|
""" CUDA / AMP utils |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
|
|
try: |
|
from apex import amp |
|
has_apex = True |
|
except ImportError: |
|
amp = None |
|
has_apex = False |
|
|
|
from .clip_grad import dispatch_clip_grad |
|
|
|
|
|
class ApexScaler: |
|
state_dict_key = "amp" |
|
|
|
def __call__( |
|
self, |
|
loss, |
|
optimizer, |
|
clip_grad=None, |
|
clip_mode='norm', |
|
parameters=None, |
|
create_graph=False, |
|
need_update=True, |
|
): |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward(create_graph=create_graph) |
|
if need_update: |
|
if clip_grad is not None: |
|
dispatch_clip_grad(amp.master_params(optimizer), clip_grad, mode=clip_mode) |
|
optimizer.step() |
|
|
|
def state_dict(self): |
|
if 'state_dict' in amp.__dict__: |
|
return amp.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
if 'load_state_dict' in amp.__dict__: |
|
amp.load_state_dict(state_dict) |
|
|
|
|
|
class NativeScaler: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self, device='cuda'): |
|
try: |
|
self._scaler = torch.amp.GradScaler(device=device) |
|
except (AttributeError, TypeError) as e: |
|
self._scaler = torch.cuda.amp.GradScaler() |
|
|
|
def __call__( |
|
self, |
|
loss, |
|
optimizer, |
|
clip_grad=None, |
|
clip_mode='norm', |
|
parameters=None, |
|
create_graph=False, |
|
need_update=True, |
|
): |
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
if need_update: |
|
if clip_grad is not None: |
|
assert parameters is not None |
|
self._scaler.unscale_(optimizer) |
|
dispatch_clip_grad(parameters, clip_grad, mode=clip_mode) |
|
self._scaler.step(optimizer) |
|
self._scaler.update() |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|