""" Classifier head and layer factory Hacked together by / Copyright 2020 Ross Wightman """ from collections import OrderedDict from functools import partial from typing import Optional, Union, Callable import torch import torch.nn as nn from torch.nn import functional as F from .adaptive_avgmax_pool import SelectAdaptivePool2d from .create_act import get_act_layer from .create_norm import get_norm_layer def _create_pool( num_features: int, num_classes: int, pool_type: str = 'avg', use_conv: bool = False, input_fmt: Optional[str] = None, ): flatten_in_pool = not use_conv # flatten when we use a Linear layer after pooling if not pool_type: flatten_in_pool = False # disable flattening if pooling is pass-through (no pooling) global_pool = SelectAdaptivePool2d( pool_type=pool_type, flatten=flatten_in_pool, input_fmt=input_fmt, ) num_pooled_features = num_features * global_pool.feat_mult() return global_pool, num_pooled_features def _create_fc(num_features, num_classes, use_conv=False): if num_classes <= 0: fc = nn.Identity() # pass-through (no classifier) elif use_conv: fc = nn.Conv2d(num_features, num_classes, 1, bias=True) else: fc = nn.Linear(num_features, num_classes, bias=True) return fc def create_classifier( num_features: int, num_classes: int, pool_type: str = 'avg', use_conv: bool = False, input_fmt: str = 'NCHW', drop_rate: Optional[float] = None, ): global_pool, num_pooled_features = _create_pool( num_features, num_classes, pool_type, use_conv=use_conv, input_fmt=input_fmt, ) fc = _create_fc( num_pooled_features, num_classes, use_conv=use_conv, ) if drop_rate is not None: dropout = nn.Dropout(drop_rate) return global_pool, dropout, fc return global_pool, fc class ClassifierHead(nn.Module): """Classifier head w/ configurable global pooling and dropout.""" def __init__( self, in_features: int, num_classes: int, pool_type: str = 'avg', drop_rate: float = 0., use_conv: bool = False, input_fmt: str = 'NCHW', ): """ Args: in_features: The number of input features. num_classes: The number of classes for the final classifier layer (output). pool_type: Global pooling type, pooling disabled if empty string (''). drop_rate: Pre-classifier dropout rate. """ super(ClassifierHead, self).__init__() self.in_features = in_features self.use_conv = use_conv self.input_fmt = input_fmt global_pool, fc = create_classifier( in_features, num_classes, pool_type, use_conv=use_conv, input_fmt=input_fmt, ) self.global_pool = global_pool self.drop = nn.Dropout(drop_rate) self.fc = fc self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity() def reset(self, num_classes: int, pool_type: Optional[str] = None): if pool_type is not None and pool_type != self.global_pool.pool_type: self.global_pool, self.fc = create_classifier( self.in_features, num_classes, pool_type=pool_type, use_conv=self.use_conv, input_fmt=self.input_fmt, ) self.flatten = nn.Flatten(1) if self.use_conv and pool_type else nn.Identity() else: num_pooled_features = self.in_features * self.global_pool.feat_mult() self.fc = _create_fc( num_pooled_features, num_classes, use_conv=self.use_conv, ) def forward(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.drop(x) if pre_logits: return self.flatten(x) x = self.fc(x) return self.flatten(x) class NormMlpClassifierHead(nn.Module): """ A Pool -> Norm -> Mlp Classifier Head for '2D' NCHW tensors """ def __init__( self, in_features: int, num_classes: int, hidden_size: Optional[int] = None, pool_type: str = 'avg', drop_rate: float = 0., norm_layer: Union[str, Callable] = 'layernorm2d', act_layer: Union[str, Callable] = 'tanh', ): """ Args: in_features: The number of input features. num_classes: The number of classes for the final classifier layer (output). hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None. pool_type: Global pooling type, pooling disabled if empty string (''). drop_rate: Pre-classifier dropout rate. norm_layer: Normalization layer type. act_layer: MLP activation layer type (only used if hidden_size is not None). """ super().__init__() self.in_features = in_features self.hidden_size = hidden_size self.num_features = in_features self.use_conv = not pool_type norm_layer = get_norm_layer(norm_layer) act_layer = get_act_layer(act_layer) linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) self.norm = norm_layer(in_features) self.flatten = nn.Flatten(1) if pool_type else nn.Identity() if hidden_size: self.pre_logits = nn.Sequential(OrderedDict([ ('fc', linear_layer(in_features, hidden_size)), ('act', act_layer()), ])) self.num_features = hidden_size else: self.pre_logits = nn.Identity() self.drop = nn.Dropout(drop_rate) self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def reset(self, num_classes: int, pool_type: Optional[str] = None): if pool_type is not None: self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) self.flatten = nn.Flatten(1) if pool_type else nn.Identity() self.use_conv = self.global_pool.is_identity() linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear if self.hidden_size: if ((isinstance(self.pre_logits.fc, nn.Conv2d) and not self.use_conv) or (isinstance(self.pre_logits.fc, nn.Linear) and self.use_conv)): with torch.no_grad(): new_fc = linear_layer(self.in_features, self.hidden_size) new_fc.weight.copy_(self.pre_logits.fc.weight.reshape(new_fc.weight.shape)) new_fc.bias.copy_(self.pre_logits.fc.bias) self.pre_logits.fc = new_fc self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.norm(x) x = self.flatten(x) x = self.pre_logits(x) x = self.drop(x) if pre_logits: return x x = self.fc(x) return x class ClNormMlpClassifierHead(nn.Module): """ A Pool -> Norm -> Mlp Classifier Head for n-D NxxC tensors """ def __init__( self, in_features: int, num_classes: int, hidden_size: Optional[int] = None, pool_type: str = 'avg', drop_rate: float = 0., norm_layer: Union[str, Callable] = 'layernorm', act_layer: Union[str, Callable] = 'gelu', input_fmt: str = 'NHWC', ): """ Args: in_features: The number of input features. num_classes: The number of classes for the final classifier layer (output). hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None. pool_type: Global pooling type, pooling disabled if empty string (''). drop_rate: Pre-classifier dropout rate. norm_layer: Normalization layer type. act_layer: MLP activation layer type (only used if hidden_size is not None). """ super().__init__() self.in_features = in_features self.hidden_size = hidden_size self.num_features = in_features assert pool_type in ('', 'avg', 'max', 'avgmax') self.pool_type = pool_type assert input_fmt in ('NHWC', 'NLC') self.pool_dim = 1 if input_fmt == 'NLC' else (1, 2) norm_layer = get_norm_layer(norm_layer) act_layer = get_act_layer(act_layer) self.norm = norm_layer(in_features) if hidden_size: self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(in_features, hidden_size)), ('act', act_layer()), ])) self.num_features = hidden_size else: self.pre_logits = nn.Identity() self.drop = nn.Dropout(drop_rate) self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False): if pool_type is not None: self.pool_type = pool_type if reset_other: self.pre_logits = nn.Identity() self.norm = nn.Identity() self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def _global_pool(self, x): if self.pool_type: if self.pool_type == 'avg': x = x.mean(dim=self.pool_dim) elif self.pool_type == 'max': x = x.amax(dim=self.pool_dim) elif self.pool_type == 'avgmax': x = 0.5 * (x.amax(dim=self.pool_dim) + x.mean(dim=self.pool_dim)) return x def forward(self, x, pre_logits: bool = False): x = self._global_pool(x) x = self.norm(x) x = self.pre_logits(x) x = self.drop(x) if pre_logits: return x x = self.fc(x) return x