|
# AdvProp (EfficientNet) |
|
|
|
**AdvProp** is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. |
|
|
|
The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). |
|
|
|
## How do I use this model on an image? |
|
|
|
To load a pretrained model: |
|
|
|
```py |
|
>>> import timm |
|
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True) |
|
>>> model.eval() |
|
``` |
|
|
|
To load and preprocess the image: |
|
|
|
```py |
|
>>> import urllib |
|
>>> from PIL import Image |
|
>>> from timm.data import resolve_data_config |
|
>>> from timm.data.transforms_factory import create_transform |
|
|
|
>>> config = resolve_data_config({}, model=model) |
|
>>> transform = create_transform(**config) |
|
|
|
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") |
|
>>> urllib.request.urlretrieve(url, filename) |
|
>>> img = Image.open(filename).convert('RGB') |
|
>>> tensor = transform(img).unsqueeze(0) |
|
``` |
|
|
|
To get the model predictions: |
|
|
|
```py |
|
>>> import torch |
|
>>> with torch.no_grad(): |
|
... out = model(tensor) |
|
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) |
|
>>> print(probabilities.shape) |
|
>>> |
|
``` |
|
|
|
To get the top-5 predictions class names: |
|
|
|
```py |
|
>>> |
|
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") |
|
>>> urllib.request.urlretrieve(url, filename) |
|
>>> with open("imagenet_classes.txt", "r") as f: |
|
... categories = [s.strip() for s in f.readlines()] |
|
|
|
>>> |
|
>>> top5_prob, top5_catid = torch.topk(probabilities, 5) |
|
>>> for i in range(top5_prob.size(0)): |
|
... print(categories[top5_catid[i]], top5_prob[i].item()) |
|
>>> |
|
>>> |
|
``` |
|
|
|
Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ap`. You can find the IDs in the model summaries at the top of this page. |
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. |
|
|
|
## How do I finetune this model? |
|
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer). |
|
|
|
```py |
|
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) |
|
``` |
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training |
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. |
|
|
|
## How do I train this model? |
|
|
|
You can follow the [timm recipe scripts](../training_script) for training a new model afresh. |
|
|
|
## Citation |
|
|
|
```BibTeX |
|
@misc{xie2020adversarial, |
|
title={Adversarial Examples Improve Image Recognition}, |
|
author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le}, |
|
year={2020}, |
|
eprint={1911.09665}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
Type: model-index |
|
Collections: |
|
- Name: AdvProp |
|
Paper: |
|
Title: Adversarial Examples Improve Image Recognition |
|
URL: https://paperswithcode.com/paper/adversarial-examples-improve-image |
|
Models: |
|
- Name: tf_efficientnet_b0_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 488688572 |
|
Parameters: 5290000 |
|
File Size: 21385973 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b0_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '224' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1334 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 77.1% |
|
Top 5 Accuracy: 93.26% |
|
- Name: tf_efficientnet_b1_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 883633200 |
|
Parameters: 7790000 |
|
File Size: 31515350 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b1_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.882' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '240' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1344 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 79.28% |
|
Top 5 Accuracy: 94.3% |
|
- Name: tf_efficientnet_b2_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 1234321170 |
|
Parameters: 9110000 |
|
File Size: 36800745 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b2_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.89' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '260' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1354 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 80.3% |
|
Top 5 Accuracy: 95.03% |
|
- Name: tf_efficientnet_b3_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 2275247568 |
|
Parameters: 12230000 |
|
File Size: 49384538 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b3_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.904' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '300' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1364 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 81.82% |
|
Top 5 Accuracy: 95.62% |
|
- Name: tf_efficientnet_b4_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 5749638672 |
|
Parameters: 19340000 |
|
File Size: 77993585 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b4_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.922' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '380' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1374 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 83.26% |
|
Top 5 Accuracy: 96.39% |
|
- Name: tf_efficientnet_b5_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 13176501888 |
|
Parameters: 30390000 |
|
File Size: 122403150 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b5_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.934' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '456' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1384 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 84.25% |
|
Top 5 Accuracy: 96.97% |
|
- Name: tf_efficientnet_b6_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 24180518488 |
|
Parameters: 43040000 |
|
File Size: 173237466 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b6_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.942' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '528' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1394 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 84.79% |
|
Top 5 Accuracy: 97.14% |
|
- Name: tf_efficientnet_b7_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 48205304880 |
|
Parameters: 66349999 |
|
File Size: 266850607 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b7_ap |
|
LR: 0.256 |
|
Epochs: 350 |
|
Crop Pct: '0.949' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '600' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1405 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 85.12% |
|
Top 5 Accuracy: 97.25% |
|
- Name: tf_efficientnet_b8_ap |
|
In Collection: AdvProp |
|
Metadata: |
|
FLOPs: 80962956270 |
|
Parameters: 87410000 |
|
File Size: 351412563 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Average Pooling |
|
- Batch Normalization |
|
- Convolution |
|
- Dense Connections |
|
- Dropout |
|
- Inverted Residual Block |
|
- Squeeze-and-Excitation Block |
|
- Swish |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- AdvProp |
|
- AutoAugment |
|
- Label Smoothing |
|
- RMSProp |
|
- Stochastic Depth |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: tf_efficientnet_b8_ap |
|
LR: 0.128 |
|
Epochs: 350 |
|
Crop Pct: '0.954' |
|
Momentum: 0.9 |
|
Batch Size: 2048 |
|
Image Size: '672' |
|
Weight Decay: 1.0e-05 |
|
Interpolation: bicubic |
|
RMSProp Decay: 0.9 |
|
Label Smoothing: 0.1 |
|
BatchNorm Momentum: 0.99 |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1416 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 85.37% |
|
Top 5 Accuracy: 97.3% |
|
--> |