File size: 8,096 Bytes
2c8d22f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
""" Lion Optimizer
Paper: `Symbolic Discovery of Optimization Algorithms` - https://arxiv.org/abs/2302.06675
Original Impl: https://github.com/google/automl/tree/master/lion
"""
# Copyright 2023 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import List, Optional, Tuple

import torch
from torch.optim.optimizer import Optimizer

from ._types import ParamsT


class Lion(Optimizer):
    r"""Implements Lion algorithm."""

    def __init__(
            self,
            params: ParamsT,
            lr: float = 1e-4,
            betas: Tuple[float, float] = (0.9, 0.99),
            weight_decay: float = 0.0,
            caution: bool = False,
            maximize: bool = False,
            foreach: Optional[bool] = None,
    ):
        """Initialize the hyperparameters.

        Args:
          params: iterable of parameters to optimize or dicts defining parameter groups
          lr: learning rate
          betas: coefficients used for computing running averages of gradient and its square
          weight_decay: weight decay coefficient
          caution: apply caution
        """

        if not 0.0 <= lr:
            raise ValueError('Invalid learning rate: {}'.format(lr))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
        defaults = dict(
            lr=lr,
            betas=betas,
            weight_decay=weight_decay,
            caution=caution,
            foreach=foreach,
            maximize=maximize,
        )
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('caution', False)
            group.setdefault('maximize', False)
            group.setdefault('foreach', None)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
          closure: A closure that reevaluates the model and returns the loss.

        Returns:
          the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            beta1, beta2 = group['betas']

            for p in group['params']:
                if p.grad is None:
                    continue
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError('Lion does not support sparse gradients')
                grads.append(p.grad)

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                exp_avgs.append(state['exp_avg'])

            lion(
                params_with_grad,
                grads,
                exp_avgs,
                beta1=beta1,
                beta2=beta2,
                lr=group['lr'],
                weight_decay=group['weight_decay'],
                caution=group['caution'],
                maximize=group['maximize'],
                foreach=group['foreach'],
            )

        return loss


def lion(
        params: List[torch.Tensor],
        grads: List[torch.Tensor],
        exp_avgs: List[torch.Tensor],
        # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
        # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
        maximize: bool = False,
        foreach: bool = None,
        *,
        beta1: float,
        beta2: float,
        lr: float,
        weight_decay: float,
        caution: bool,
):
    r"""Functional API that performs Lion algorithm computation.
    """
    if foreach is None:
        try:
            # cannot do foreach if this overload doesn't exist when caution enabled
            foreach = not caution or 'Scalar' in torch.ops.aten._foreach_maximum_.overloads()
        except:
            foreach = False

    if foreach and torch.jit.is_scripting():
        raise RuntimeError('torch.jit.script not supported with foreach optimizers')

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_lion
    else:
        func = _single_tensor_lion

    func(
        params,
        grads,
        exp_avgs,
        beta1=beta1,
        beta2=beta2,
        lr=lr,
        weight_decay=weight_decay,
        caution=caution,
        maximize=maximize,
    )


def _single_tensor_lion(
        params: List[torch.Tensor],
        grads: List[torch.Tensor],
        exp_avgs: List[torch.Tensor],
        *,
        beta1: float,
        beta2: float,
        lr: float,
        weight_decay: float,
        caution: bool,
        maximize: bool,
):
    for i, param in enumerate(params):
        grad = grads[i] if not maximize else -grads[i]
        exp_avg = exp_avgs[i]

        if torch.is_complex(param):
            grad = torch.view_as_real(grad)
            exp_avg = torch.view_as_real(exp_avg)
            param = torch.view_as_real(param)

        # Perform stepweight decay
        param.mul_(1 - lr * weight_decay)

        # Weight update
        update = exp_avg.mul(beta1).add_(grad, alpha=1 - beta1).sign_()

        if caution:
            # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
            mask = (update * grad > 0).to(grad.dtype)
            mask.div_(mask.mean().clamp_(min=1e-3))
            update.mul_(mask)

        param.add_(update, alpha=-lr)

        # Decay the momentum running average coefficient
        exp_avg.lerp_(grad, 1 - beta2)


def _multi_tensor_lion(
        params: List[torch.Tensor],
        grads: List[torch.Tensor],
        exp_avgs: List[torch.Tensor],
        *,
        beta1: float,
        beta2: float,
        lr: float,
        weight_decay: float,
        caution: bool,
        maximize: bool,
):
    if len(params) == 0:
        return

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads]
    exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs]
    params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params]

    # Perform stepweight decay
    torch._foreach_mul_(params, 1 - lr * weight_decay)

    # Weight update
    updates = torch._foreach_mul(exp_avgs, beta1)
    torch._foreach_add_(updates, grads, alpha=1 - beta1)
    updates = [u.sign_() for u in updates]

    if caution:
        # Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
        masks = torch._foreach_mul(updates, grads)
        masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]
        mask_scale = [m.mean() for m in masks]
        torch._foreach_maximum_(mask_scale, 1e-3)
        torch._foreach_div_(masks, mask_scale)
        torch._foreach_mul_(updates, masks)

    torch._foreach_add_(params, updates, alpha=-lr)

    # Decay the momentum running average coefficient
    torch._foreach_mul_(exp_avgs, beta2)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta2)