import os from fastapi import FastAPI import subprocess import wandb from huggingface_hub import HfApi TOKEN = os.environ.get("DATACOMP_TOKEN") API = HfApi(token=TOKEN) wandb_api_key = os.environ.get('wandb_api_key') wandb.login(key=wandb_api_key) REPO_ID = f"imagenet-1k-random-20.0-frac-1over2" app = FastAPI() @app.get("/") def start_train(): os.system("echo 'Space started!'") os.system("echo pwd") os.system("pwd") os.system("echo ls") os.system("ls") #space_variables = API.get_space_variables(repo_id=REPO_ID) #if 'STATUS' not in space_variables or space_variables['STATUS'] != 'COMPUTING': os.system("echo 'Beginning processing.'") # API.add_space_variable(repo_id=REPO_ID, key='STATUS', value='COMPUTING') # Handles CUDA OOM errors. os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True") os.system("export CUDA_LAUNCH_BLOCKING=1") os.system("echo 'Okay, trying training.'") os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/{REPO_ID} --log-wandb --experiment {REPO_ID} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4") os.system("echo ls") os.system("ls") os.system("echo 'trying to upload...'") API.upload_large_folder(folder_path="/app", repo_id=f"datacomp/{REPO_ID}", repo_type="dataset",) # API.add_space_variable(repo_id=REPO_ID, key='STATUS', value='NOT_COMPUTING') #API.pause_space(f"{REPO_ID}") return {"Completed": "!"}