""" Global Context ViT From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py Global Context Vision Transformers -https://arxiv.org/abs/2206.09959 @article{hatamizadeh2022global, title={Global Context Vision Transformers}, author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo}, journal={arXiv preprint arXiv:2206.09959}, year={2022} } Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit. The license for this code release is Apache 2.0 with no commercial restrictions. However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license (https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones... Hacked together by / Copyright 2022, Ross Wightman """ import math from functools import partial from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d, \ get_attn, get_act_layer, get_norm_layer, RelPosBias, _assert from ._builder import build_model_with_cfg from ._features_fx import register_notrace_function from ._manipulate import named_apply, checkpoint from ._registry import register_model, generate_default_cfgs __all__ = ['GlobalContextVit'] class MbConvBlock(nn.Module): """ A depthwise separable / fused mbconv style residual block with SE, `no norm. """ def __init__( self, in_chs, out_chs=None, expand_ratio=1.0, attn_layer='se', bias=False, act_layer=nn.GELU, ): super().__init__() attn_kwargs = dict(act_layer=act_layer) if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca': attn_kwargs['rd_ratio'] = 0.25 attn_kwargs['bias'] = False attn_layer = get_attn(attn_layer) out_chs = out_chs or in_chs mid_chs = int(expand_ratio * in_chs) self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias) self.act = act_layer() self.se = attn_layer(mid_chs, **attn_kwargs) self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias) def forward(self, x): shortcut = x x = self.conv_dw(x) x = self.act(x) x = self.se(x) x = self.conv_pw(x) x = x + shortcut return x class Downsample2d(nn.Module): def __init__( self, dim, dim_out=None, reduction='conv', act_layer=nn.GELU, norm_layer=LayerNorm2d, # NOTE in NCHW ): super().__init__() dim_out = dim_out or dim self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity() self.conv_block = MbConvBlock(dim, act_layer=act_layer) assert reduction in ('conv', 'max', 'avg') if reduction == 'conv': self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False) elif reduction == 'max': assert dim == dim_out self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: assert dim == dim_out self.reduction = nn.AvgPool2d(kernel_size=2) self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity() def forward(self, x): x = self.norm1(x) x = self.conv_block(x) x = self.reduction(x) x = self.norm2(x) return x class FeatureBlock(nn.Module): def __init__( self, dim, levels=0, reduction='max', act_layer=nn.GELU, ): super().__init__() reductions = levels levels = max(1, levels) if reduction == 'avg': pool_fn = partial(nn.AvgPool2d, kernel_size=2) else: pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1) self.blocks = nn.Sequential() for i in range(levels): self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer)) if reductions: self.blocks.add_module(f'pool{i+1}', pool_fn()) reductions -= 1 def forward(self, x): return self.blocks(x) class Stem(nn.Module): def __init__( self, in_chs: int = 3, out_chs: int = 96, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW ): super().__init__() self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1) self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer) def forward(self, x): x = self.conv1(x) x = self.down(x) return x class WindowAttentionGlobal(nn.Module): def __init__( self, dim: int, num_heads: int, window_size: Tuple[int, int], use_global: bool = True, qkv_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., ): super().__init__() window_size = to_2tuple(window_size) self.window_size = window_size self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.use_global = use_global self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads) if self.use_global: self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias) else: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, q_global: Optional[torch.Tensor] = None): B, N, C = x.shape if self.use_global and q_global is not None: _assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal') kv = self.qkv(x) kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q = q_global.repeat(B // q_global.shape[0], 1, 1, 1) q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) else: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q = q * self.scale attn = q @ k.transpose(-2, -1).contiguous() # NOTE contiguous() fixes an odd jit bug in PyTorch 2.0 attn = self.rel_pos(attn) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def window_partition(x, window_size: Tuple[int, int]): B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): H, W = img_size C = windows.shape[-1] x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class GlobalContextVitBlock(nn.Module): def __init__( self, dim: int, feat_size: Tuple[int, int], num_heads: int, window_size: int = 7, mlp_ratio: float = 4., use_global: bool = True, qkv_bias: bool = True, layer_scale: Optional[float] = None, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., attn_layer: Callable = WindowAttentionGlobal, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, ): super().__init__() feat_size = to_2tuple(feat_size) window_size = to_2tuple(window_size) self.window_size = window_size self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1])) self.norm1 = norm_layer(dim) self.attn = attn_layer( dim, num_heads=num_heads, window_size=window_size, use_global=use_global, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def _window_attn(self, x, q_global: Optional[torch.Tensor] = None): B, H, W, C = x.shape x_win = window_partition(x, self.window_size) x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C) attn_win = self.attn(x_win, q_global) x = window_reverse(attn_win, self.window_size, (H, W)) return x def forward(self, x, q_global: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class GlobalContextVitStage(nn.Module): def __init__( self, dim, depth: int, num_heads: int, feat_size: Tuple[int, int], window_size: Tuple[int, int], downsample: bool = True, global_norm: bool = False, stage_norm: bool = False, mlp_ratio: float = 4., qkv_bias: bool = True, layer_scale: Optional[float] = None, proj_drop: float = 0., attn_drop: float = 0., drop_path: Union[List[float], float] = 0.0, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, norm_layer_cl: Callable = LayerNorm2d, ): super().__init__() if downsample: self.downsample = Downsample2d( dim=dim, dim_out=dim * 2, norm_layer=norm_layer, ) dim = dim * 2 feat_size = (feat_size[0] // 2, feat_size[1] // 2) else: self.downsample = nn.Identity() self.feat_size = feat_size window_size = to_2tuple(window_size) feat_levels = int(math.log2(min(feat_size) / min(window_size))) self.global_block = FeatureBlock(dim, feat_levels) self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity() self.blocks = nn.ModuleList([ GlobalContextVitBlock( dim=dim, num_heads=num_heads, feat_size=feat_size, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, use_global=(i % 2 != 0), layer_scale=layer_scale, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, act_layer=act_layer, norm_layer=norm_layer_cl, ) for i in range(depth) ]) self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity() self.dim = dim self.feat_size = feat_size self.grad_checkpointing = False def forward(self, x): # input NCHW, downsample & global block are 2d conv + pooling x = self.downsample(x) global_query = self.global_block(x) # reshape NCHW --> NHWC for transformer blocks x = x.permute(0, 2, 3, 1) global_query = self.global_norm(global_query.permute(0, 2, 3, 1)) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint.checkpoint(blk, x) else: x = blk(x, global_query) x = self.norm(x) x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW return x class GlobalContextVit(nn.Module): def __init__( self, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', img_size: Tuple[int, int] = 224, window_ratio: Tuple[int, ...] = (32, 32, 16, 32), window_size: Tuple[int, ...] = None, embed_dim: int = 64, depths: Tuple[int, ...] = (3, 4, 19, 5), num_heads: Tuple[int, ...] = (2, 4, 8, 16), mlp_ratio: float = 3.0, qkv_bias: bool = True, layer_scale: Optional[float] = None, drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., weight_init='', act_layer: str = 'gelu', norm_layer: str = 'layernorm2d', norm_layer_cl: str = 'layernorm', norm_eps: float = 1e-5, ): super().__init__() act_layer = get_act_layer(act_layer) norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) img_size = to_2tuple(img_size) feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4 self.global_pool = global_pool self.num_classes = num_classes self.drop_rate = drop_rate num_stages = len(depths) self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (num_stages - 1)) if window_size is not None: window_size = to_ntuple(num_stages)(window_size) else: assert window_ratio is not None window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)]) self.stem = Stem( in_chs=in_chans, out_chs=embed_dim, act_layer=act_layer, norm_layer=norm_layer ) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] stages = [] for i in range(num_stages): last_stage = i == num_stages - 1 stage_scale = 2 ** max(i - 1, 0) stages.append(GlobalContextVitStage( dim=embed_dim * stage_scale, depth=depths[i], num_heads=num_heads[i], feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale), window_size=window_size[i], downsample=i != 0, stage_norm=last_stage, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, layer_scale=layer_scale, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], act_layer=act_layer, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, )) self.stages = nn.Sequential(*stages) # Classifier head self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) if weight_init: named_apply(partial(self._init_weights, scheme=weight_init), self) def _init_weights(self, module, name, scheme='vit'): # note Conv2d left as default init if scheme == 'vit': if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight) if module.bias is not None: if 'mlp' in name: nn.init.normal_(module.bias, std=1e-6) else: nn.init.zeros_(module.bias) else: if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) @torch.jit.ignore def no_weight_decay(self): return { k for k, _ in self.named_parameters() if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', # stem and embed blocks=r'^stages\.(\d+)' ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is None: global_pool = self.head.global_pool.pool_type self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.stem(x) x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x def _create_gcvit(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = generate_default_cfgs({ 'gcvit_xxtiny.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'), 'gcvit_xtiny.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'), 'gcvit_tiny.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'), 'gcvit_small.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'), 'gcvit_base.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'), }) @register_model def gcvit_xxtiny(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(2, 2, 6, 2), num_heads=(2, 4, 8, 16), **kwargs) return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs) @register_model def gcvit_xtiny(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 6, 5), num_heads=(2, 4, 8, 16), **kwargs) return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs) @register_model def gcvit_tiny(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 19, 5), num_heads=(2, 4, 8, 16), **kwargs) return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs) @register_model def gcvit_small(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 19, 5), num_heads=(3, 6, 12, 24), embed_dim=96, mlp_ratio=2, layer_scale=1e-5, **kwargs) return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs) @register_model def gcvit_base(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 19, 5), num_heads=(4, 8, 16, 32), embed_dim=128, mlp_ratio=2, layer_scale=1e-5, **kwargs) return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs)