|
"""OAB Exams dataset""" |
|
|
|
import datasets |
|
import pandas as pd |
|
import re |
|
from collections import defaultdict |
|
import os |
|
import json |
|
|
|
_CITATION = """@misc{almeida2023bluex, |
|
title={BLUEX: A benchmark based on Brazilian Leading Universities Entrance eXams}, |
|
author={Thales Sales Almeida and Thiago Laitz and Giovana K. Bonás and Rodrigo Nogueira}, |
|
year={2023}, |
|
eprint={2307.05410}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Despite Portuguese being the fifth most widely spoken language, there is a lack of freely available resources for evaluating language models in Portuguese. This repository contains a multimodal dataset consisting of the two leading university entrance exams conducted in Brazil: Convest (Unicamp) and Fuvest (USP), spanning from 2018 to 2024. The dataset comprises a total of 1260 questions, of which 724 do not have accompanying images. |
|
""" |
|
|
|
_HOMEPAGE="https://github.com/Portuguese-Benchmark-Datasets/BLUEX" |
|
|
|
_URL = "portuguese-benchmark-datasets/BLUEX" |
|
_URL = "https://raw.githubusercontent.com/Portuguese-Benchmark-Datasets/BLUEX/main/data/bluex_dataset.zip" |
|
|
|
class BLUEX_without_images(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question_number": datasets.Value("int32"), |
|
"exam_id": datasets.Value("string"), |
|
"exam_year": datasets.Value("string"), |
|
"university": datasets.Value("string"), |
|
"question_type": datasets.Sequence(datasets.Value("string")), |
|
"nullified": datasets.Value("bool"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(feature={ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string") |
|
}), |
|
"answerKey": datasets.Value("string"), |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
filedir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filedir": os.path.join(filedir, 'questions') |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filedir): |
|
|
|
for university in os.listdir(filedir): |
|
years = sorted(os.listdir(os.path.join(filedir, university))) |
|
for year in years: |
|
days = [d for d in os.listdir(os.path.join(filedir, university, year)) if os.path.isdir(os.path.join(filedir, university, year, d))] |
|
if len(days) == 0: |
|
days = [''] |
|
days = sorted(days) |
|
for day in days: |
|
if day == '': |
|
path = os.path.join(filedir, university, year) |
|
else: |
|
path = os.path.join(filedir, university, year, day) |
|
|
|
exam_id = f"{university}_{year}" if day == '' else f"{university}_{year}_{day.replace('day', '')}" |
|
filenames = sorted(os.listdir(path), key=lambda x: int(re.findall(r'\d+', x)[0])) |
|
for filename in filenames: |
|
if filename.endswith('.json'): |
|
with open(os.path.join(path, filename), 'r') as f: |
|
example = json.load(f) |
|
|
|
if example['IU'] or example['alternatives_type'] != 'string' or example['has_associated_images']: |
|
continue |
|
|
|
choices = { |
|
"text": [], |
|
"label": ["A", "B", "C", "D", "E"] |
|
} |
|
for alternative in example['alternatives']: |
|
choices['text'].append(alternative[3:].strip()) |
|
choices['label'] = choices['label'][:len(choices['text'])] |
|
|
|
doc_id = f"{exam_id}_{example['number']}" |
|
yield doc_id, { |
|
"id": doc_id, |
|
"question_number": example['number'], |
|
"exam_id": exam_id, |
|
"exam_year": year, |
|
"university": university, |
|
"question_type": example['subject'], |
|
"nullified": None, |
|
"question": example['question'], |
|
"choices": choices, |
|
"answerKey": example['answer'] |
|
} |