```python from PIL import Image import torch from muse import PipelineMuse, MaskGiTUViT from datasets import Dataset, Features from datasets import Image as ImageFeature from datasets import Value, load_dataset device = "cuda" if torch.cuda.is_available() else "cpu" pipe = PipelineMuse.from_pretrained( transformer_path="valhalla/research-run", text_encoder_path="openMUSE/clip-vit-large-patch14-text-enc", vae_path="openMUSE/vqgan-f16-8192-laion", ).to(device) # pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/research-run-finetuned-journeydb", revision="06bcd6ab6580a2ed3275ddfc17f463b8574457da", subfolder="ema_model").to(device) pipe.transformer = MaskGiTUViT.from_pretrained("valhalla/muse-research-run", subfolder="ema_model").to(device) pipe.tokenizer.pad_token_id = 49407 if device == "cuda": pipe.transformer.enable_xformers_memory_efficient_attention() pipe.text_encoder.to(torch.float16) pipe.transformer.to(torch.float16) import PIL def main(): print("Loading dataset...") parti_prompts = load_dataset("nateraw/parti-prompts", split="train") print("Loading pipeline...") seed = 0 device = "cuda" torch.manual_seed(0) ckpt_id = "openMUSE/muse-256" scale = 10 print("Running inference...") main_dict = {} for i in range(len(parti_prompts)): sample = parti_prompts[i] prompt = sample["Prompt"] image = pipe( prompt, timesteps=16, negative_text=None, guidance_scale=scale, temperature=(2, 0), orig_size=(256, 256), crop_coords=(0, 0), aesthetic_score=6, use_fp16=device == "cuda", transformer_seq_len=256, use_tqdm=False, )[0] image = image.resize((256, 256), resample=PIL.Image.Resampling.LANCZOS) img_path = f"/home/patrick/muse_images/muse_256_{i}.png" image.save(img_path) main_dict.update( { prompt: { "img_path": img_path, "Category": sample["Category"], "Challenge": sample["Challenge"], "Note": sample["Note"], "model_name": ckpt_id, "seed": seed, } } ) def generation_fn(): for prompt in main_dict: prompt_entry = main_dict[prompt] yield { "Prompt": prompt, "Category": prompt_entry["Category"], "Challenge": prompt_entry["Challenge"], "Note": prompt_entry["Note"], "images": {"path": prompt_entry["img_path"]}, "model_name": prompt_entry["model_name"], "seed": prompt_entry["seed"], } print("Preparing HF dataset...") ds = Dataset.from_generator( generation_fn, features=Features( Prompt=Value("string"), Category=Value("string"), Challenge=Value("string"), Note=Value("string"), images=ImageFeature(), model_name=Value("string"), seed=Value("int64"), ), ) ds_id = "diffusers-parti-prompts/muse256" ds.push_to_hub(ds_id) if __name__ == "__main__": main() ```