Update recogna-nlp/gembode-7b_eval_request_False_float16_Adapter.json
Browse files
recogna-nlp/gembode-7b_eval_request_False_float16_Adapter.json
CHANGED
@@ -8,12 +8,10 @@
|
|
8 |
"architectures": "?",
|
9 |
"weight_type": "Adapter",
|
10 |
"main_language": "Portuguese",
|
11 |
-
"status": "
|
12 |
"submitted_time": "2024-04-23T14:48:25Z",
|
13 |
"model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 545,
|
16 |
-
"job_start_time": "2024-04-23T23-04-11.206113"
|
17 |
-
"error_msg": "CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 31.75 GiB of which 95.75 MiB is free. Process 2161 has 23.37 GiB memory in use. Process 69718 has 8.28 GiB memory in use. Of the allocated memory 7.33 GiB is allocated by PyTorch, and 25.74 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)",
|
18 |
-
"traceback": "Traceback (most recent call last):\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 185, in wait_download_and_run_request\n run_request(\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/evaluate_llms.py\", line 69, in run_request\n results = run_eval_on_model(\n ^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/run_eval.py\", line 60, in run_eval_on_model\n result = evaluate(\n ^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/llm_leaderboard_eval_bot/lm_eval_util.py\", line 145, in evaluate\n results = evaluator.simple_evaluate(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/utils.py\", line 419, in _wrapper\n return fn(*args, **kwargs)\n ^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/evaluator.py\", line 100, in simple_evaluate\n lm = lm_eval.api.registry.get_model(model).create_from_arg_string(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/api/model.py\", line 134, in create_from_arg_string\n return cls(**args, **args2)\n ^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 297, in __init__\n self._create_model(\n File \"/workspace/repos/llm_leaderboard/lm-evaluation-harness-pt/lm_eval/models/huggingface.py\", line 608, in _create_model\n self._model = self.AUTO_MODEL_CLASS.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/models/auto/auto_factory.py\", line 563, in from_pretrained\n return model_class.from_pretrained(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 3679, in from_pretrained\n ) = cls._load_pretrained_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 4106, in _load_pretrained_model\n new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/workspace/repos/llm_leaderboard/transformers/src/transformers/modeling_utils.py\", line 887, in _load_state_dict_into_meta_model\n set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)\n File \"/root/miniconda3/envs/torch21/lib/python3.11/site-packages/accelerate/utils/modeling.py\", line 399, in set_module_tensor_to_device\n new_value = value.to(device)\n ^^^^^^^^^^^^^^^^\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 31.75 GiB of which 95.75 MiB is free. Process 2161 has 23.37 GiB memory in use. Process 69718 has 8.28 GiB memory in use. Of the allocated memory 7.33 GiB is allocated by PyTorch, and 25.74 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n"
|
19 |
}
|
|
|
8 |
"architectures": "?",
|
9 |
"weight_type": "Adapter",
|
10 |
"main_language": "Portuguese",
|
11 |
+
"status": "RERUN",
|
12 |
"submitted_time": "2024-04-23T14:48:25Z",
|
13 |
"model_type": "💬 : chat models (RLHF, DPO, IFT, ...)",
|
14 |
"source": "leaderboard",
|
15 |
"job_id": 545,
|
16 |
+
"job_start_time": "2024-04-23T23-04-11.206113"
|
|
|
|
|
17 |
}
|