
|
For GroupNorm and LayerNorm these functions bypass typical AMP upcast to float32. |
|
|
|
Additionally, for LayerNorm, the APEX fused LN is used if available (which also does not upcast) |
|
|
|
Hacked together by / Copyright 2022 Ross Wightman |
|
""" |
|
from typing import List, Optional |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
|
|
try: |
|
from apex.normalization.fused_layer_norm import fused_layer_norm_affine |
|
has_apex = True |
|
except ImportError: |
|
has_apex = False |
|
|
|
try: |
|
from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm |
|
has_apex_rmsnorm = True |
|
except ImportError: |
|
has_apex_rmsnorm = False |
|
|
|
|
|
has_torch_rms_norm = hasattr(F, 'rms_norm') |
|
|
|
|
|
_USE_FAST_NORM = False |
|
|
|
|
|
def get_autocast_dtype(device: str = 'cuda'): |
|
try: |
|
return torch.get_autocast_dtype(device) |
|
except (AttributeError, TypeError): |
|
|
|
if device == 'cpu': |
|
return torch.get_autocast_cpu_dtype() |
|
else: |
|
assert device == 'cuda' |
|
return torch.get_autocast_gpu_dtype() |
|
|
|
|
|
def is_autocast_enabled(device: str = 'cuda'): |
|
try: |
|
return torch.is_autocast_enabled(device) |
|
except TypeError: |
|
|
|
if device == 'cpu': |
|
return torch.is_autocast_cpu_enabled() |
|
else: |
|
assert device == 'cuda' |
|
return torch.is_autocast_enabled() |
|
|
|
|
|
def is_fast_norm(): |
|
return _USE_FAST_NORM |
|
|
|
|
|
def set_fast_norm(enable=True): |
|
global _USE_FAST_NORM |
|
_USE_FAST_NORM = enable |
|
|
|
|
|
def fast_group_norm( |
|
x: torch.Tensor, |
|
num_groups: int, |
|
weight: Optional[torch.Tensor] = None, |
|
bias: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5 |
|
) -> torch.Tensor: |
|
if torch.jit.is_scripting(): |
|
|
|
return F.group_norm(x, num_groups, weight, bias, eps) |
|
|
|
if is_autocast_enabled(x.device.type): |
|
|
|
|
|
dt = get_autocast_dtype(x.device.type) |
|
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None |
|
|
|
with torch.amp.autocast(device_type=x.device.type, enabled=False): |
|
return F.group_norm(x, num_groups, weight, bias, eps) |
|
|
|
|
|
def fast_layer_norm( |
|
x: torch.Tensor, |
|
normalized_shape: List[int], |
|
weight: Optional[torch.Tensor] = None, |
|
bias: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5 |
|
) -> torch.Tensor: |
|
if torch.jit.is_scripting(): |
|
|
|
return F.layer_norm(x, normalized_shape, weight, bias, eps) |
|
|
|
if has_apex: |
|
return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps) |
|
|
|
if is_autocast_enabled(x.device.type): |
|
|
|
|
|
dt = get_autocast_dtype(x.device.type) |
|
x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None |
|
|
|
with torch.amp.autocast(device_type=x.device.type, enabled=False): |
|
return F.layer_norm(x, normalized_shape, weight, bias, eps) |
|
|
|
|
|
def rms_norm( |
|
x: torch.Tensor, |
|
normalized_shape: List[int], |
|
weight: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5, |
|
): |
|
norm_ndim = len(normalized_shape) |
|
v = x.pow(2) |
|
if torch.jit.is_scripting(): |
|
|
|
|
|
|
|
assert norm_ndim == 1 |
|
v = torch.mean(v, dim=-1).unsqueeze(-1) |
|
else: |
|
dims = tuple(range(-1, -norm_ndim - 1, -1)) |
|
v = torch.mean(v, dim=dims, keepdim=True) |
|
x = x * torch.rsqrt(v + eps) |
|
if weight is not None: |
|
x = x * weight |
|
return x |
|
|
|
|
|
def fast_rms_norm( |
|
x: torch.Tensor, |
|
normalized_shape: List[int], |
|
weight: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5, |
|
) -> torch.Tensor: |
|
if torch.jit.is_scripting(): |
|
|
|
return rms_norm(x, normalized_shape, weight, eps) |
|
|
|
if has_apex_rmsnorm: |
|
if weight is None: |
|
return fused_rms_norm(x, normalized_shape, eps) |
|
else: |
|
return fused_rms_norm_affine(x, weight, normalized_shape, eps) |
|
|
|
if is_autocast_enabled(x.device.type): |
|
|
|
|
|
dt = get_autocast_dtype(x.device.type) |
|
x, weight = x.to(dt), weight.to(dt) |
|
|
|
with torch.amp.autocast(device_type=x.device.type, enabled=False): |
|
if has_torch_rms_norm: |
|
x = F.rms_norm(x, normalized_shape, weight, eps) |
|
else: |
|
x = rms_norm(x, normalized_shape, weight, eps) |
|
|
|
return x |
|
|
|
|
|
def simple_norm( |
|
x: torch.Tensor, |
|
normalized_shape: List[int], |
|
weight: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5, |
|
): |
|
norm_ndim = len(normalized_shape) |
|
if torch.jit.is_scripting(): |
|
|
|
|
|
|
|
assert norm_ndim == 1 |
|
v = torch.var(x, dim=-1).unsqueeze(-1) |
|
else: |
|
dims = tuple(range(-1, -norm_ndim - 1, -1)) |
|
v = torch.var(x, dim=dims, keepdim=True) |
|
x = x * torch.rsqrt(v + eps) |
|
if weight is not None: |
|
x = x * weight |
|
return x |
|
|
|
|
|
def fast_simple_norm( |
|
x: torch.Tensor, |
|
normalized_shape: List[int], |
|
weight: Optional[torch.Tensor] = None, |
|
eps: float = 1e-5, |
|
) -> torch.Tensor: |
|
if torch.jit.is_scripting(): |
|
|
|
return simple_norm(x, normalized_shape, weight, eps) |
|
|
|
if is_autocast_enabled(x.device.type): |
|
|
|
|
|
dt = get_autocast_dtype(x.device.type) |
|
x, weight = x.to(dt), weight.to(dt) |
|
|
|
with torch.amp.autocast(device_type=x.device.type, enabled=False): |
|
x = simple_norm(x, normalized_shape, weight, eps) |
|
return x |
|
|
|
|