""" 'Fast' Normalization Functions For GroupNorm and LayerNorm these functions bypass typical AMP upcast to float32. Additionally, for LayerNorm, the APEX fused LN is used if available (which also does not upcast) Hacked together by / Copyright 2022 Ross Wightman """ from typing import List, Optional import torch from torch.nn import functional as F try: from apex.normalization.fused_layer_norm import fused_layer_norm_affine has_apex = True except ImportError: has_apex = False try: from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm has_apex_rmsnorm = True except ImportError: has_apex_rmsnorm = False has_torch_rms_norm = hasattr(F, 'rms_norm') # fast (ie lower precision LN) can be disabled with this flag if issues crop up _USE_FAST_NORM = False # defaulting to False for now def get_autocast_dtype(device: str = 'cuda'): try: return torch.get_autocast_dtype(device) except (AttributeError, TypeError): # dispatch to older device specific fns, only covering cuda/cpu devices here if device == 'cpu': return torch.get_autocast_cpu_dtype() else: assert device == 'cuda' return torch.get_autocast_gpu_dtype() def is_autocast_enabled(device: str = 'cuda'): try: return torch.is_autocast_enabled(device) except TypeError: # dispatch to older device specific fns, only covering cuda/cpu devices here if device == 'cpu': return torch.is_autocast_cpu_enabled() else: assert device == 'cuda' return torch.is_autocast_enabled() # defaults cuda (only cuda on older pytorch) def is_fast_norm(): return _USE_FAST_NORM def set_fast_norm(enable=True): global _USE_FAST_NORM _USE_FAST_NORM = enable def fast_group_norm( x: torch.Tensor, num_groups: int, weight: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, eps: float = 1e-5 ) -> torch.Tensor: if torch.jit.is_scripting(): # currently cannot use is_autocast_enabled within torchscript return F.group_norm(x, num_groups, weight, bias, eps) if is_autocast_enabled(x.device.type): # normally native AMP casts GN inputs to float32 # here we use the low precision autocast dtype dt = get_autocast_dtype(x.device.type) x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None with torch.amp.autocast(device_type=x.device.type, enabled=False): return F.group_norm(x, num_groups, weight, bias, eps) def fast_layer_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, bias: Optional[torch.Tensor] = None, eps: float = 1e-5 ) -> torch.Tensor: if torch.jit.is_scripting(): # currently cannot use is_autocast_enabled within torchscript return F.layer_norm(x, normalized_shape, weight, bias, eps) if has_apex: return fused_layer_norm_affine(x, weight, bias, normalized_shape, eps) if is_autocast_enabled(x.device.type): # normally native AMP casts LN inputs to float32 # apex LN does not, this is behaving like Apex dt = get_autocast_dtype(x.device.type) x, weight, bias = x.to(dt), weight.to(dt), bias.to(dt) if bias is not None else None with torch.amp.autocast(device_type=x.device.type, enabled=False): return F.layer_norm(x, normalized_shape, weight, bias, eps) def rms_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, eps: float = 1e-5, ): norm_ndim = len(normalized_shape) v = x.pow(2) if torch.jit.is_scripting(): # ndim = len(x.shape) # dims = list(range(ndim - norm_ndim, ndim)) # this doesn't work on pytorch <= 1.13.x # NOTE -ve dims cause torchscript to crash in some cases, out of options to work around assert norm_ndim == 1 v = torch.mean(v, dim=-1).unsqueeze(-1) # ts crashes with -ve dim + keepdim=True else: dims = tuple(range(-1, -norm_ndim - 1, -1)) v = torch.mean(v, dim=dims, keepdim=True) x = x * torch.rsqrt(v + eps) if weight is not None: x = x * weight return x def fast_rms_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, eps: float = 1e-5, ) -> torch.Tensor: if torch.jit.is_scripting(): # this must be by itself, cannot merge with has_apex_rmsnorm return rms_norm(x, normalized_shape, weight, eps) if has_apex_rmsnorm: if weight is None: return fused_rms_norm(x, normalized_shape, eps) else: return fused_rms_norm_affine(x, weight, normalized_shape, eps) if is_autocast_enabled(x.device.type): # normally native AMP casts LN inputs to float32 # apex LN does not, this is behaving like Apex dt = get_autocast_dtype(x.device.type) x, weight = x.to(dt), weight.to(dt) with torch.amp.autocast(device_type=x.device.type, enabled=False): if has_torch_rms_norm: x = F.rms_norm(x, normalized_shape, weight, eps) else: x = rms_norm(x, normalized_shape, weight, eps) return x def simple_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, eps: float = 1e-5, ): norm_ndim = len(normalized_shape) if torch.jit.is_scripting(): # ndim = len(x.shape) # dims = list(range(ndim - norm_ndim, ndim)) # this doesn't work on pytorch <= 1.13.x # NOTE -ve dims cause torchscript to crash in some cases, out of options to work around assert norm_ndim == 1 v = torch.var(x, dim=-1).unsqueeze(-1) # ts crashes with -ve dim + keepdim=True else: dims = tuple(range(-1, -norm_ndim - 1, -1)) v = torch.var(x, dim=dims, keepdim=True) x = x * torch.rsqrt(v + eps) if weight is not None: x = x * weight return x def fast_simple_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, eps: float = 1e-5, ) -> torch.Tensor: if torch.jit.is_scripting(): # this must be by itself, cannot merge with has_apex_rmsnorm return simple_norm(x, normalized_shape, weight, eps) if is_autocast_enabled(x.device.type): # normally native AMP casts LN inputs to float32 # apex LN does not, this is behaving like Apex dt = get_autocast_dtype(x.device.type) x, weight = x.to(dt), weight.to(dt) with torch.amp.autocast(device_type=x.device.type, enabled=False): x = simple_norm(x, normalized_shape, weight, eps) return x