""" Checkpoint Saver Track top-n training checkpoints and maintain recovery checkpoints on specified intervals. Hacked together by / Copyright 2020 Ross Wightman """ import glob import logging import operator import os import shutil import torch from .model import unwrap_model, get_state_dict _logger = logging.getLogger(__name__) class CheckpointSaver: def __init__( self, model, optimizer, args=None, model_ema=None, amp_scaler=None, checkpoint_prefix='checkpoint', recovery_prefix='recovery', checkpoint_dir='', recovery_dir='', decreasing=False, max_history=10, unwrap_fn=unwrap_model ): # objects to save state_dicts of self.model = model self.optimizer = optimizer self.args = args self.model_ema = model_ema self.amp_scaler = amp_scaler # state self.checkpoint_files = [] # (filename, metric) tuples in order of decreasing betterness self.best_epoch = None self.best_metric = None self.curr_recovery_file = '' self.prev_recovery_file = '' self.can_hardlink = True # config self.checkpoint_dir = checkpoint_dir self.recovery_dir = recovery_dir self.save_prefix = checkpoint_prefix self.recovery_prefix = recovery_prefix self.extension = '.pth.tar' self.decreasing = decreasing # a lower metric is better if True self.cmp = operator.lt if decreasing else operator.gt # True if lhs better than rhs self.max_history = max_history self.unwrap_fn = unwrap_fn assert self.max_history >= 1 def _replace(self, src, dst): if self.can_hardlink: try: if os.path.exists(dst): os.unlink(dst) # required for Windows support. except (OSError, NotImplementedError) as e: self.can_hardlink = False os.replace(src, dst) def _duplicate(self, src, dst): if self.can_hardlink: try: if os.path.exists(dst): # for Windows os.unlink(dst) os.link(src, dst) return except (OSError, NotImplementedError) as e: self.can_hardlink = False shutil.copy2(src, dst) def _save(self, save_path, epoch, metric=None): save_state = { 'epoch': epoch, 'arch': type(self.model).__name__.lower(), 'state_dict': get_state_dict(self.model, self.unwrap_fn), 'optimizer': self.optimizer.state_dict(), 'version': 2, # version < 2 increments epoch before save } if self.args is not None: save_state['arch'] = self.args.model save_state['args'] = self.args if self.amp_scaler is not None: save_state[self.amp_scaler.state_dict_key] = self.amp_scaler.state_dict() if self.model_ema is not None: save_state['state_dict_ema'] = get_state_dict(self.model_ema, self.unwrap_fn) if metric is not None: save_state['metric'] = metric torch.save(save_state, save_path) def _cleanup_checkpoints(self, trim=0): trim = min(len(self.checkpoint_files), trim) delete_index = self.max_history - trim if delete_index < 0 or len(self.checkpoint_files) <= delete_index: return to_delete = self.checkpoint_files[delete_index:] for d in to_delete: try: _logger.debug("Cleaning checkpoint: {}".format(d)) os.remove(d[0]) except Exception as e: _logger.error("Exception '{}' while deleting checkpoint".format(e)) self.checkpoint_files = self.checkpoint_files[:delete_index] def save_checkpoint(self, epoch, metric=None): assert epoch >= 0 tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension) last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension) self._save(tmp_save_path, epoch, metric) self._replace(tmp_save_path, last_save_path) worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None if ( len(self.checkpoint_files) < self.max_history or metric is None or self.cmp(metric, worst_file[1]) ): if len(self.checkpoint_files) >= self.max_history: self._cleanup_checkpoints(1) filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension save_path = os.path.join(self.checkpoint_dir, filename) self._duplicate(last_save_path, save_path) self.checkpoint_files.append((save_path, metric)) self.checkpoint_files = sorted( self.checkpoint_files, key=lambda x: x[1], reverse=not self.decreasing # sort in descending order if a lower metric is not better ) checkpoints_str = "Current checkpoints:\n" for c in self.checkpoint_files: checkpoints_str += ' {}\n'.format(c) _logger.info(checkpoints_str) if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)): self.best_epoch = epoch self.best_metric = metric best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension) self._duplicate(last_save_path, best_save_path) return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch) def save_recovery(self, epoch, batch_idx=0): assert epoch >= 0 tmp_save_path = os.path.join(self.recovery_dir, 'recovery_tmp' + self.extension) self._save(tmp_save_path, epoch) filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension save_path = os.path.join(self.recovery_dir, filename) self._replace(tmp_save_path, save_path) if os.path.exists(self.prev_recovery_file): try: _logger.debug("Cleaning recovery: {}".format(self.prev_recovery_file)) os.remove(self.prev_recovery_file) except Exception as e: _logger.error("Exception '{}' while removing {}".format(e, self.prev_recovery_file)) self.prev_recovery_file = self.curr_recovery_file self.curr_recovery_file = save_path def find_recovery(self): recovery_path = os.path.join(self.recovery_dir, self.recovery_prefix) files = glob.glob(recovery_path + '*' + self.extension) files = sorted(files) return files[0] if len(files) else ''