meg's picture
meg HF staff
Upload folder using huggingface_hub
53a37bd verified
""" Exponential Moving Average (EMA) of model updates
Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
from collections import OrderedDict
from copy import deepcopy
from typing import Optional
import torch
import torch.nn as nn
_logger = logging.getLogger(__name__)
class ModelEma:
""" Model Exponential Moving Average (DEPRECATED)
Keep a moving average of everything in the model state_dict (parameters and buffers).
This version is deprecated, it does not work with scripted models. Will be removed eventually.
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
smoothing of weights to match results. Pay attention to the decay constant you are using
relative to your update count per epoch.
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
disable validation of the EMA weights. Validation will have to be done manually in a separate
process, or after the training stops converging.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model, decay=0.9999, device='', resume=''):
# make a copy of the model for accumulating moving average of weights
self.ema = deepcopy(model)
self.ema.eval()
self.decay = decay
self.device = device # perform ema on different device from model if set
if device:
self.ema.to(device=device)
self.ema_has_module = hasattr(self.ema, 'module')
if resume:
self._load_checkpoint(resume)
for p in self.ema.parameters():
p.requires_grad_(False)
def _load_checkpoint(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
assert isinstance(checkpoint, dict)
if 'state_dict_ema' in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict_ema'].items():
# ema model may have been wrapped by DataParallel, and need module prefix
if self.ema_has_module:
name = 'module.' + k if not k.startswith('module') else k
else:
name = k
new_state_dict[name] = v
self.ema.load_state_dict(new_state_dict)
_logger.info("Loaded state_dict_ema")
else:
_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")
def update(self, model):
# correct a mismatch in state dict keys
needs_module = hasattr(model, 'module') and not self.ema_has_module
with torch.no_grad():
msd = model.state_dict()
for k, ema_v in self.ema.state_dict().items():
if needs_module:
k = 'module.' + k
model_v = msd[k].detach()
if self.device:
model_v = model_v.to(device=self.device)
ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)
class ModelEmaV2(nn.Module):
""" Model Exponential Moving Average V2
Keep a moving average of everything in the model state_dict (parameters and buffers).
V2 of this module is simpler, it does not match params/buffers based on name but simply
iterates in order. It works with torchscript (JIT of full model).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
E.g. Google's hyper-params for training MNASNet, MobileNet-V3, EfficientNet, etc that use
RMSprop with a short 2.4-3 epoch decay period and slow LR decay rate of .96-.99 requires EMA
smoothing of weights to match results. Pay attention to the decay constant you are using
relative to your update count per epoch.
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
disable validation of the EMA weights. Validation will have to be done manually in a separate
process, or after the training stops converging.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model, decay=0.9999, device=None):
super().__init__()
# make a copy of the model for accumulating moving average of weights
self.module = deepcopy(model)
self.module.eval()
self.decay = decay
self.device = device # perform ema on different device from model if set
if self.device is not None:
self.module.to(device=device)
def _update(self, model, update_fn):
with torch.no_grad():
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
class ModelEmaV3(nn.Module):
""" Model Exponential Moving Average V3
Keep a moving average of everything in the model state_dict (parameters and buffers).
V3 of this module leverages for_each and in-place operations for faster performance.
Decay warmup based on code by @crowsonkb, her comments:
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
To keep EMA from using GPU resources, set device='cpu'. This will save a bit of memory but
disable validation of the EMA weights. Validation will have to be done manually in a separate
process, or after the training stops converging.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(
self,
model,
decay: float = 0.9999,
min_decay: float = 0.0,
update_after_step: int = 0,
use_warmup: bool = False,
warmup_gamma: float = 1.0,
warmup_power: float = 2/3,
device: Optional[torch.device] = None,
foreach: bool = True,
exclude_buffers: bool = False,
):
super().__init__()
# make a copy of the model for accumulating moving average of weights
self.module = deepcopy(model)
self.module.eval()
self.decay = decay
self.min_decay = min_decay
self.update_after_step = update_after_step
self.use_warmup = use_warmup
self.warmup_gamma = warmup_gamma
self.warmup_power = warmup_power
self.foreach = foreach
self.device = device # perform ema on different device from model if set
self.exclude_buffers = exclude_buffers
if self.device is not None and device != next(model.parameters()).device:
self.foreach = False # cannot use foreach methods with different devices
self.module.to(device=device)
def get_decay(self, step: Optional[int] = None) -> float:
"""
Compute the decay factor for the exponential moving average.
"""
if step is None:
return self.decay
step = max(0, step - self.update_after_step - 1)
if step <= 0:
return 0.0
if self.use_warmup:
decay = 1 - (1 + step / self.warmup_gamma) ** -self.warmup_power
decay = max(min(decay, self.decay), self.min_decay)
else:
decay = self.decay
return decay
@torch.no_grad()
def update(self, model, step: Optional[int] = None):
decay = self.get_decay(step)
if self.exclude_buffers:
self.apply_update_no_buffers_(model, decay)
else:
self.apply_update_(model, decay)
def apply_update_(self, model, decay: float):
# interpolate parameters and buffers
if self.foreach:
ema_lerp_values = []
model_lerp_values = []
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
if ema_v.is_floating_point():
ema_lerp_values.append(ema_v)
model_lerp_values.append(model_v)
else:
ema_v.copy_(model_v)
if hasattr(torch, '_foreach_lerp_'):
torch._foreach_lerp_(ema_lerp_values, model_lerp_values, weight=1. - decay)
else:
torch._foreach_mul_(ema_lerp_values, scalar=decay)
torch._foreach_add_(ema_lerp_values, model_lerp_values, alpha=1. - decay)
else:
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
if ema_v.is_floating_point():
ema_v.lerp_(model_v.to(device=self.device), weight=1. - decay)
else:
ema_v.copy_(model_v.to(device=self.device))
def apply_update_no_buffers_(self, model, decay: float):
# interpolate parameters, copy buffers
ema_params = tuple(self.module.parameters())
model_params = tuple(model.parameters())
if self.foreach:
if hasattr(torch, '_foreach_lerp_'):
torch._foreach_lerp_(ema_params, model_params, weight=1. - decay)
else:
torch._foreach_mul_(ema_params, scalar=decay)
torch._foreach_add_(ema_params, model_params, alpha=1 - decay)
else:
for ema_p, model_p in zip(ema_params, model_params):
ema_p.lerp_(model_p.to(device=self.device), weight=1. - decay)
for ema_b, model_b in zip(self.module.buffers(), model.buffers()):
ema_b.copy_(model_b.to(device=self.device))
@torch.no_grad()
def set(self, model):
for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()):
ema_v.copy_(model_v.to(device=self.device))
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)