|
""" Exponential Moving Average (EMA) of model updates |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import logging |
|
from collections import OrderedDict |
|
from copy import deepcopy |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
class ModelEma: |
|
""" Model Exponential Moving Average (DEPRECATED) |
|
|
|
Keep a moving average of everything in the model state_dict (parameters and buffers). |
|
This version is deprecated, it does not work with scripted models. Will be removed eventually. |
|
|
|
This is intended to allow functionality like |
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
|
|
A smoothed version of the weights is necessary for some training schemes to perform well. |
|
E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use |
|
RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA |
|
smoothing of weights to match results. Pay attention to the decay constant you are using |
|
relative to your update count per epoch. |
|
|
|
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but |
|
disable validation of the EMA weights. Validation will have to be done manually in a separate |
|
process, or after the training stops converging. |
|
|
|
This class is sensitive where it is initialized in the sequence of model init, |
|
GPU assignment and distributed training wrappers. |
|
""" |
|
def __init__(self, model, decay=0.9999, device='', resume=''): |
|
|
|
self.ema = deepcopy(model) |
|
self.ema.eval() |
|
self.decay = decay |
|
self.device = device |
|
if device: |
|
self.ema.to(device=device) |
|
self.ema_has_module = hasattr(self.ema, 'module') |
|
if resume: |
|
self._load_checkpoint(resume) |
|
for p in self.ema.parameters(): |
|
p.requires_grad_(False) |
|
|
|
def _load_checkpoint(self, checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location='cpu') |
|
assert isinstance(checkpoint, dict) |
|
if 'state_dict_ema' in checkpoint: |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint['state_dict_ema'].items(): |
|
|
|
if self.ema_has_module: |
|
name = 'module.' + k if not k.startswith('module') else k |
|
else: |
|
name = k |
|
new_state_dict[name] = v |
|
self.ema.load_state_dict(new_state_dict) |
|
_logger.info("Loaded state_dict_ema") |
|
else: |
|
_logger.warning("Failed to find state_dict_ema, starting from loaded model weights") |
|
|
|
def update(self, model): |
|
|
|
needs_module = hasattr(model, 'module') and not self.ema_has_module |
|
with torch.no_grad(): |
|
msd = model.state_dict() |
|
for k, ema_v in self.ema.state_dict().items(): |
|
if needs_module: |
|
k = 'module.' + k |
|
model_v = msd[k].detach() |
|
if self.device: |
|
model_v = model_v.to(device=self.device) |
|
ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v) |
|
|
|
|
|
class ModelEmaV2(nn.Module): |
|
""" Model Exponential Moving Average V2 |
|
|
|
Keep a moving average of everything in the model state_dict (parameters and buffers). |
|
V2 of this module is simpler, it does not match params/buffers based on name but simply |
|
iterates in order. It works with torchscript (JIT of full model). |
|
|
|
This is intended to allow functionality like |
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
|
|
A smoothed version of the weights is necessary for some training schemes to perform well. |
|
E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use |
|
RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA |
|
smoothing of weights to match results. Pay attention to the decay constant you are using |
|
relative to your update count per epoch. |
|
|
|
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but |
|
disable validation of the EMA weights. Validation will have to be done manually in a separate |
|
process, or after the training stops converging. |
|
|
|
This class is sensitive where it is initialized in the sequence of model init, |
|
GPU assignment and distributed training wrappers. |
|
""" |
|
def __init__(self, model, decay=0.9999, device=None): |
|
super().__init__() |
|
|
|
self.module = deepcopy(model) |
|
self.module.eval() |
|
self.decay = decay |
|
self.device = device |
|
if self.device is not None: |
|
self.module.to(device=device) |
|
|
|
def _update(self, model, update_fn): |
|
with torch.no_grad(): |
|
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): |
|
if self.device is not None: |
|
model_v = model_v.to(device=self.device) |
|
ema_v.copy_(update_fn(ema_v, model_v)) |
|
|
|
def update(self, model): |
|
self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m) |
|
|
|
def set(self, model): |
|
self._update(model, update_fn=lambda e, m: m) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.module(*args, **kwargs) |
|
|
|
|
|
class ModelEmaV3(nn.Module): |
|
""" Model Exponential Moving Average V3 |
|
|
|
Keep a moving average of everything in the model state_dict (parameters and buffers). |
|
V3 of this module leverages for_each and in-place operations for faster performance. |
|
|
|
Decay warmup based on code by @crowsonkb, her comments: |
|
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are |
|
good values for models you plan to train for a million or more steps (reaches decay |
|
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models |
|
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at |
|
215.4k steps). |
|
|
|
This is intended to allow functionality like |
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
|
|
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but |
|
disable validation of the EMA weights. Validation will have to be done manually in a separate |
|
process, or after the training stops converging. |
|
|
|
This class is sensitive where it is initialized in the sequence of model init, |
|
GPU assignment and distributed training wrappers. |
|
""" |
|
def __init__( |
|
self, |
|
model, |
|
decay: float = 0.9999, |
|
min_decay: float = 0.0, |
|
update_after_step: int = 0, |
|
use_warmup: bool = False, |
|
warmup_gamma: float = 1.0, |
|
warmup_power: float = 2/3, |
|
device: Optional[torch.device] = None, |
|
foreach: bool = True, |
|
exclude_buffers: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.module = deepcopy(model) |
|
self.module.eval() |
|
self.decay = decay |
|
self.min_decay = min_decay |
|
self.update_after_step = update_after_step |
|
self.use_warmup = use_warmup |
|
self.warmup_gamma = warmup_gamma |
|
self.warmup_power = warmup_power |
|
self.foreach = foreach |
|
self.device = device |
|
self.exclude_buffers = exclude_buffers |
|
if self.device is not None and device != next(model.parameters()).device: |
|
self.foreach = False |
|
self.module.to(device=device) |
|
|
|
def get_decay(self, step: Optional[int] = None) -> float: |
|
""" |
|
Compute the decay factor for the exponential moving average. |
|
""" |
|
if step is None: |
|
return self.decay |
|
|
|
step = max(0, step - self.update_after_step - 1) |
|
if step <= 0: |
|
return 0.0 |
|
|
|
if self.use_warmup: |
|
decay = 1 - (1 + step / self.warmup_gamma) ** -self.warmup_power |
|
decay = max(min(decay, self.decay), self.min_decay) |
|
else: |
|
decay = self.decay |
|
|
|
return decay |
|
|
|
@torch.no_grad() |
|
def update(self, model, step: Optional[int] = None): |
|
decay = self.get_decay(step) |
|
if self.exclude_buffers: |
|
self.apply_update_no_buffers_(model, decay) |
|
else: |
|
self.apply_update_(model, decay) |
|
|
|
def apply_update_(self, model, decay: float): |
|
|
|
if self.foreach: |
|
ema_lerp_values = [] |
|
model_lerp_values = [] |
|
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): |
|
if ema_v.is_floating_point(): |
|
ema_lerp_values.append(ema_v) |
|
model_lerp_values.append(model_v) |
|
else: |
|
ema_v.copy_(model_v) |
|
|
|
if hasattr(torch, '_foreach_lerp_'): |
|
torch._foreach_lerp_(ema_lerp_values, model_lerp_values, weight=1. - decay) |
|
else: |
|
torch._foreach_mul_(ema_lerp_values, scalar=decay) |
|
torch._foreach_add_(ema_lerp_values, model_lerp_values, alpha=1. - decay) |
|
else: |
|
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): |
|
if ema_v.is_floating_point(): |
|
ema_v.lerp_(model_v.to(device=self.device), weight=1. - decay) |
|
else: |
|
ema_v.copy_(model_v.to(device=self.device)) |
|
|
|
def apply_update_no_buffers_(self, model, decay: float): |
|
|
|
ema_params = tuple(self.module.parameters()) |
|
model_params = tuple(model.parameters()) |
|
if self.foreach: |
|
if hasattr(torch, '_foreach_lerp_'): |
|
torch._foreach_lerp_(ema_params, model_params, weight=1. - decay) |
|
else: |
|
torch._foreach_mul_(ema_params, scalar=decay) |
|
torch._foreach_add_(ema_params, model_params, alpha=1 - decay) |
|
else: |
|
for ema_p, model_p in zip(ema_params, model_params): |
|
ema_p.lerp_(model_p.to(device=self.device), weight=1. - decay) |
|
|
|
for ema_b, model_b in zip(self.module.buffers(), model.buffers()): |
|
ema_b.copy_(model_b.to(device=self.device)) |
|
|
|
@torch.no_grad() |
|
def set(self, model): |
|
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): |
|
ema_v.copy_(model_v.to(device=self.device)) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.module(*args, **kwargs) |