system HF staff commited on
Commit
a7f79c1
0 Parent(s):

Update files from the datasets library (from 1.3.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.3.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-sa-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - sequence-modeling
18
+ - text-classification
19
+ - text-scoring
20
+ task_ids:
21
+ dyda_da:
22
+ - dialogue-modeling
23
+ - language-modeling
24
+ - text-classification-other-dialogue-act-classification
25
+ dyda_e:
26
+ - dialogue-modeling
27
+ - language-modeling
28
+ - text-classification-other-emotion-classification
29
+ iemocap:
30
+ - dialogue-modeling
31
+ - language-modeling
32
+ - text-classification-other-emotion-classification
33
+ maptask:
34
+ - dialogue-modeling
35
+ - language-modeling
36
+ - text-classification-other-dialogue-act-classification
37
+ meld_e:
38
+ - dialogue-modeling
39
+ - language-modeling
40
+ - text-classification-other-emotion-classification
41
+ meld_s:
42
+ - dialogue-modeling
43
+ - language-modeling
44
+ - sentiment-classification
45
+ mrda:
46
+ - dialogue-modeling
47
+ - language-modeling
48
+ - text-classification-other-dialogue-act-classification
49
+ oasis:
50
+ - dialogue-modeling
51
+ - language-modeling
52
+ - text-classification-other-dialogue-act-classification
53
+ sem:
54
+ - dialogue-modeling
55
+ - language-modeling
56
+ - sentiment-classification
57
+ swda:
58
+ - dialogue-modeling
59
+ - language-modeling
60
+ - text-classification-other-dialogue-act-classification
61
+ ---
62
+
63
+ # Dataset Card for SILICONE Benchmark
64
+
65
+ ## Table of Contents
66
+ - [Dataset Description](#dataset-description)
67
+ - [Dataset Summary](#dataset-summary)
68
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
69
+ - [Languages](#languages)
70
+ - [Dataset Structure](#dataset-structure)
71
+ - [Data Instances](#data-instances)
72
+ - [Data Fields](#data-fields)
73
+ - [Data Splits](#data-splits)
74
+ - [Dataset Creation](#dataset-creation)
75
+ - [Curation Rationale](#curation-rationale)
76
+ - [Source Data](#source-data)
77
+ - [Annotations](#annotations)
78
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
79
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
80
+ - [Social Impact of Dataset](#social-impact-of-dataset)
81
+ - [Discussion of Biases](#discussion-of-biases)
82
+ - [Other Known Limitations](#other-known-limitations)
83
+ - [Additional Information](#additional-information)
84
+ - [Dataset Curators](#dataset-curators)
85
+ - [Licensing Information](#licensing-information)
86
+ - [Citation Information](#citation-information)
87
+ - [Contributions](#contributions)
88
+
89
+ ## Dataset Description
90
+
91
+ - **Homepage:** [N/A]
92
+ - **Repository:** https://github.com/eusip/SILICONE-benchmark
93
+ - **Paper:** https://arxiv.org/abs/2009.11152
94
+ - **Leaderboard:** [N/A]
95
+ - **Point of Contact:** Ebenge Usip, [email protected]
96
+
97
+ ### Dataset Summary
98
+
99
+ The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems specifically designed for spoken language. All datasets are in the English language and covers a variety of domains including daily life, scripted scenarios, joint task completion, phone call conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant labels.
100
+
101
+ ### Supported Tasks and Leaderboards
102
+
103
+ [More Information Needed]
104
+
105
+ ### Languages
106
+
107
+ English.
108
+
109
+ ## Dataset Structure
110
+
111
+ ### Data Instances
112
+
113
+ #### DailyDialog Act Corpus (Dialogue Act)
114
+ For the `dyda_da` configuration one example from the dataset is:
115
+ ```
116
+ {
117
+ 'Utterance': "the taxi drivers are on strike again .",
118
+ 'Dialogue_Act': 2, # "inform"
119
+ 'Dialogue_ID': "2"
120
+ }
121
+ ```
122
+
123
+ #### DailyDialog Act Corpus (Emotion)
124
+ For the `dyda_e` configuration one example from the dataset is:
125
+ ```
126
+ {
127
+ 'Utterance': "'oh , breaktime flies .'",
128
+ 'Emotion': 5, # "sadness"
129
+ 'Dialogue_ID': "997"
130
+ }
131
+ ```
132
+
133
+ #### Interactive Emotional Dyadic Motion Capture (IEMOCAP) database
134
+ For the `iemocap` configuration one example from the dataset is:
135
+ ```
136
+ {
137
+ 'Dialogue_ID': "Ses04F_script03_2",
138
+ 'Utterance_ID': "Ses04F_script03_2_F025",
139
+ 'Utterance': "You're quite insufferable. I expect it's because you're drunk.",
140
+ 'Emotion': 0, # "ang"
141
+ }
142
+ ```
143
+
144
+ #### HCRC MapTask Corpus
145
+ For the `maptask` configuration one example from the dataset is:
146
+ ```
147
+ {
148
+ 'Speaker': "f",
149
+ 'Utterance': "i think that would bring me over the crevasse",
150
+ 'Dialogue_Act': 4, # "explain"
151
+ }
152
+ ```
153
+
154
+
155
+ #### Multimodal EmotionLines Dataset (Emotion)
156
+ For the `meld_e` configuration one example from the dataset is:
157
+ ```
158
+ {
159
+ 'Utterance': "'Push 'em out , push 'em out , harder , harder .'",
160
+ 'Speaker': "Joey",
161
+ 'Emotion': 3, # "joy"
162
+ 'Dialogue_ID': "1",
163
+ 'Utterance_ID': "2"
164
+ }
165
+ ```
166
+
167
+ #### Multimodal EmotionLines Dataset (Sentiment)
168
+ For the `meld_s` configuration one example from the dataset is:
169
+ ```
170
+ {
171
+ 'Utterance': "'Okay , y'know what ? There is no more left , left !'",
172
+ 'Speaker': "Rachel",
173
+ 'Sentiment': 0, # "negative"
174
+ 'Dialogue_ID': "2",
175
+ 'Utterance_ID': "4"
176
+ }
177
+ ```
178
+
179
+ #### ICSI MRDA Corpus
180
+ For the `mrda` configuration one example from the dataset is:
181
+ ```
182
+ {
183
+ 'Utterance_ID': "Bed006-c2_0073656_0076706",
184
+ 'Dialogue_Act': 0, # "s"
185
+ 'Channel_ID': "Bed006-c2",
186
+ 'Speaker': "mn015",
187
+ 'Dialogue_ID': "Bed006",
188
+ 'Utterance': "keith is not technically one of us yet ."
189
+ }
190
+ ```
191
+
192
+ #### BT OASIS Corpus
193
+ For the `oasis` configuration one example from the dataset is:
194
+ ```
195
+ {
196
+ 'Speaker': "b",
197
+ 'Utterance': "when i rang up um when i rang to find out why she said oh well your card's been declined",
198
+ 'Dialogue_Act': 21, # "inform"
199
+ }
200
+ ```
201
+
202
+ #### SEMAINE database
203
+ For the `sem` configuration one example from the dataset is:
204
+ ```
205
+ {
206
+ 'Utterance': "can you think of somebody who is like that ?",
207
+ 'NbPairInSession': "11",
208
+ 'Dialogue_ID': "59",
209
+ 'SpeechTurn': "674",
210
+ 'Speaker': "Agent",
211
+ 'Sentiment': 1, # "Neutral"
212
+ }
213
+ ```
214
+
215
+ #### Switchboard Dialog Act (SwDA) Corpus
216
+ For the `swda` configuration one example from the dataset is:
217
+ ```
218
+ {
219
+ 'Utterance': "but i 'd probably say that 's roughly right .",
220
+ 'Dialogue_Act': 33, # "aap_am"
221
+ 'From_Caller': "1255",
222
+ 'To_Caller': "1087",
223
+ 'Topic': "CRIME",
224
+ 'Dialogue_ID': "818",
225
+ 'Conv_ID': "sw2836",
226
+ }
227
+ ```
228
+
229
+ ### Data Fields
230
+
231
+ For the `dyda_da` configuration, the different fields are:
232
+ - `Utterance`: Utterance as a string.
233
+ - `Dialogue_Act`: Dialog act label of the utterance. It can be one of "commissive" (0), "directive" (1), "inform" (2) or "question" (3).
234
+ - `Dialogue_ID`: identifier of the dialogue as a string.
235
+
236
+ For the `dyda_e` configuration, the different fields are:
237
+ - `Utterance`: Utterance as a string.
238
+ - `Dialogue_Act`: Dialog act label of the utterance. It can be one of "anger" (0), "disgust" (1), "fear" (2), "happiness" (3), "no emotion" (4), "sadness" (5) or "surprise" (6).
239
+ - `Dialogue_ID`: identifier of the dialogue as a string.
240
+
241
+ For the `iemocap` configuration, the different fields are:
242
+ - `Dialogue_ID`: identifier of the dialogue as a string.
243
+ - `Utterance_ID`: identifier of the utterance as a string.
244
+ - `Utterance`: Utterance as a string.
245
+ - `Emotion`: Emotion label of the utterance. It can be one of "Anger" (0), "Disgust" (1), "Excitement" (2), "Fear" (3), "Frustration" (4), "Happiness" (5), "Neutral" (6), "Other" (7), "Sadness" (8), "Surprise" (9) or "Unknown" (10).
246
+
247
+ For the `maptask` configuration, the different fields are:
248
+ - `Speaker`: identifier of the speaker as a string.
249
+ - `Utterance`: Utterance as a string.
250
+ - `Dialogue_Act`: Dialog act label of the utterance. It can be one of "acknowledge" (0), "align" (1), "check" (2), "clarify" (3), "explain" (4), "instruct" (5), "query_w" (6), "query_yn" (7), "ready" (8), "reply_n" (9), "reply_w" (10) or "reply_y" (11).
251
+
252
+ For the `meld_e` configuration, the different fields are:
253
+ - `Utterance`: Utterance as a string.
254
+ - `Speaker`: Speaker as a string.
255
+ - `Emotion`: Emotion label of the utterance. It can be one of "anger" (0), "disgust" (1), "fear" (2), "joy" (3), "neutral" (4), "sadness" (5) or "surprise" (6).
256
+ - `Dialogue_ID`: identifier of the dialogue as a string.
257
+ - `Utterance_ID`: identifier of the utterance as a string.
258
+
259
+ For the `meld_s` configuration, the different fields are:
260
+ - `Utterance`: Utterance as a string.
261
+ - `Speaker`: Speaker as a string.
262
+ - `Sentiment`: Sentiment label of the utterance. It can be one of "negative" (0), "neutral" (1) or "positive" (2).
263
+ - `Dialogue_ID`: identifier of the dialogue as a string.
264
+ - `Utterance_ID`: identifier of the utterance as a string.
265
+
266
+ For the `mrda` configuration, the different fields are:
267
+ - `Utterance_ID`: identifier of the utterance as a string.
268
+ - `Dialogue_Act`: Dialog act label of the utterance. It can be one of "s" (0) [Statement/Subjective Statement], "d" (1) [Declarative Question], "b" (2) [Backchannel], "f" (3) [Follow-me] or "q" (4) [Question].
269
+ - `Channel_ID`: identifier of the channel as a string.
270
+ - `Speaker`: identifier of the speaker as a string.
271
+ - `Dialogue_ID`: identifier of the channel as a string.
272
+ - `Utterance`: Utterance as a string.
273
+
274
+ For the `oasis` configuration, the different fields are:
275
+ - `Speaker`: identifier of the speaker as a string.
276
+ - `Utterance`: Utterance as a string.
277
+ - `Dialogue_Act`: Dialog act label of the utterance. It can be one of "accept" (0), "ackn" (1), "answ" (2), "answElab" (3), "appreciate" (4), "backch" (5), "bye" (6), "complete" (7), "confirm" (8), "correct" (9), "direct" (10), "directElab" (11), "echo" (12), "exclaim" (13), "expressOpinion"(14), "expressPossibility" (15), "expressRegret" (16), "expressWish" (17), "greet" (18), "hold" (19),
278
+ "identifySelf" (20), "inform" (21), "informCont" (22), "informDisc" (23), "informIntent" (24), "init" (25), "negate" (26), "offer" (27), "pardon" (28), "raiseIssue" (29), "refer" (30), "refuse" (31), "reqDirect" (32), "reqInfo" (33), "reqModal" (34), "selfTalk" (35), "suggest" (36), "thank" (37), "informIntent-hold" (38), "correctSelf" (39), "expressRegret-inform" (40) or "thank-identifySelf" (41).
279
+
280
+ For the `sem` configuration, the different fields are:
281
+ - `Utterance`: Utterance as a string.
282
+ - `NbPairInSession`: number of utterance pairs in a dialogue.
283
+ - `Dialogue_ID`: identifier of the dialogue as a string.
284
+ - `SpeechTurn`: SpeakerTurn as a string.
285
+ - `Speaker`: Speaker as a string.
286
+ - `Sentiment`: Sentiment label of the utterance. It can be "Negative", "Neutral" or "Positive".
287
+
288
+ For the `swda` configuration, the different fields are:
289
+ `Utterance`: Utterance as a string.
290
+ `Dialogue_Act`: Dialogue act label of the utterance. It can be "sd" (0) [Statement-non-opinion], "b" (1) [Acknowledge (Backchannel)], "sv" (2) [Statement-opinion], "%" (3) [Uninterpretable], "aa" (4) [Agree/Accept], "ba" (5) [Appreciation], "fc" (6) [Conventional-closing], "qw" (7) [Wh-Question], "nn" (8) [No Answers], "bk" (9) [Response Acknowledgement], "h" (10) [Hedge], "qy^d" (11) [Declarative Yes-No-Question], "bh" (12) [Backchannel in Question Form], "^q" (13) [Quotation], "bf" (14) [Summarize/Reformulate], 'fo_o_fw_"_by_bc' (15) [Other], 'fo_o_fw_by_bc_"' (16) [Other], "na" (17) [Affirmative Non-yes Answers], "ad" (18) [Action-directive], "^2" (19) [Collaborative Completion], "b^m" (20) [Repeat-phrase], "qo" (21) [Open-Question], "qh" (22) [Rhetorical-Question], "^h" (23) [Hold Before Answer/Agreement], "ar" (24) [Reject], "ng" (25) [Negative Non-no Answers], "br" (26) [Signal-non-understanding], "no" (27) [Other Answers], "fp" (28) [Conventional-opening], "qrr" (29) [Or-Clause], "arp_nd" (30) [Dispreferred Answers], "t3" (31) [3rd-party-talk], "oo_co_cc" (32) [Offers, Options Commits], "aap_am" (33) [Maybe/Accept-part], "t1" (34) [Downplayer], "bd" (35) [Self-talk], "^g" (36) [Tag-Question], "qw^d" (37) [Declarative Wh-Question], "fa" (38) [Apology], "ft" (39) [Thanking], "+" (40) [Unknown], "x" (41) [Unknown], "ny" (42) [Unknown], "sv_fx" (43) [Unknown], "qy_qr" (44) [Unknown] or "ba_fe" (45) [Unknown].
291
+ `From_Caller`: identifier of the from caller as a string.
292
+ `To_Caller`: identifier of the to caller as a string.
293
+ `Topic`: Topic as a string.
294
+ `Dialogue_ID`: identifier of the dialogue as a string.
295
+ `Conv_ID`: identifier of the conversation as a string.
296
+
297
+ ### Data Splits
298
+
299
+ | Dataset name | Train | Valid | Test |
300
+ | ------------ | ----- | ----- | ---- |
301
+ | dyda_da | 87170 | 8069 | 7740 |
302
+ | dyda_e | 87170 | 8069 | 7740 |
303
+ | iemocap | 7213 | 805 | 2021 |
304
+ | maptask | 20905 | 2963 | 2894 |
305
+ | meld_e | 9989 | 1109 | 2610 |
306
+ | meld_s | 9989 | 1109 | 2610 |
307
+ | mrda | 83944 | 9815 | 15470 |
308
+ | oasis | 12076 | 1513 | 1478 |
309
+ | sem | 4264 | 485 | 878 |
310
+ | swda | 190709 | 21203 | 2714 |
311
+
312
+ ## Dataset Creation
313
+
314
+ ### Curation Rationale
315
+
316
+ [More Information Needed]
317
+
318
+ ### Source Data
319
+
320
+ #### Initial Data Collection and Normalization
321
+
322
+ [More Information Needed]
323
+
324
+ #### Who are the source language producers?
325
+
326
+ [More Information Needed]
327
+
328
+ ### Annotations
329
+
330
+ #### Annotation process
331
+
332
+ [More Information Needed]
333
+
334
+ #### Who are the annotators?
335
+
336
+ [More Information Needed]
337
+
338
+ ### Personal and Sensitive Information
339
+
340
+ [More Information Needed]
341
+
342
+ ## Considerations for Using the Data
343
+
344
+ ### Social Impact of Dataset
345
+
346
+ [More Information Needed]
347
+
348
+ ### Discussion of Biases
349
+
350
+ [More Information Needed]
351
+
352
+ ### Other Known Limitations
353
+
354
+ [More Information Needed]
355
+
356
+ ## Additional Information
357
+
358
+ ### Benchmark Curators
359
+
360
+ Emile Chapuis, Pierre Colombo, Ebenge Usip.
361
+
362
+ ### Licensing Information
363
+
364
+ This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/).
365
+
366
+ ### Citation Information
367
+
368
+ ```
369
+ @inproceedings{chapuis-etal-2020-hierarchical,
370
+ title = "Hierarchical Pre-training for Sequence Labelling in Spoken Dialog",
371
+ author = "Chapuis, Emile and
372
+ Colombo, Pierre and
373
+ Manica, Matteo and
374
+ Labeau, Matthieu and
375
+ Clavel, Chlo{\'e}",
376
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
377
+ month = nov,
378
+ year = "2020",
379
+ address = "Online",
380
+ publisher = "Association for Computational Linguistics",
381
+ url = "https://www.aclweb.org/anthology/2020.findings-emnlp.239",
382
+ doi = "10.18653/v1/2020.findings-emnlp.239",
383
+ pages = "2636--2648",
384
+ abstract = "Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning.",
385
+ }
386
+ ```
387
+
388
+ ### Contributions
389
+
390
+ Thanks to [@eusip](https://github.com/eusip) and [@lhoestq](https://github.com/lhoestq) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dyda_da": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@InProceedings{li2017dailydialog,\nauthor = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},\ntitle = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},\nbooktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},\nyear = {2017}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "http://yanran.li/dailydialog.html", "license": "", "features": {"Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_Act": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 4, "names": ["commissive", "directive", "inform", "question"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "dyda_da", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8346638, "num_examples": 87170, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 764277, "num_examples": 8069, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 740226, "num_examples": 7740, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/dyda/train.csv": {"num_bytes": 7519783, "checksum": "9710558dd08351e1544424fcf43f8aed5a3e99daba3e1f133e86acf2373fb4c6"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/dyda/dev.csv": {"num_bytes": 688589, "checksum": "66be9ec11f0234686cd338d5e7a374e1706ffd998b54fd3e6b72ef18598470b2"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/dyda/test.csv": {"num_bytes": 666553, "checksum": "3b711ebac2a1a64067aea5252c6bbbb1abe1f9f1434d2e94f9dd4a99706fc2ce"}}, "download_size": 8874925, "post_processing_size": null, "dataset_size": 9851141, "size_in_bytes": 18726066}, "dyda_e": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@InProceedings{li2017dailydialog,\nauthor = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},\ntitle = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},\nbooktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},\nyear = {2017}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "http://yanran.li/dailydialog.html", "license": "", "features": {"Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Emotion": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 7, "names": ["anger", "disgust", "fear", "happiness", "no emotion", "sadness", "surprise"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "dyda_e", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8547111, "num_examples": 87170, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 781445, "num_examples": 8069, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 757670, "num_examples": 7740, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/dyda/train.csv": {"num_bytes": 7519783, "checksum": "9710558dd08351e1544424fcf43f8aed5a3e99daba3e1f133e86acf2373fb4c6"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/dyda/dev.csv": {"num_bytes": 688589, "checksum": "66be9ec11f0234686cd338d5e7a374e1706ffd998b54fd3e6b72ef18598470b2"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/dyda/test.csv": {"num_bytes": 666553, "checksum": "3b711ebac2a1a64067aea5252c6bbbb1abe1f9f1434d2e94f9dd4a99706fc2ce"}}, "download_size": 8874925, "post_processing_size": null, "dataset_size": 10086226, "size_in_bytes": 18961151}, "iemocap": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@article{busso2008iemocap,\ntitle={IEMOCAP: Interactive emotional dyadic motion capture database},\nauthor={Busso, Carlos and Bulut, Murtaza and Lee, Chi-Chun and Kazemzadeh, Abe and Mower,\nEmily and Kim, Samuel and Chang, Jeannette N and Lee, Sungbok and Narayanan, Shrikanth S},\njournal={Language resources and evaluation},\nvolume={42},\nnumber={4},\npages={335},\nyear={2008},\npublisher={Springer}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "https://sail.usc.edu/iemocap/", "license": "", "features": {"Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Emotion": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 11, "names": ["ang", "dis", "exc", "fea", "fru", "hap", "neu", "oth", "sad", "sur", "xxx"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "iemocap", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 908180, "num_examples": 7213, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 100969, "num_examples": 805, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 254248, "num_examples": 2021, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/iemocap/train.csv": {"num_bytes": 834130, "checksum": "8bd85ac4c3081b9ab9a4607dc5726b563d7ace1dcc7b427ac751ed54d853086b"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/iemocap/dev.csv": {"num_bytes": 92272, "checksum": "8133acf20055d1e82733f70aa2dd381b01d2749909d77b2da8f32444c964eb51"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/iemocap/test.csv": {"num_bytes": 232376, "checksum": "7749583b50747f584ce4e8b7c137c546107f37c203c4c9a342ab03b8a4fa4406"}}, "download_size": 1158778, "post_processing_size": null, "dataset_size": 1263397, "size_in_bytes": 2422175}, "maptask": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@inproceedings{thompson1993hcrc,\ntitle={The HCRC map task corpus: natural dialogue for speech recognition},\nauthor={Thompson, Henry S and Anderson, Anne H and Bard, Ellen Gurman and Doherty-Sneddon,\nGwyneth and Newlands, Alison and Sotillo, Cathy},\nbooktitle={HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993},\nyear={1993}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "http://groups.inf.ed.ac.uk/maptask/", "license": "", "features": {"Speaker": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_Act": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 12, "names": ["acknowledge", "align", "check", "clarify", "explain", "instruct", "query_w", "query_yn", "ready", "reply_n", "reply_w", "reply_y"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "maptask", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1260413, "num_examples": 20905, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 178184, "num_examples": 2963, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 171806, "num_examples": 2894, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/maptask/train.txt": {"num_bytes": 821386, "checksum": "be52bd3de9c5fe134edba6d45ed112285f6db271dbe69a5a93557e6a0ef625fa"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/maptask/dev.txt": {"num_bytes": 115951, "checksum": "92f86ce1b15f1e05e16cee83732494ded4f572e0a474dd64ea952658601ccee7"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/maptask/test.txt": {"num_bytes": 111020, "checksum": "4758898044e6849c29084971bae9957ae06854e6606682b5d77984b5b861f87b"}}, "download_size": 1048357, "post_processing_size": null, "dataset_size": 1610403, "size_in_bytes": 2658760}, "meld_e": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@article{chen2018emotionlines,\ntitle={Emotionlines: An emotion corpus of multi-party conversations},\nauthor={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},\njournal={arXiv preprint arXiv:1802.08379},\nyear={2018}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "https://affective-meld.github.io/", "license": "", "features": {"Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Speaker": {"dtype": "string", "id": null, "_type": "Value"}, "Emotion": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 7, "names": ["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "meld_e", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 916337, "num_examples": 9989, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 100234, "num_examples": 1109, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 242352, "num_examples": 2610, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/meld/train.csv": {"num_bytes": 1131992, "checksum": "e734e07bba181798ac658d0a03d42d784a4fec0f7f9e48c996fc9bce7d3f7f20"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/meld/dev.csv": {"num_bytes": 123198, "checksum": "a69e5b1b50cd683432aefa7f1bdf355c581f05bd1b387bcec0dd2129a794ea1c"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/meld/test.csv": {"num_bytes": 297824, "checksum": "89d4948730222969a361909086d1d77a3c55d0dbb9e96da2ad90a5dc78b5077d"}}, "download_size": 1553014, "post_processing_size": null, "dataset_size": 1258923, "size_in_bytes": 2811937}, "meld_s": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@article{chen2018emotionlines,\ntitle={Emotionlines: An emotion corpus of multi-party conversations},\nauthor={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},\njournal={arXiv preprint arXiv:1802.08379},\nyear={2018}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "https://affective-meld.github.io/", "license": "", "features": {"Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Speaker": {"dtype": "string", "id": null, "_type": "Value"}, "Sentiment": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 3, "names": ["negative", "neutral", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "meld_s", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 930405, "num_examples": 9989, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 101801, "num_examples": 1109, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 245873, "num_examples": 2610, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/meld/train.csv": {"num_bytes": 1131992, "checksum": "e734e07bba181798ac658d0a03d42d784a4fec0f7f9e48c996fc9bce7d3f7f20"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/meld/dev.csv": {"num_bytes": 123198, "checksum": "a69e5b1b50cd683432aefa7f1bdf355c581f05bd1b387bcec0dd2129a794ea1c"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/meld/test.csv": {"num_bytes": 297824, "checksum": "89d4948730222969a361909086d1d77a3c55d0dbb9e96da2ad90a5dc78b5077d"}}, "download_size": 1553014, "post_processing_size": null, "dataset_size": 1278079, "size_in_bytes": 2831093}, "mrda": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@techreport{shriberg2004icsi,\ntitle={The ICSI meeting recorder dialog act (MRDA) corpus},\nauthor={Shriberg, Elizabeth and Dhillon, Raj and Bhagat, Sonali and Ang, Jeremy and Carvey, Hannah},\nyear={2004},\ninstitution={INTERNATIONAL COMPUTER SCIENCE INST BERKELEY CA}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "https://www.aclweb.org/anthology/W04-2319", "license": "", "features": {"Utterance_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_Act": {"dtype": "string", "id": null, "_type": "Value"}, "Channel_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Speaker": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 5, "names": ["s", "d", "b", "f", "q"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "mrda", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 9998857, "num_examples": 83943, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 1143286, "num_examples": 9815, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 1807462, "num_examples": 15470, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/mrda/train.csv": {"num_bytes": 7977039, "checksum": "d7a963aac70eb80d315b76b9e71d82a7888532ef8c6752c84487e34dfce3b7eb"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/mrda/dev.csv": {"num_bytes": 903718, "checksum": "dc795c60b3825645a20dbb0700e279271fc52eef4bc297564a0227f608a19619"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/mrda/test.csv": {"num_bytes": 1425091, "checksum": "8426417d316cb0aa57f13e46e866e8964eed71f719212ab1da1c3cbaa23ea414"}}, "download_size": 10305848, "post_processing_size": null, "dataset_size": 12949605, "size_in_bytes": 23255453}, "oasis": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@inproceedings{leech2003generic,\ntitle={Generic speech act annotation for task-oriented dialogues},\nauthor={Leech, Geoffrey and Weisser, Martin},\nbooktitle={Proceedings of the corpus linguistics 2003 conference},\nvolume={16},\npages={441--446},\nyear={2003},\norganization={Lancaster: Lancaster University}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "http://groups.inf.ed.ac.uk/oasis/", "license": "", "features": {"Speaker": {"dtype": "string", "id": null, "_type": "Value"}, "Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_Act": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 42, "names": ["accept", "ackn", "answ", "answElab", "appreciate", "backch", "bye", "complete", "confirm", "correct", "direct", "directElab", "echo", "exclaim", "expressOpinion", "expressPossibility", "expressRegret", "expressWish", "greet", "hold", "identifySelf", "inform", "informCont", "informDisc", "informIntent", "init", "negate", "offer", "pardon", "raiseIssue", "refer", "refuse", "reqDirect", "reqInfo", "reqModal", "selfTalk", "suggest", "thank", "informIntent-hold", "correctSelf", "expressRegret-inform", "thank-identifySelf"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "oasis", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 887018, "num_examples": 12076, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 112185, "num_examples": 1513, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 119254, "num_examples": 1478, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/oasis/train.txt": {"num_bytes": 633398, "checksum": "5a6a42cc47e0276afde1189dbc604fb8c0cc46afab2b49de1c2c6d9b61d5ce16"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/oasis/dev.txt": {"num_bytes": 80400, "checksum": "a8d4e7d6fa8e582c80c7e3aef0d4a73fc9ac38a18f9aab10bac723ee45489c8e"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/oasis/test.txt": {"num_bytes": 88204, "checksum": "a22790b90f99b92d28a5beda6d0a8a7d107c195cb19bdfc4ce3f1df4f2ca901b"}}, "download_size": 802002, "post_processing_size": null, "dataset_size": 1118457, "size_in_bytes": 1920459}, "sem": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@article{mckeown2011semaine,\ntitle={The semaine database: Annotated multimodal records of emotionally colored conversations\nbetween a person and a limited agent},\nauthor={McKeown, Gary and Valstar, Michel and Cowie, Roddy and Pantic, Maja and Schroder, Marc},\njournal={IEEE transactions on affective computing},\nvolume={3},\nnumber={1},\npages={5--17},\nyear={2011},\npublisher={IEEE}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "https://ieeexplore.ieee.org/document/5959155", "license": "", "features": {"Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "NbPairInSession": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "SpeechTurn": {"dtype": "string", "id": null, "_type": "Value"}, "Speaker": {"dtype": "string", "id": null, "_type": "Value"}, "Sentiment": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 3, "names": ["Negative", "Neutral", "Positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "sem", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 496168, "num_examples": 4264, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 57896, "num_examples": 485, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 100072, "num_examples": 878, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/sem/train.csv": {"num_bytes": 389633, "checksum": "9fa9fc0851babf987b2f0c09c507eb46b5e9fab1a8680d8789a4c24af53cde9c"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/sem/dev.csv": {"num_bytes": 45859, "checksum": "43d93b46664e9e250ef59f551e02fdef54501b1bab5d2932bc3a97bf32d6c365"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/sem/test.csv": {"num_bytes": 78197, "checksum": "c8024e6e431776c9b838ad3f23290cb33b4a9d00bdc820e090bd62ef7b4a63db"}}, "download_size": 513689, "post_processing_size": null, "dataset_size": 654136, "size_in_bytes": 1167825}, "swda": {"description": "The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection\n of resources for training, evaluating, and analyzing natural language understanding systems\n specifically designed for spoken language. All datasets are in the English language and cover a\n variety of domains including daily life, scripted scenarios, joint task completion, phone call\n conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant\n labels.\n", "citation": "@article{stolcke2000dialogue,\ntitle={Dialogue act modeling for automatic tagging and recognition of conversational speech},\nauthor={Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and\nBates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Ess-Dykema,\nCarol Van and Meteer, Marie},\njournal={Computational linguistics},\nvolume={26},\nnumber={3},\npages={339--373},\nyear={2000},\npublisher={MIT Press}\n}\n@inproceedings{chapuis-etal-2020-hierarchical,\n title = \"Hierarchical Pre-training for Sequence Labelling in Spoken Dialog\",\n author = \"Chapuis, Emile and\n Colombo, Pierre and\n Manica, Matteo and\n Labeau, Matthieu and\n Clavel, Chlo{'e}\",\n booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.239\",\n doi = \"10.18653/v1/2020.findings-emnlp.239\",\n pages = \"2636--2648\",\n abstract = \"Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a\n key component of spoken dialog systems. In this work, we propose a new approach to learn\n generic representations adapted to spoken dialog, which we evaluate on a new benchmark we\n call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).\n SILICONE is model-agnostic and contains 10 different datasets of various sizes.\n We obtain our representations with a hierarchical encoder based on transformer architectures,\n for which we extend two well-known pre-training objectives. Pre-training is performed on\n OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We\n demonstrate how hierarchical encoders achieve competitive results with consistently fewer\n parameters compared to state-of-the-art models and we show their importance for both\n pre-training and fine-tuning.\",\n}\n", "homepage": "https://web.stanford.edu/~jurafsky/ws97/", "license": "", "features": {"Utterance": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_Act": {"dtype": "string", "id": null, "_type": "Value"}, "From_Caller": {"dtype": "string", "id": null, "_type": "Value"}, "To_Caller": {"dtype": "string", "id": null, "_type": "Value"}, "Topic": {"dtype": "string", "id": null, "_type": "Value"}, "Dialogue_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Conv_ID": {"dtype": "string", "id": null, "_type": "Value"}, "Label": {"num_classes": 46, "names": ["sd", "b", "sv", "%", "aa", "ba", "fc", "qw", "nn", "bk", "h", "qy^d", "bh", "^q", "bf", "fo_o_fw_\"_by_bc", "fo_o_fw_by_bc_\"", "na", "ad", "^2", "b^m", "qo", "qh", "^h", "ar", "ng", "br", "no", "fp", "qrr", "arp_nd", "t3", "oo_co_cc", "aap_am", "t1", "bd", "^g", "qw^d", "fa", "ft", "+", "x", "ny", "sv_fx", "qy_qr", "ba_fe"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "silicone", "config_name": "swda", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 20499788, "num_examples": 190709, "dataset_name": "silicone"}, "validation": {"name": "validation", "num_bytes": 2265898, "num_examples": 21203, "dataset_name": "silicone"}, "test": {"name": "test", "num_bytes": 291471, "num_examples": 2714, "dataset_name": "silicone"}}, "download_checksums": {"https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/swda/train.csv": {"num_bytes": 14420223, "checksum": "37475282ef24b5d53a761f0576619f7c1fb1520b1af7dfaf306f13b6c9b60d57"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/swda/dev.csv": {"num_bytes": 1589677, "checksum": "000a1f0a805f275936748d6a4d61f928b18457c8c9e1e5149c56888d95c866b5"}, "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main/swda/test.csv": {"num_bytes": 217600, "checksum": "0584658976bd4b218351630ec282145238ce02d127d76cb31c1dd47ecdfa34f4"}}, "download_size": 16227500, "post_processing_size": null, "dataset_size": 23057157, "size_in_bytes": 39284657}}
dummy/dyda_da/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f4ca75f38c6924640a3b5845ff777e2ef292c5b9a266c3be46d7e66636f7229
3
+ size 1070
dummy/dyda_e/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e371a39a0f6c2a07aea72a6836b1146b5abb69e02db33b81d386437e55cbb601
3
+ size 1070
dummy/iemocap/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56f934b9b70bdeaf136430bbe21f772862a1baaf0c09ddca63f25b3b2b6a7269
3
+ size 1180
dummy/maptask/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f035f797f9667738a8e2f3650bdc861d7ea6706dca420bb5095801501c628f0
3
+ size 854
dummy/meld_e/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94fcf11e0c7b54caf1c73c17e6f3db9b504a9d440e8e30103c9cd3f094ddb7ed
3
+ size 1486
dummy/meld_s/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09471cc7ad152c8e8e689d345d49268674a830d38dea6caf02565f693fbb6c94
3
+ size 1486
dummy/mrda/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1cb6d7024fc6f67a1c116125b84cb152f843cb726a93d31037e13cbbf5a857d
3
+ size 1115
dummy/oasis/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe94e06b4853e1133906b418617460a7a5e2030b576db6a89aaacc8e5885daf
3
+ size 1586
dummy/sem/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cf1c4875acca9d68cba85eaf8ef7b73d287a62531b66e6ff05f6ce8901ad827
3
+ size 1197
dummy/swda/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9fea104d15d142749dc903db1a859c48116d8ca3a24a279343cdf3a6e5f2f9
3
+ size 1064
silicone.py ADDED
@@ -0,0 +1,660 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import textwrap
22
+
23
+ import pandas as pd
24
+ import six
25
+
26
+ import datasets
27
+
28
+
29
+ _SILICONE_CITATION = """\
30
+ @inproceedings{chapuis-etal-2020-hierarchical,
31
+ title = "Hierarchical Pre-training for Sequence Labelling in Spoken Dialog",
32
+ author = "Chapuis, Emile and
33
+ Colombo, Pierre and
34
+ Manica, Matteo and
35
+ Labeau, Matthieu and
36
+ Clavel, Chlo{\'e}",
37
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
38
+ month = nov,
39
+ year = "2020",
40
+ address = "Online",
41
+ publisher = "Association for Computational Linguistics",
42
+ url = "https://www.aclweb.org/anthology/2020.findings-emnlp.239",
43
+ doi = "10.18653/v1/2020.findings-emnlp.239",
44
+ pages = "2636--2648",
45
+ abstract = "Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a
46
+ key component of spoken dialog systems. In this work, we propose a new approach to learn
47
+ generic representations adapted to spoken dialog, which we evaluate on a new benchmark we
48
+ call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).
49
+ SILICONE is model-agnostic and contains 10 different datasets of various sizes.
50
+ We obtain our representations with a hierarchical encoder based on transformer architectures,
51
+ for which we extend two well-known pre-training objectives. Pre-training is performed on
52
+ OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We
53
+ demonstrate how hierarchical encoders achieve competitive results with consistently fewer
54
+ parameters compared to state-of-the-art models and we show their importance for both
55
+ pre-training and fine-tuning.",
56
+ }
57
+ """
58
+
59
+ _SILICONE_DESCRIPTION = """\
60
+ The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection
61
+ of resources for training, evaluating, and analyzing natural language understanding systems
62
+ specifically designed for spoken language. All datasets are in the English language and cover a
63
+ variety of domains including daily life, scripted scenarios, joint task completion, phone call
64
+ conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant
65
+ labels.
66
+ """
67
+
68
+ _URL = "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main"
69
+
70
+ SWDA_DA_DESCRIPTION = {
71
+ "sd": "Statement-non-opinion",
72
+ "b": "Acknowledge (Backchannel)",
73
+ "sv": "Statement-opinion",
74
+ "%": "Uninterpretable",
75
+ "aa": "Agree/Accept",
76
+ "ba": "Appreciation",
77
+ "fc": "Conventional-closing",
78
+ "qw": "Wh-Question",
79
+ "nn": "No Answers",
80
+ "bk": "Response Acknowledgement",
81
+ "h": "Hedge",
82
+ "qy^d": "Declarative Yes-No-Question",
83
+ "bh": "Backchannel in Question Form",
84
+ "^q": "Quotation",
85
+ "bf": "Summarize/Reformulate",
86
+ 'fo_o_fw_"_by_bc': "Other",
87
+ 'fo_o_fw_by_bc_"': "Other",
88
+ "na": "Affirmative Non-yes Answers",
89
+ "ad": "Action-directive",
90
+ "^2": "Collaborative Completion",
91
+ "b^m": "Repeat-phrase",
92
+ "qo": "Open-Question",
93
+ "qh": "Rhetorical-Question",
94
+ "^h": "Hold Before Answer/Agreement",
95
+ "ar": "Reject",
96
+ "ng": "Negative Non-no Answers",
97
+ "br": "Signal-non-understanding",
98
+ "no": "Other Answers",
99
+ "fp": "Conventional-opening",
100
+ "qrr": "Or-Clause",
101
+ "arp_nd": "Dispreferred Answers",
102
+ "t3": "3rd-party-talk",
103
+ "oo_co_cc": "Offers, Options Commits",
104
+ "aap_am": "Maybe/Accept-part",
105
+ "t1": "Downplayer",
106
+ "bd": "Self-talk",
107
+ "^g": "Tag-Question",
108
+ "qw^d": "Declarative Wh-Question",
109
+ "fa": "Apology",
110
+ "ft": "Thanking",
111
+ "+": "Unknown",
112
+ "x": "Unknown",
113
+ "ny": "Unknown",
114
+ "sv_fx": "Unknown",
115
+ "qy_qr": "Unknown",
116
+ "ba_fe": "Unknown",
117
+ }
118
+
119
+ MRDA_DA_DESCRIPTION = {
120
+ "s": "Statement/Subjective Statement",
121
+ "d": "Declarative Question",
122
+ "b": "Backchannel",
123
+ "f": '"Follow-me"',
124
+ "q": "Question",
125
+ }
126
+
127
+ IEMOCAP_E_DESCRIPTION = {
128
+ "ang": "Anger",
129
+ "dis": "Disgust",
130
+ "exc": "Excitement",
131
+ "fea": "Fear",
132
+ "fru": "Frustration",
133
+ "hap": "Happiness",
134
+ "neu": "Neutral",
135
+ "oth": "Other",
136
+ "sad": "Sadness",
137
+ "sur": "Surprise",
138
+ "xxx": "Unknown",
139
+ }
140
+
141
+
142
+ class SiliconeConfig(datasets.BuilderConfig):
143
+ """BuilderConfig for SILICONE."""
144
+
145
+ def __init__(
146
+ self,
147
+ text_features,
148
+ label_column,
149
+ data_url,
150
+ citation,
151
+ url,
152
+ label_classes=None,
153
+ **kwargs,
154
+ ):
155
+ """BuilderConfig for SILICONE.
156
+ Args:
157
+ text_features: `dict[string, string]`, map from the name of the feature
158
+ dict for each text field to the name of the column in the tsv file
159
+ label_column: `string`, name of the column in the csv/txt file corresponding
160
+ to the label
161
+ data_url: `string`, url to download the csv/text file from
162
+ citation: `string`, citation for the data set
163
+ url: `string`, url for information about the data set
164
+ label_classes: `list[string]`, the list of classes if the label is
165
+ categorical. If not provided, then the label will be of type
166
+ `datasets.Value('float32')`.
167
+ **kwargs: keyword arguments forwarded to super.
168
+ """
169
+ super(SiliconeConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
170
+ self.text_features = text_features
171
+ self.label_column = label_column
172
+ self.label_classes = label_classes
173
+ self.data_url = data_url
174
+ self.citation = citation
175
+ self.url = url
176
+
177
+
178
+ class Silicone(datasets.GeneratorBasedBuilder):
179
+ """The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark."""
180
+
181
+ BUILDER_CONFIGS = [
182
+ SiliconeConfig(
183
+ name="dyda_da",
184
+ description=textwrap.dedent(
185
+ """\
186
+ The DailyDialog Act Corpus contains multi-turn dialogues and is supposed to reflect daily
187
+ communication by covering topics about daily life. The dataset is manually labelled with
188
+ dialog act and emotions. It is the third biggest corpus of SILICONE with 102k utterances."""
189
+ ),
190
+ text_features={
191
+ "Utterance": "Utterance",
192
+ "Dialogue_Act": "Dialogue_Act",
193
+ "Dialogue_ID": "Dialogue_ID",
194
+ },
195
+ label_classes=["commissive", "directive", "inform", "question"],
196
+ label_column="Dialogue_Act",
197
+ data_url={
198
+ "train": _URL + "/dyda/train.csv",
199
+ "dev": _URL + "/dyda/dev.csv",
200
+ "test": _URL + "/dyda/test.csv",
201
+ },
202
+ citation=textwrap.dedent(
203
+ """\
204
+ @InProceedings{li2017dailydialog,
205
+ author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
206
+ title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
207
+ booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
208
+ year = {2017}
209
+ }"""
210
+ ),
211
+ url="http://yanran.li/dailydialog.html",
212
+ ),
213
+ SiliconeConfig(
214
+ name="dyda_e",
215
+ description=textwrap.dedent(
216
+ """\
217
+ The DailyDialog Act Corpus contains multi-turn dialogues and is supposed to reflect daily
218
+ communication by covering topics about daily life. The dataset is manually labelled with
219
+ dialog act and emotions. It is the third biggest corpus of SILICONE with 102k utterances."""
220
+ ),
221
+ text_features={
222
+ "Utterance": "Utterance",
223
+ "Emotion": "Emotion",
224
+ "Dialogue_ID": "Dialogue_ID",
225
+ },
226
+ label_classes=["anger", "disgust", "fear", "happiness", "no emotion", "sadness", "surprise"],
227
+ label_column="Emotion",
228
+ data_url={
229
+ "train": _URL + "/dyda/train.csv",
230
+ "dev": _URL + "/dyda/dev.csv",
231
+ "test": _URL + "/dyda/test.csv",
232
+ },
233
+ citation=textwrap.dedent(
234
+ """\
235
+ @InProceedings{li2017dailydialog,
236
+ author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
237
+ title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
238
+ booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
239
+ year = {2017}
240
+ }"""
241
+ ),
242
+ url="http://yanran.li/dailydialog.html",
243
+ ),
244
+ SiliconeConfig(
245
+ name="iemocap",
246
+ description=textwrap.dedent(
247
+ """\
248
+ The IEMOCAP database is a multi-modal database of ten speakers. It consists of dyadic
249
+ sessions where actors perform improvisations or scripted scenarios. Emotion categories
250
+ are: anger, happiness, sadness, neutral, excitement, frustration, fear, surprise, and other.
251
+ There is no official split of this dataset."""
252
+ ),
253
+ text_features={
254
+ "Dialogue_ID": "Dialogue_ID",
255
+ "Utterance_ID": "Utterance_ID",
256
+ "Utterance": "Utterance",
257
+ "Emotion": "Emotion",
258
+ },
259
+ label_classes=list(six.iterkeys(IEMOCAP_E_DESCRIPTION)),
260
+ label_column="Emotion",
261
+ data_url={
262
+ "train": _URL + "/iemocap/train.csv",
263
+ "dev": _URL + "/iemocap/dev.csv",
264
+ "test": _URL + "/iemocap/test.csv",
265
+ },
266
+ citation=textwrap.dedent(
267
+ """\
268
+ @article{busso2008iemocap,
269
+ title={IEMOCAP: Interactive emotional dyadic motion capture database},
270
+ author={Busso, Carlos and Bulut, Murtaza and Lee, Chi-Chun and Kazemzadeh, Abe and Mower,
271
+ Emily and Kim, Samuel and Chang, Jeannette N and Lee, Sungbok and Narayanan, Shrikanth S},
272
+ journal={Language resources and evaluation},
273
+ volume={42},
274
+ number={4},
275
+ pages={335},
276
+ year={2008},
277
+ publisher={Springer}
278
+ }"""
279
+ ),
280
+ url="https://sail.usc.edu/iemocap/",
281
+ ),
282
+ SiliconeConfig(
283
+ name="maptask",
284
+ description=textwrap.dedent(
285
+ """\
286
+ The HCRC MapTask Corpus was constructed through the verbal collaboration of participants
287
+ in order to construct a map route. This corpus is small (27k utterances). As there is
288
+ no standard train/dev/test split performance depends on the split."""
289
+ ),
290
+ text_features={
291
+ "Speaker": "Speaker",
292
+ "Utterance": "Utterance",
293
+ "Dialogue_Act": "Dialogue_Act",
294
+ },
295
+ label_classes=[
296
+ "acknowledge",
297
+ "align",
298
+ "check",
299
+ "clarify",
300
+ "explain",
301
+ "instruct",
302
+ "query_w",
303
+ "query_yn",
304
+ "ready",
305
+ "reply_n",
306
+ "reply_w",
307
+ "reply_y",
308
+ ],
309
+ label_column="Dialogue_Act",
310
+ data_url={
311
+ "train": _URL + "/maptask/train.txt",
312
+ "dev": _URL + "/maptask/dev.txt",
313
+ "test": _URL + "/maptask/test.txt",
314
+ },
315
+ citation=textwrap.dedent(
316
+ """\
317
+ @inproceedings{thompson1993hcrc,
318
+ title={The HCRC map task corpus: natural dialogue for speech recognition},
319
+ author={Thompson, Henry S and Anderson, Anne H and Bard, Ellen Gurman and Doherty-Sneddon,
320
+ Gwyneth and Newlands, Alison and Sotillo, Cathy},
321
+ booktitle={HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993},
322
+ year={1993}
323
+ }"""
324
+ ),
325
+ url="http://groups.inf.ed.ac.uk/maptask/",
326
+ ),
327
+ SiliconeConfig(
328
+ name="meld_e",
329
+ description=textwrap.dedent(
330
+ """\
331
+ The Multimodal EmotionLines Dataset enhances and extends the EmotionLines dataset where
332
+ multiple speakers participate in the dialogue."""
333
+ ),
334
+ text_features={
335
+ "Utterance": "Utterance",
336
+ "Speaker": "Speaker",
337
+ "Emotion": "Emotion",
338
+ "Dialogue_ID": "Dialogue_ID",
339
+ "Utterance_ID": "Utterance_ID",
340
+ },
341
+ label_classes=["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"],
342
+ label_column="Emotion",
343
+ data_url={
344
+ "train": _URL + "/meld/train.csv",
345
+ "dev": _URL + "/meld/dev.csv",
346
+ "test": _URL + "/meld/test.csv",
347
+ },
348
+ citation=textwrap.dedent(
349
+ """\
350
+ @article{chen2018emotionlines,
351
+ title={Emotionlines: An emotion corpus of multi-party conversations},
352
+ author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},
353
+ journal={arXiv preprint arXiv:1802.08379},
354
+ year={2018}
355
+ }"""
356
+ ),
357
+ url="https://affective-meld.github.io/",
358
+ ),
359
+ SiliconeConfig(
360
+ name="meld_s",
361
+ description=textwrap.dedent(
362
+ """\
363
+ The Multimodal EmotionLines Dataset enhances and extends the EmotionLines dataset where
364
+ multiple speakers participate in the dialogue."""
365
+ ),
366
+ text_features={
367
+ "Utterance": "Utterance",
368
+ "Speaker": "Speaker",
369
+ "Sentiment": "Sentiment",
370
+ "Dialogue_ID": "Dialogue_ID",
371
+ "Utterance_ID": "Utterance_ID",
372
+ },
373
+ label_classes=["negative", "neutral", "positive"],
374
+ label_column="Sentiment",
375
+ data_url={
376
+ "train": _URL + "/meld/train.csv",
377
+ "dev": _URL + "/meld/dev.csv",
378
+ "test": _URL + "/meld/test.csv",
379
+ },
380
+ citation=textwrap.dedent(
381
+ """\
382
+ @article{chen2018emotionlines,
383
+ title={Emotionlines: An emotion corpus of multi-party conversations},
384
+ author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},
385
+ journal={arXiv preprint arXiv:1802.08379},
386
+ year={2018}
387
+ }"""
388
+ ),
389
+ url="https://affective-meld.github.io/",
390
+ ),
391
+ SiliconeConfig(
392
+ name="mrda",
393
+ description=textwrap.dedent(
394
+ """\
395
+ ICSI MRDA Corpus consist of transcripts of multi-party meetings hand-annotated with dialog
396
+ acts. It is the second biggest dataset with around 110k utterances."""
397
+ ),
398
+ text_features={
399
+ "Utterance_ID": "Utterance_ID",
400
+ "Dialogue_Act": "Dialogue_Act",
401
+ "Channel_ID": "Channel_ID",
402
+ "Speaker": "Speaker",
403
+ "Dialogue_ID": "Dialogue_ID",
404
+ "Utterance": "Utterance",
405
+ },
406
+ label_classes=list(six.iterkeys(MRDA_DA_DESCRIPTION)),
407
+ label_column="Dialogue_Act",
408
+ data_url={
409
+ "train": _URL + "/mrda/train.csv",
410
+ "dev": _URL + "/mrda/dev.csv",
411
+ "test": _URL + "/mrda/test.csv",
412
+ },
413
+ citation=textwrap.dedent(
414
+ """\
415
+ @techreport{shriberg2004icsi,
416
+ title={The ICSI meeting recorder dialog act (MRDA) corpus},
417
+ author={Shriberg, Elizabeth and Dhillon, Raj and Bhagat, Sonali and Ang, Jeremy and Carvey, Hannah},
418
+ year={2004},
419
+ institution={INTERNATIONAL COMPUTER SCIENCE INST BERKELEY CA}
420
+ }"""
421
+ ),
422
+ url="https://www.aclweb.org/anthology/W04-2319",
423
+ ),
424
+ SiliconeConfig(
425
+ name="oasis",
426
+ description=textwrap.dedent(
427
+ """\
428
+ The Bt Oasis Corpus (Oasis) contains the transcripts of live calls made to the BT and
429
+ operator services. This corpus is rather small (15k utterances). There is no standard
430
+ train/dev/test split."""
431
+ ),
432
+ text_features={
433
+ "Speaker": "Speaker",
434
+ "Utterance": "Utterance",
435
+ "Dialogue_Act": "Dialogue_Act",
436
+ },
437
+ label_classes=[
438
+ "accept",
439
+ "ackn",
440
+ "answ",
441
+ "answElab",
442
+ "appreciate",
443
+ "backch",
444
+ "bye",
445
+ "complete",
446
+ "confirm",
447
+ "correct",
448
+ "direct",
449
+ "directElab",
450
+ "echo",
451
+ "exclaim",
452
+ "expressOpinion",
453
+ "expressPossibility",
454
+ "expressRegret",
455
+ "expressWish",
456
+ "greet",
457
+ "hold",
458
+ "identifySelf",
459
+ "inform",
460
+ "informCont",
461
+ "informDisc",
462
+ "informIntent",
463
+ "init",
464
+ "negate",
465
+ "offer",
466
+ "pardon",
467
+ "raiseIssue",
468
+ "refer",
469
+ "refuse",
470
+ "reqDirect",
471
+ "reqInfo",
472
+ "reqModal",
473
+ "selfTalk",
474
+ "suggest",
475
+ "thank",
476
+ "informIntent-hold",
477
+ "correctSelf",
478
+ "expressRegret-inform",
479
+ "thank-identifySelf",
480
+ ],
481
+ label_column="Dialogue_Act",
482
+ data_url={
483
+ "train": _URL + "/oasis/train.txt",
484
+ "dev": _URL + "/oasis/dev.txt",
485
+ "test": _URL + "/oasis/test.txt",
486
+ },
487
+ citation=textwrap.dedent(
488
+ """\
489
+ @inproceedings{leech2003generic,
490
+ title={Generic speech act annotation for task-oriented dialogues},
491
+ author={Leech, Geoffrey and Weisser, Martin},
492
+ booktitle={Proceedings of the corpus linguistics 2003 conference},
493
+ volume={16},
494
+ pages={441--446},
495
+ year={2003},
496
+ organization={Lancaster: Lancaster University}
497
+ }"""
498
+ ),
499
+ url="http://groups.inf.ed.ac.uk/oasis/",
500
+ ),
501
+ SiliconeConfig(
502
+ name="sem",
503
+ description=textwrap.dedent(
504
+ """\
505
+ The SEMAINE database comes from the Sustained Emotionally coloured Human-Machine Interaction
506
+ using Nonverbal Expression project. This dataset has been annotated on three sentiments
507
+ labels: positive, negative and neutral. It is built on Multimodal Wizard of Oz experiment
508
+ where participants held conversations with an operator who adopted various roles designed
509
+ to evoke emotional reactions. There is no official split on this dataset."""
510
+ ),
511
+ text_features={
512
+ "Utterance": "Utterance",
513
+ "NbPairInSession": "NbPairInSession",
514
+ "Dialogue_ID": "Dialogue_ID",
515
+ "SpeechTurn": "SpeechTurn",
516
+ "Speaker": "Speaker",
517
+ "Sentiment": "Sentiment",
518
+ },
519
+ label_classes=["Negative", "Neutral", "Positive"],
520
+ label_column="Sentiment",
521
+ data_url={
522
+ "train": _URL + "/sem/train.csv",
523
+ "dev": _URL + "/sem/dev.csv",
524
+ "test": _URL + "/sem/test.csv",
525
+ },
526
+ citation=textwrap.dedent(
527
+ """\
528
+ @article{mckeown2011semaine,
529
+ title={The semaine database: Annotated multimodal records of emotionally colored conversations
530
+ between a person and a limited agent},
531
+ author={McKeown, Gary and Valstar, Michel and Cowie, Roddy and Pantic, Maja and Schroder, Marc},
532
+ journal={IEEE transactions on affective computing},
533
+ volume={3},
534
+ number={1},
535
+ pages={5--17},
536
+ year={2011},
537
+ publisher={IEEE}
538
+ }"""
539
+ ),
540
+ url="https://ieeexplore.ieee.org/document/5959155",
541
+ ),
542
+ SiliconeConfig(
543
+ name="swda",
544
+ description=textwrap.dedent(
545
+ """\
546
+ Switchboard Dialog Act Corpus (SwDA) is a telephone speech corpus consisting of two-sided
547
+ telephone conversations with provided topics. This dataset includes additional features
548
+ such as speaker id and topic information."""
549
+ ),
550
+ text_features={
551
+ "Utterance": "Utterance",
552
+ "Dialogue_Act": "Dialogue_Act",
553
+ "From_Caller": "From_Caller",
554
+ "To_Caller": "To_Caller",
555
+ "Topic": "Topic",
556
+ "Dialogue_ID": "Dialogue_ID",
557
+ "Conv_ID": "Conv_ID",
558
+ },
559
+ label_classes=list(six.iterkeys(SWDA_DA_DESCRIPTION)),
560
+ label_column="Dialogue_Act",
561
+ data_url={
562
+ "train": _URL + "/swda/train.csv",
563
+ "dev": _URL + "/swda/dev.csv",
564
+ "test": _URL + "/swda/test.csv",
565
+ },
566
+ citation=textwrap.dedent(
567
+ """\
568
+ @article{stolcke2000dialogue,
569
+ title={Dialogue act modeling for automatic tagging and recognition of conversational speech},
570
+ author={Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and
571
+ Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Ess-Dykema,
572
+ Carol Van and Meteer, Marie},
573
+ journal={Computational linguistics},
574
+ volume={26},
575
+ number={3},
576
+ pages={339--373},
577
+ year={2000},
578
+ publisher={MIT Press}
579
+ }"""
580
+ ),
581
+ url="https://web.stanford.edu/~jurafsky/ws97/",
582
+ ),
583
+ ]
584
+
585
+ def _info(self):
586
+ features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
587
+ if self.config.label_classes:
588
+ features["Label"] = datasets.features.ClassLabel(names=self.config.label_classes)
589
+ features["Idx"] = datasets.Value("int32")
590
+ return datasets.DatasetInfo(
591
+ description=_SILICONE_DESCRIPTION,
592
+ features=datasets.Features(features),
593
+ homepage=self.config.url,
594
+ citation=self.config.citation + "\n" + _SILICONE_CITATION,
595
+ )
596
+
597
+ def _split_generators(self, dl_manager):
598
+ data_files = dl_manager.download(self.config.data_url)
599
+ splits = []
600
+ splits.append(
601
+ datasets.SplitGenerator(
602
+ name=datasets.Split.TRAIN,
603
+ gen_kwargs={
604
+ "data_file": data_files["train"],
605
+ "split": "train",
606
+ },
607
+ )
608
+ )
609
+ splits.append(
610
+ datasets.SplitGenerator(
611
+ name=datasets.Split.VALIDATION,
612
+ gen_kwargs={
613
+ "data_file": data_files["dev"],
614
+ "split": "dev",
615
+ },
616
+ )
617
+ )
618
+ splits.append(
619
+ datasets.SplitGenerator(
620
+ name=datasets.Split.TEST,
621
+ gen_kwargs={
622
+ "data_file": data_files["test"],
623
+ "split": "test",
624
+ },
625
+ )
626
+ )
627
+ return splits
628
+
629
+ def _generate_examples(self, data_file, split):
630
+ if self.config.name not in ("maptask", "iemocap", "oasis"):
631
+ df = pd.read_csv(data_file, delimiter=",", header=0, quotechar='"', dtype=str)[
632
+ six.iterkeys(self.config.text_features)
633
+ ]
634
+
635
+ if self.config.name == "iemocap":
636
+ df = pd.read_csv(
637
+ data_file,
638
+ delimiter=",",
639
+ header=0,
640
+ quotechar='"',
641
+ names=["Dialogue_ID", "Utterance_ID", "Utterance", "Emotion", "Valence", "Activation", "Dominance"],
642
+ dtype=str,
643
+ )[six.iterkeys(self.config.text_features)]
644
+
645
+ if self.config.name in ("maptask", "oasis"):
646
+ df = pd.read_csv(data_file, delimiter="|", names=["Speaker", "Utterance", "Dialogue_Act"], dtype=str)[
647
+ six.iterkeys(self.config.text_features)
648
+ ]
649
+
650
+ rows = df.to_dict(orient="records")
651
+
652
+ for n, row in enumerate(rows):
653
+ example = row
654
+ example["Idx"] = n
655
+
656
+ if self.config.label_column in example:
657
+ label = example[self.config.label_column]
658
+ example["Label"] = label
659
+
660
+ yield example["Idx"], example