""" Norm Layer Factory Create norm modules by string (to mirror create_act and creat_norm-act fns) Copyright 2022 Ross Wightman """ import functools import types from typing import Type import torch.nn as nn from .norm import GroupNorm, GroupNorm1, LayerNorm, LayerNorm2d, RmsNorm, RmsNorm2d, SimpleNorm, SimpleNorm2d from torchvision.ops.misc import FrozenBatchNorm2d _NORM_MAP = dict( batchnorm=nn.BatchNorm2d, batchnorm2d=nn.BatchNorm2d, batchnorm1d=nn.BatchNorm1d, groupnorm=GroupNorm, groupnorm1=GroupNorm1, layernorm=LayerNorm, layernorm2d=LayerNorm2d, rmsnorm=RmsNorm, rmsnorm2d=RmsNorm2d, simplenorm=SimpleNorm, simplenorm2d=SimpleNorm2d, frozenbatchnorm2d=FrozenBatchNorm2d, ) _NORM_TYPES = {m for n, m in _NORM_MAP.items()} def create_norm_layer(layer_name, num_features, **kwargs): layer = get_norm_layer(layer_name) layer_instance = layer(num_features, **kwargs) return layer_instance def get_norm_layer(norm_layer): if norm_layer is None: return None assert isinstance(norm_layer, (type, str, types.FunctionType, functools.partial)) norm_kwargs = {} # unbind partial fn, so args can be rebound later if isinstance(norm_layer, functools.partial): norm_kwargs.update(norm_layer.keywords) norm_layer = norm_layer.func if isinstance(norm_layer, str): if not norm_layer: return None layer_name = norm_layer.replace('_', '').lower() norm_layer = _NORM_MAP[layer_name] else: norm_layer = norm_layer if norm_kwargs: norm_layer = functools.partial(norm_layer, **norm_kwargs) # bind/rebind args return norm_layer