meg's picture
meg HF staff
Upload folder using huggingface_hub
53a37bd verified
""" RMSProp modified to behave like Tensorflow impl
Originally cut & paste from PyTorch RMSProp
https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py
Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE
Modifications Copyright 2021 Ross Wightman
"""
import torch
from torch.optim import Optimizer
from ._types import ParamsT
class RMSpropTF(Optimizer):
"""Implements RMSprop algorithm (TensorFlow style epsilon)
NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt
and a few other modifications to closer match Tensorflow for matching hyper-params.
Noteworthy changes include:
1. Epsilon applied inside square-root
2. square_avg initialized to ones
3. LR scaling of update accumulated in momentum buffer
Proposed by G. Hinton in his
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.
The centered version first appears in `Generating Sequences
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
Args:
params: iterable of parameters to optimize or dicts defining parameter groups
lr: learning rate
momentum: momentum factor
alpha: smoothing (decay) constant
eps: term added to the denominator to improve numerical stability
centered: if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance
weight_decay: weight decay (L2 penalty) (default: 0)
decoupled_decay: decoupled weight decay as per https://arxiv.org/abs/1711.05101
lr_in_momentum: learning rate scaling is included in the momentum buffer update as per defaults in Tensorflow
caution: apply caution
"""
def __init__(
self,
params: ParamsT,
lr: float = 1e-2,
alpha: float = 0.9,
eps: float = 1e-10,
weight_decay: float = 0,
momentum: float = 0.,
centered: bool = False,
decoupled_decay: bool = False,
lr_in_momentum: bool = True,
caution: bool = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= momentum:
raise ValueError("Invalid momentum value: {}".format(momentum))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= alpha:
raise ValueError("Invalid alpha value: {}".format(alpha))
defaults = dict(
lr=lr,
momentum=momentum,
alpha=alpha,
eps=eps,
centered=centered,
weight_decay=weight_decay,
decoupled_decay=decoupled_decay,
lr_in_momentum=lr_in_momentum,
caution=caution,
)
super(RMSpropTF, self).__init__(params, defaults)
def __setstate__(self, state):
super(RMSpropTF, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('momentum', 0)
group.setdefault('centered', False)
group.setdefault('caution', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError('RMSprop does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['square_avg'] = torch.ones_like(p) # PyTorch inits to zero
if group['momentum'] > 0:
state['momentum_buffer'] = torch.zeros_like(p)
if group['centered']:
state['grad_avg'] = torch.zeros_like(p)
square_avg = state['square_avg']
one_minus_alpha = 1. - group['alpha']
state['step'] += 1
if group['weight_decay'] != 0:
if group['decoupled_decay']:
p.mul_(1. - group['lr'] * group['weight_decay'])
else:
grad = grad.add(p, alpha=group['weight_decay'])
# Tensorflow order of ops for updating squared avg
square_avg.add_(grad.pow(2) - square_avg, alpha=one_minus_alpha)
# square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) # PyTorch original
if group['centered']:
grad_avg = state['grad_avg']
grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha)
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add(group['eps']).sqrt_() # eps in sqrt
# grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) # PyTorch original
else:
avg = square_avg.add(group['eps']).sqrt_() # eps moved in sqrt
if group['momentum'] > 0:
buf = state['momentum_buffer']
buf.mul_(group['momentum'])
def _apply_caution(_m, _g):
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
mask = (_m * _g > 0).to(_g.dtype)
mask.div_(mask.mean().clamp_(min=1e-3))
return _m * mask
if group['lr_in_momentum']:
# Tensorflow accumulates the LR scaling in the momentum buffer
buf.addcdiv_(grad, avg, value=group['lr'])
if group['caution']:
buf = _apply_caution(buf, grad)
p.add_(-buf)
else:
# PyTorch scales the param update by LR
buf.addcdiv_(grad, avg)
if group['caution']:
buf = _apply_caution(buf, grad)
p.add_(buf, alpha=-group['lr'])
else:
p.addcdiv_(grad, avg, value=-group['lr'])
return loss