import fnmatch import re from collections import OrderedDict from typing import Union, Optional, List import torch class AttentionExtract(torch.nn.Module): # defaults should cover a significant number of timm models with attention maps. default_node_names = ['*attn.softmax'] default_module_names = ['*attn_drop'] def __init__( self, model: Union[torch.nn.Module], names: Optional[List[str]] = None, mode: str = 'eval', method: str = 'fx', hook_type: str = 'forward', use_regex: bool = False, ): """ Extract attention maps (or other activations) from a model by name. Args: model: Instantiated model to extract from. names: List of concrete or wildcard names to extract. Names are nodes for fx and modules for hooks. mode: 'train' or 'eval' model mode. method: 'fx' or 'hook' extraction method. hook_type: 'forward' or 'forward_pre' hooks used. use_regex: Use regex instead of fnmatch """ super().__init__() assert mode in ('train', 'eval') if mode == 'train': model = model.train() else: model = model.eval() assert method in ('fx', 'hook') if method == 'fx': # names are activation node names from timm.models._features_fx import get_graph_node_names, GraphExtractNet node_names = get_graph_node_names(model)[0 if mode == 'train' else 1] names = names or self.default_node_names if use_regex: regexes = [re.compile(r) for r in names] matched = [g for g in node_names if any([r.match(g) for r in regexes])] else: matched = [g for g in node_names if any([fnmatch.fnmatch(g, n) for n in names])] if not matched: raise RuntimeError(f'No node names found matching {names}.') self.model = GraphExtractNet(model, matched, return_dict=True) self.hooks = None else: # names are module names assert hook_type in ('forward', 'forward_pre') from timm.models._features import FeatureHooks module_names = [n for n, m in model.named_modules()] names = names or self.default_module_names if use_regex: regexes = [re.compile(r) for r in names] matched = [m for m in module_names if any([r.match(m) for r in regexes])] else: matched = [m for m in module_names if any([fnmatch.fnmatch(m, n) for n in names])] if not matched: raise RuntimeError(f'No module names found matching {names}.') self.model = model self.hooks = FeatureHooks(matched, model.named_modules(), default_hook_type=hook_type) self.names = matched self.mode = mode self.method = method def forward(self, x): if self.hooks is not None: self.model(x) output = self.hooks.get_output(device=x.device) else: output = self.model(x) return output