""" BlurPool layer inspired by - Kornia's Max_BlurPool2d - Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` Hacked together by Chris Ha and Ross Wightman """ from functools import partial from typing import Optional, Type import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .padding import get_padding from .typing import LayerType class BlurPool2d(nn.Module): r"""Creates a module that computes blurs and downsample a given feature map. See :cite:`zhang2019shiftinvar` for more details. Corresponds to the Downsample class, which does blurring and subsampling Args: channels = Number of input channels filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. stride (int): downsampling filter stride Returns: torch.Tensor: the transformed tensor. """ def __init__( self, channels: Optional[int] = None, filt_size: int = 3, stride: int = 2, pad_mode: str = 'reflect', ) -> None: super(BlurPool2d, self).__init__() assert filt_size > 1 self.channels = channels self.filt_size = filt_size self.stride = stride self.pad_mode = pad_mode self.padding = [get_padding(filt_size, stride, dilation=1)] * 4 coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32)) blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :] if channels is not None: blur_filter = blur_filter.repeat(self.channels, 1, 1, 1) self.register_buffer('filt', blur_filter, persistent=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.pad(x, self.padding, mode=self.pad_mode) if self.channels is None: channels = x.shape[1] weight = self.filt.expand(channels, 1, self.filt_size, self.filt_size) else: channels = self.channels weight = self.filt return F.conv2d(x, weight, stride=self.stride, groups=channels) def create_aa( aa_layer: LayerType, channels: Optional[int] = None, stride: int = 2, enable: bool = True, noop: Optional[Type[nn.Module]] = nn.Identity ) -> nn.Module: """ Anti-aliasing """ if not aa_layer or not enable: return noop() if noop is not None else None if isinstance(aa_layer, str): aa_layer = aa_layer.lower().replace('_', '').replace('-', '') if aa_layer == 'avg' or aa_layer == 'avgpool': aa_layer = nn.AvgPool2d elif aa_layer == 'blur' or aa_layer == 'blurpool': aa_layer = BlurPool2d elif aa_layer == 'blurpc': aa_layer = partial(BlurPool2d, pad_mode='constant') else: assert False, f"Unknown anti-aliasing layer ({aa_layer})." try: return aa_layer(channels=channels, stride=stride) except TypeError as e: return aa_layer(stride)