from typing import Optional, Tuple, List import torch def onnx_forward(onnx_file, example_input): import onnxruntime sess_options = onnxruntime.SessionOptions() session = onnxruntime.InferenceSession(onnx_file, sess_options) input_name = session.get_inputs()[0].name output = session.run([], {input_name: example_input.numpy()}) output = output[0] return output def onnx_export( model: torch.nn.Module, output_file: str, example_input: Optional[torch.Tensor] = None, training: bool = False, verbose: bool = False, check: bool = True, check_forward: bool = False, batch_size: int = 64, input_size: Tuple[int, int, int] = None, opset: Optional[int] = None, dynamic_size: bool = False, aten_fallback: bool = False, keep_initializers: Optional[bool] = None, use_dynamo: bool = False, input_names: List[str] = None, output_names: List[str] = None, ): import onnx if training: training_mode = torch.onnx.TrainingMode.TRAINING model.train() else: training_mode = torch.onnx.TrainingMode.EVAL model.eval() if example_input is None: if not input_size: assert hasattr(model, 'default_cfg') input_size = model.default_cfg.get('input_size') example_input = torch.randn((batch_size,) + input_size, requires_grad=training) # Run model once before export trace, sets padding for models with Conv2dSameExport. This means # that the padding for models with Conv2dSameExport (most models with tf_ prefix) is fixed for # the input img_size specified in this script. # Opset >= 11 should allow for dynamic padding, however I cannot get it to work due to # issues in the tracing of the dynamic padding or errors attempting to export the model after jit # scripting it (an approach that should work). Perhaps in a future PyTorch or ONNX versions... with torch.no_grad(): original_out = model(example_input) input_names = input_names or ["input0"] output_names = output_names or ["output0"] dynamic_axes = {'input0': {0: 'batch'}, 'output0': {0: 'batch'}} if dynamic_size: dynamic_axes['input0'][2] = 'height' dynamic_axes['input0'][3] = 'width' if aten_fallback: export_type = torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK else: export_type = torch.onnx.OperatorExportTypes.ONNX if use_dynamo: export_options = torch.onnx.ExportOptions(dynamic_shapes=dynamic_size) export_output = torch.onnx.dynamo_export( model, example_input, export_options=export_options, ) export_output.save(output_file) torch_out = None else: torch_out = torch.onnx._export( model, example_input, output_file, training=training_mode, export_params=True, verbose=verbose, input_names=input_names, output_names=output_names, keep_initializers_as_inputs=keep_initializers, dynamic_axes=dynamic_axes, opset_version=opset, operator_export_type=export_type ) if check: onnx_model = onnx.load(output_file) onnx.checker.check_model(onnx_model, full_check=True) # assuming throw on error if check_forward and not training: import numpy as np onnx_out = onnx_forward(output_file, example_input) if torch_out is not None: np.testing.assert_almost_equal(torch_out.numpy(), onnx_out, decimal=3) np.testing.assert_almost_equal(original_out.numpy(), torch_out.numpy(), decimal=5) else: np.testing.assert_almost_equal(original_out.numpy(), onnx_out, decimal=3)