import os from datasets import DatasetDict, Audio import pandas as pd from datasets.table import embed_table_storage import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("main_folder_path", type=str, help="Path of the base mls folder") parser.add_argument("configuration", type=str, help="Dataset configuration to use, if necessary. Here corresponds to the language name.") parser.add_argument("output_dir", type=str, help="Save the dataset on disk with this path.") parser.add_argument("--cpu_num_workers", default=1, type=int, help="Number of CPU workers.") parser.add_argument("--csv_folder_path", default=None, type=str, help="Path where to save intermediate csv, by default will be main_foldr_path") parser.add_argument("--repo_id", default="facebook/multilingual_librispeech", type=str, help="Push the dataset to the hub.") args = parser.parse_args() main_folder_path = args.main_folder_path csv_folder_path = args.csv_folder_path if args.csv_folder_path is not None else main_folder_path if not os.path.exists(csv_folder_path): os.makedirs(csv_folder_path) splits = ["dev", "test", "train"] # total_length_per_split = 10_000 * 60 * 60 # in sec -> 10k hours csv_dict = {} for split in splits: segment_path = os.path.join(main_folder_path, split, "segments.txt") transcript_path = os.path.join(main_folder_path, split, "transcripts.txt") segments = pd.read_csv(segment_path, sep='\t', names=["audio", "original_path", "begin_time", "end_time"], index_col="audio") transcripts = pd.read_csv(transcript_path, sep='\t', names=["audio", "transcript"], index_col="audio") df = pd.concat([segments, transcripts], axis=1, join="inner") print( f"Segments and transcripts of {split} has been joined: new length {len(df)}, old lengths {(len(segments), len(transcripts))}") # add audio duration df["audio_duration"] = df["end_time"] - df["begin_time"] df["split"] = split print(f"len df {len(df)}") df.to_csv(os.path.join(csv_folder_path, f"{split}.csv")) csv_dict[split] = os.path.join(csv_folder_path, f"{split}.csv") # take care of /limited_supervision if split == "train": nine_hours_segment_path = os.path.join(main_folder_path, "train/limited_supervision/9hr/handles.txt") nine_hours_segment = pd.read_csv(nine_hours_segment_path, sep='\t', names=["audio"], index_col="audio").index nine_hours_df = df.filter(items=nine_hours_segment, axis=0) nine_hours_df.to_csv(os.path.join(csv_folder_path, f"9_hours.csv")) csv_dict["9_hours"] = os.path.join(csv_folder_path, f"9_hours.csv") one_hours_segments = [ os.path.join(f.path, "handles.txt") for f in os.scandir( os.path.join(main_folder_path, "train/limited_supervision/1hr")) if f.is_dir()] one_hours_segments = pd.concat([pd.read_csv(one, sep='\t', names=["audio"], index_col="audio") for one in one_hours_segments], axis=0).index one_hours_df = df.filter(items=one_hours_segments, axis=0) one_hours_df.to_csv(os.path.join(csv_folder_path, f"1_hours.csv")) csv_dict["1_hours"] = os.path.join(csv_folder_path, f"1_hours.csv") dataset = DatasetDict.from_csv(csv_dict) def extract_speaker_id_and_format_path(audio, split): speaker_id = audio.split("_")[0] chapter_id = audio.split("_")[1] file = f"{audio}.opus" path = os.path.join(main_folder_path, split, "audio", speaker_id, chapter_id, file) return {"audio": path, "speaker_id": speaker_id, "chapter_id": chapter_id, "file": file, "id": audio} # correct audio path dataset = dataset.map(extract_speaker_id_and_format_path, input_columns=["audio", "split"], num_proc=args.cpu_num_workers, remove_columns=["split"]) dataset = dataset.cast_column("audio", Audio()) print(dataset) print(dataset["dev"][0]) print("Embed table storage") # load_dataset(...) format = dataset["train"].format dataset = dataset.with_format("arrow") dataset = dataset.map(embed_table_storage, batched=True, num_proc=args.cpu_num_workers) dataset = dataset.with_format(**format) dataset.save_to_disk(args.output_dir, num_proc=args.cpu_num_workers) if args.repo_id: pushed = False while not pushed: try: dataset.push_to_hub(args.repo_id, args.configuration, revision="refs/pr/15") pushed = True except: pass