""" Normalization layers and wrappers Norm layer definitions that support fast norm and consistent channel arg order (always first arg). Hacked together by / Copyright 2022 Ross Wightman """ import numbers from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from .fast_norm import is_fast_norm, fast_group_norm, fast_layer_norm, fast_rms_norm, fast_simple_norm, simple_norm try: from torch.nn.functional import rms_norm except ImportError: from .fast_norm import rms_norm class GroupNorm(nn.GroupNorm): _fast_norm: torch.jit.Final[bool] def __init__(self, num_channels, num_groups=32, eps=1e-5, affine=True): # NOTE num_channels is swapped to first arg for consistency in swapping norm layers with BN super().__init__(num_groups, num_channels, eps=eps, affine=affine) self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) def forward(self, x): if self._fast_norm: return fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) else: return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) class GroupNorm1(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, *] """ _fast_norm: torch.jit.Final[bool] def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) def forward(self, x: torch.Tensor) -> torch.Tensor: if self._fast_norm: return fast_group_norm(x, self.num_groups, self.weight, self.bias, self.eps) else: return F.group_norm(x, self.num_groups, self.weight, self.bias, self.eps) class LayerNorm(nn.LayerNorm): """ LayerNorm w/ fast norm option """ _fast_norm: torch.jit.Final[bool] def __init__(self, num_channels, eps=1e-6, affine=True): super().__init__(num_channels, eps=eps, elementwise_affine=affine) self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) def forward(self, x: torch.Tensor) -> torch.Tensor: if self._fast_norm: x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) else: x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x class LayerNorm2d(nn.LayerNorm): """ LayerNorm for channels of '2D' spatial NCHW tensors """ _fast_norm: torch.jit.Final[bool] def __init__(self, num_channels, eps=1e-6, affine=True): super().__init__(num_channels, eps=eps, elementwise_affine=affine) self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.permute(0, 2, 3, 1) if self._fast_norm: x = fast_layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) else: x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) x = x.permute(0, 3, 1, 2) return x def _is_contiguous(tensor: torch.Tensor) -> bool: # jit is oh so lovely :/ if torch.jit.is_scripting(): return tensor.is_contiguous() else: return tensor.is_contiguous(memory_format=torch.contiguous_format) def _layer_norm_cf(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float): s, u = torch.var_mean(x, dim=1, unbiased=False, keepdim=True) x = (x - u) * torch.rsqrt(s + eps) x = x * weight[:, None, None] + bias[:, None, None] return x def _layer_norm_cf_sqm(x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float): u = x.mean(dim=1, keepdim=True) s = ((x * x).mean(dim=1, keepdim=True) - (u * u)).clamp(0) x = (x - u) * torch.rsqrt(s + eps) x = x * weight.view(1, -1, 1, 1) + bias.view(1, -1, 1, 1) return x class LayerNormExp2d(nn.LayerNorm): """ LayerNorm for channels_first tensors with 2d spatial dimensions (ie N, C, H, W). Experimental implementation w/ manual norm for tensors non-contiguous tensors. This improves throughput in some scenarios (tested on Ampere GPU), esp w/ channels_last layout. However, benefits are not always clear and can perform worse on other GPUs. """ def __init__(self, num_channels, eps=1e-6): super().__init__(num_channels, eps=eps) def forward(self, x) -> torch.Tensor: if _is_contiguous(x): x = F.layer_norm( x.permute(0, 2, 3, 1), self.normalized_shape, self.weight, self.bias, self.eps).permute(0, 3, 1, 2) else: x = _layer_norm_cf(x, self.weight, self.bias, self.eps) return x class RmsNorm(nn.Module): """ RmsNorm w/ fast (apex) norm if available """ __constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm'] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool _fast_norm: bool def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() normalized_shape = channels if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = affine self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) if self.elementwise_affine: self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: # NOTE fast norm fallback needs our rms norm impl, so both paths through here. # Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed. if self._fast_norm: x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps) else: x = rms_norm(x, self.normalized_shape, self.weight, self.eps) return x class RmsNorm2d(nn.Module): """ RmsNorm w/ fast (apex) norm if available """ __constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm'] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool _fast_norm: bool def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() normalized_shape = channels if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = affine self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) if self.elementwise_affine: self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.permute(0, 2, 3, 1) # NOTE fast norm fallback needs our rms norm impl, so both paths through here. # Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed. if self._fast_norm: x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps) else: x = rms_norm(x, self.normalized_shape, self.weight, self.eps) x = x.permute(0, 3, 1, 2) return x class SimpleNorm(nn.Module): """ SimpleNorm (x / std(x)) """ __constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm'] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool _fast_norm: bool def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() normalized_shape = channels if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = affine self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) if self.elementwise_affine: self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: if self._fast_norm: x = fast_simple_norm(x, self.normalized_shape, self.weight, self.eps) else: x = simple_norm(x, self.normalized_shape, self.weight, self.eps) return x class SimpleNorm2d(nn.Module): """ SimpleNorm for NCHW tensors """ __constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm'] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool _fast_norm: bool def __init__(self, channels, eps=1e-6, affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() normalized_shape = channels if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = affine self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) if self.elementwise_affine: self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.permute(0, 2, 3, 1) if self._fast_norm: x = fast_simple_norm(x, self.normalized_shape, self.weight, self.eps) else: x = simple_norm(x, self.normalized_shape, self.weight, self.eps) x = x.permute(0, 3, 1, 2) return x