|
""" RMSProp modified to behave like Tensorflow impl |
|
|
|
Originally cut & paste from PyTorch RMSProp |
|
https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py |
|
Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE |
|
|
|
Modifications Copyright 2021 Ross Wightman |
|
""" |
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
from ._types import ParamsT |
|
|
|
|
|
class RMSpropTF(Optimizer): |
|
"""Implements RMSprop algorithm (TensorFlow style epsilon) |
|
|
|
NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt |
|
and a few other modifications to closer match Tensorflow for matching hyper-params. |
|
|
|
Noteworthy changes include: |
|
1. Epsilon applied inside square-root |
|
2. square_avg initialized to ones |
|
3. LR scaling of update accumulated in momentum buffer |
|
|
|
Proposed by G. Hinton in his |
|
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_. |
|
|
|
The centered version first appears in `Generating Sequences |
|
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. |
|
|
|
Args: |
|
params: iterable of parameters to optimize or dicts defining parameter groups |
|
lr: learning rate |
|
momentum: momentum factor |
|
alpha: smoothing (decay) constant |
|
eps: term added to the denominator to improve numerical stability |
|
centered: if ``True``, compute the centered RMSProp, the gradient is normalized by an estimation of its variance |
|
weight_decay: weight decay (L2 penalty) (default: 0) |
|
decoupled_decay: decoupled weight decay as per https://arxiv.org/abs/1711.05101 |
|
lr_in_momentum: learning rate scaling is included in the momentum buffer update as per defaults in Tensorflow |
|
caution: apply caution |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: float = 1e-2, |
|
alpha: float = 0.9, |
|
eps: float = 1e-10, |
|
weight_decay: float = 0, |
|
momentum: float = 0., |
|
centered: bool = False, |
|
decoupled_decay: bool = False, |
|
lr_in_momentum: bool = True, |
|
caution: bool = False, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= momentum: |
|
raise ValueError("Invalid momentum value: {}".format(momentum)) |
|
if not 0.0 <= weight_decay: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
if not 0.0 <= alpha: |
|
raise ValueError("Invalid alpha value: {}".format(alpha)) |
|
|
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
alpha=alpha, |
|
eps=eps, |
|
centered=centered, |
|
weight_decay=weight_decay, |
|
decoupled_decay=decoupled_decay, |
|
lr_in_momentum=lr_in_momentum, |
|
caution=caution, |
|
) |
|
super(RMSpropTF, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(RMSpropTF, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('momentum', 0) |
|
group.setdefault('centered', False) |
|
group.setdefault('caution', False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError('RMSprop does not support sparse gradients') |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['square_avg'] = torch.ones_like(p) |
|
if group['momentum'] > 0: |
|
state['momentum_buffer'] = torch.zeros_like(p) |
|
if group['centered']: |
|
state['grad_avg'] = torch.zeros_like(p) |
|
|
|
square_avg = state['square_avg'] |
|
one_minus_alpha = 1. - group['alpha'] |
|
|
|
state['step'] += 1 |
|
|
|
if group['weight_decay'] != 0: |
|
if group['decoupled_decay']: |
|
p.mul_(1. - group['lr'] * group['weight_decay']) |
|
else: |
|
grad = grad.add(p, alpha=group['weight_decay']) |
|
|
|
|
|
square_avg.add_(grad.pow(2) - square_avg, alpha=one_minus_alpha) |
|
|
|
|
|
if group['centered']: |
|
grad_avg = state['grad_avg'] |
|
grad_avg.add_(grad - grad_avg, alpha=one_minus_alpha) |
|
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add(group['eps']).sqrt_() |
|
|
|
else: |
|
avg = square_avg.add(group['eps']).sqrt_() |
|
|
|
if group['momentum'] > 0: |
|
buf = state['momentum_buffer'] |
|
buf.mul_(group['momentum']) |
|
|
|
def _apply_caution(_m, _g): |
|
|
|
mask = (_m * _g > 0).to(_g.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
return _m * mask |
|
|
|
if group['lr_in_momentum']: |
|
|
|
buf.addcdiv_(grad, avg, value=group['lr']) |
|
if group['caution']: |
|
buf = _apply_caution(buf, grad) |
|
p.add_(-buf) |
|
else: |
|
|
|
buf.addcdiv_(grad, avg) |
|
if group['caution']: |
|
buf = _apply_caution(buf, grad) |
|
p.add_(buf, alpha=-group['lr']) |
|
else: |
|
p.addcdiv_(grad, avg, value=-group['lr']) |
|
|
|
return loss |
|
|