Datasets:
Commit
·
29afe55
1
Parent(s):
179a2d6
init commit
Browse files- .gitignore +4 -0
- ScienceQA.py +122 -0
- create_dataset.ipynb +0 -0
- download.sh +36 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.ipynb_checkpoints
|
2 |
+
.idea
|
3 |
+
images/
|
4 |
+
text/
|
ScienceQA.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
_DESCRIPTION = """Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal
|
7 |
+
multiple choice questions with a diverse set of science topics and annotations of their answers
|
8 |
+
with corresponding lectures and explanations.
|
9 |
+
The lecture and explanation provide general external knowledge and specific reasons,
|
10 |
+
respectively, for arriving at the correct answer."""
|
11 |
+
|
12 |
+
# Lets use the project page instead of the github repo
|
13 |
+
_HOMEPAGE = "https://scienceqa.github.io"
|
14 |
+
|
15 |
+
_CITATION = """\
|
16 |
+
@inproceedings{lu2022learn,
|
17 |
+
title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering},
|
18 |
+
author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan},
|
19 |
+
booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)},
|
20 |
+
year={2022}
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
_LICENSE = "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
|
25 |
+
|
26 |
+
|
27 |
+
class ScienceQA(datasets.GeneratorBasedBuilder):
|
28 |
+
"""Science Question Answering (ScienceQA), a new benchmark that consists of 21,208 multimodal
|
29 |
+
multiple choice questions with a diverse set of science topics and annotations of their answers
|
30 |
+
with corresponding lectures and explanations.
|
31 |
+
The lecture and explanation provide general external knowledge and specific reasons,
|
32 |
+
respectively, for arriving at the correct answer."""
|
33 |
+
|
34 |
+
VERSION = datasets.Version("1.0.0")
|
35 |
+
|
36 |
+
def _info(self):
|
37 |
+
return datasets.DatasetInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
features=datasets.Features(
|
40 |
+
{
|
41 |
+
"image": datasets.Image(),
|
42 |
+
"question": datasets.Value("string"),
|
43 |
+
"choices": datasets.features.Sequence(datasets.Value("string")),
|
44 |
+
"answer": datasets.Value("int8"),
|
45 |
+
"hint": datasets.Value("string"),
|
46 |
+
"task": datasets.Value("string"),
|
47 |
+
"grade": datasets.Value("string"),
|
48 |
+
"subject": datasets.Value("string"),
|
49 |
+
"topic": datasets.Value("string"),
|
50 |
+
"category": datasets.Value("string"),
|
51 |
+
"skill": datasets.Value("string"),
|
52 |
+
"lecture": datasets.Value("string"),
|
53 |
+
"solution": datasets.Value("string")
|
54 |
+
}
|
55 |
+
),
|
56 |
+
homepage=_HOMEPAGE,
|
57 |
+
citation=_CITATION,
|
58 |
+
license=_LICENSE,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
text_path = Path.cwd() / 'text' / 'problems.json'
|
63 |
+
image_dir = Path.cwd() / 'images'
|
64 |
+
return [
|
65 |
+
datasets.SplitGenerator(
|
66 |
+
name=datasets.Split.TRAIN,
|
67 |
+
# These kwargs will be passed to _generate_examples
|
68 |
+
gen_kwargs={
|
69 |
+
"text_path": text_path,
|
70 |
+
"image_dir": image_dir,
|
71 |
+
"split": "train",
|
72 |
+
},
|
73 |
+
),
|
74 |
+
datasets.SplitGenerator(
|
75 |
+
name=datasets.Split.VALIDATION,
|
76 |
+
# These kwargs will be passed to _generate_examples
|
77 |
+
gen_kwargs={
|
78 |
+
"text_path": text_path,
|
79 |
+
"image_dir": image_dir,
|
80 |
+
"split": "val",
|
81 |
+
},
|
82 |
+
),
|
83 |
+
datasets.SplitGenerator(
|
84 |
+
name=datasets.Split.TEST,
|
85 |
+
# These kwargs will be passed to _generate_examples
|
86 |
+
gen_kwargs={
|
87 |
+
"text_path": text_path,
|
88 |
+
"image_dir": image_dir,
|
89 |
+
"split": "test"
|
90 |
+
},
|
91 |
+
),
|
92 |
+
]
|
93 |
+
|
94 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
95 |
+
def _generate_examples(self, text_path, image_dir, split):
|
96 |
+
with open(text_path, encoding="utf-8") as f:
|
97 |
+
# Load all the text. Note that if this was HUGE, we would need to find a better way to load the json
|
98 |
+
data = json.load(f)
|
99 |
+
ignore_keys = ['image', 'split']
|
100 |
+
|
101 |
+
# Get image_id from its annoying location
|
102 |
+
for image_id, row in data.items():
|
103 |
+
# Only look for the rows in our split
|
104 |
+
if row['split'] == split:
|
105 |
+
|
106 |
+
# Note, not all rows have images.
|
107 |
+
# Get all the image data we need
|
108 |
+
if row['image']:
|
109 |
+
image_path = image_dir / split / image_id / 'image.png'
|
110 |
+
image_bytes = image_path.read_bytes()
|
111 |
+
image_dict = {'path': str(image_path), 'bytes': image_bytes}
|
112 |
+
else:
|
113 |
+
image_dict = None
|
114 |
+
|
115 |
+
# Keep only the keys we need
|
116 |
+
relevant_row = {k: v for k, v in row.items() if k not in ignore_keys}
|
117 |
+
|
118 |
+
return_dict = {
|
119 |
+
'image': image_dict,
|
120 |
+
**relevant_row
|
121 |
+
}
|
122 |
+
yield image_id, return_dict
|
create_dataset.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
download.sh
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Modified from the original here: https://github.com/lupantech/ScienceQA/blob/main/tools/download.sh
|
3 |
+
|
4 |
+
cd images
|
5 |
+
|
6 |
+
if [ -d "train" ];
|
7 |
+
then
|
8 |
+
echo "Already downloaded train"
|
9 |
+
else
|
10 |
+
ls -alF
|
11 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/train.zip
|
12 |
+
unzip -q train.zip
|
13 |
+
rm train.zip
|
14 |
+
fi
|
15 |
+
|
16 |
+
if [ -d "val" ];
|
17 |
+
then
|
18 |
+
echo "Already downloaded val"
|
19 |
+
else
|
20 |
+
ls -alF
|
21 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/val.zip
|
22 |
+
unzip -q val.zip
|
23 |
+
rm val.zip
|
24 |
+
fi
|
25 |
+
|
26 |
+
if [ -d "test" ];
|
27 |
+
then
|
28 |
+
echo "Already downloaded test"
|
29 |
+
else
|
30 |
+
ls -alF
|
31 |
+
wget https://scienceqa.s3.us-west-1.amazonaws.com/images/test.zip
|
32 |
+
unzip -q test.zip
|
33 |
+
rm test.zip
|
34 |
+
fi
|
35 |
+
|
36 |
+
echo "Completed downloads!"
|