Datasets:

Languages:
English
ArXiv:
License:
File size: 13,211 Bytes
2a14e5d
 
 
 
 
b833526
2a14e5d
b833526
1d6d31f
2a14e5d
 
 
 
 
 
 
 
 
 
 
383e219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7de0b4c
 
 
383e219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7de0b4c
 
 
383e219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7de0b4c
 
 
383e219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7de0b4c
 
 
383e219
 
2a14e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: TextVQA
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- visual-question-answering
task_ids:
- visual-question-answering
dataset_info:
- config_name: train
  features:
  - name: image_id
    dtype: string
  - name: question_id
    dtype: int32
  - name: question
    dtype: string
  - name: question_tokens
    sequence: string
  - name: image
    dtype: image
  - name: image_width
    dtype: int32
  - name: image_height
    dtype: int32
  - name: flickr_original_url
    dtype: string
  - name: flickr_300k_url
    dtype: string
  - name: answers
    sequence: string
  - name: image_classes
    sequence: string
  - name: set_name
    dtype: string
  splits:
  - name: train
    num_bytes: 21381310
    num_examples: 34602
  - name: validation
    num_bytes: 3077854
    num_examples: 5000
  - name: test
    num_bytes: 3025046
    num_examples: 5734
  download_size: 8070116310
  dataset_size: 27484210
- config_name: val
  features:
  - name: image_id
    dtype: string
  - name: question_id
    dtype: int32
  - name: question
    dtype: string
  - name: question_tokens
    sequence: string
  - name: image
    dtype: image
  - name: image_width
    dtype: int32
  - name: image_height
    dtype: int32
  - name: flickr_original_url
    dtype: string
  - name: flickr_300k_url
    dtype: string
  - name: answers
    sequence: string
  - name: image_classes
    sequence: string
  - name: set_name
    dtype: string
  splits:
  - name: train
    num_bytes: 21381310
    num_examples: 34602
  - name: validation
    num_bytes: 3077854
    num_examples: 5000
  - name: test
    num_bytes: 3025046
    num_examples: 5734
  download_size: 8070116310
  dataset_size: 27484210
- config_name: test
  features:
  - name: image_id
    dtype: string
  - name: question_id
    dtype: int32
  - name: question
    dtype: string
  - name: question_tokens
    sequence: string
  - name: image
    dtype: image
  - name: image_width
    dtype: int32
  - name: image_height
    dtype: int32
  - name: flickr_original_url
    dtype: string
  - name: flickr_300k_url
    dtype: string
  - name: answers
    sequence: string
  - name: image_classes
    sequence: string
  - name: set_name
    dtype: string
  splits:
  - name: train
    num_bytes: 21381310
    num_examples: 34602
  - name: validation
    num_bytes: 3077854
    num_examples: 5000
  - name: test
    num_bytes: 3025046
    num_examples: 5734
  download_size: 8070116310
  dataset_size: 27484210
- config_name: textvqa
  features:
  - name: image_id
    dtype: string
  - name: question_id
    dtype: int32
  - name: question
    dtype: string
  - name: question_tokens
    sequence: string
  - name: image
    dtype: image
  - name: image_width
    dtype: int32
  - name: image_height
    dtype: int32
  - name: flickr_original_url
    dtype: string
  - name: flickr_300k_url
    dtype: string
  - name: answers
    sequence: string
  - name: image_classes
    sequence: string
  - name: set_name
    dtype: string
  splits:
  - name: train
    num_bytes: 22073350
    num_examples: 34602
  - name: validation
    num_bytes: 3177854
    num_examples: 5000
  - name: test
    num_bytes: 3139726
    num_examples: 5734
  download_size: 8070116310
  dataset_size: 28390930
---

# Dataset Card for TextVQA

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://textvqa.org
- **Repository:** https://github.com/facebookresearch/mmf
- **Paper:** https://arxiv.org/abs/1904.08920
- **Leaderboard:** https://eval.ai/web/challenges/challenge-page/874/overview
- **Point of Contact:** mailto:[email protected]

### Dataset Summary

TextVQA requires models to read and reason about text in images to answer questions about them.
Specifically, models need to incorporate a new modality of text present in the images and reason
over it to answer TextVQA questions. TextVQA dataset contains 45,336 questions over 28,408 images
from the OpenImages dataset. The dataset uses [VQA accuracy](https://visualqa.org/evaluation.html) metric for evaluation.

### Supported Tasks and Leaderboards

- `visual-question-answering`: The dataset can be used for Visual Question Answering tasks where given an image, you have to answer a question based on the image. For the TextVQA dataset specifically, the questions require reading and reasoning about the scene text in the given image.

### Languages

The questions in the dataset are in English.

## Dataset Structure

### Data Instances

A typical sample mainly contains the question in `question` field, an image object in `image` field, OpenImage image id in `image_id` and lot of other useful metadata. 10 answers per questions are contained in the `answers` attribute. For test set, 10 empty strings are contained in the `answers` field as the answers are not available for it.

An example look like below: 

```
  {'question': 'who is this copyrighted by?',
   'image_id': '00685bc495504d61',
   'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x276021C5EB8>,
   'image_classes': ['Vehicle', 'Tower', 'Airplane', 'Aircraft'],
   'flickr_original_url': 'https://farm2.staticflickr.com/5067/5620759429_4ea686e643_o.jpg',
   'flickr_300k_url': 'https://c5.staticflickr.com/6/5067/5620759429_f43a649fb5_z.jpg',
   'image_width': 786,
   'image_height': 1024,
   'answers': ['simon clancy',
    'simon ciancy',
    'simon clancy',
    'simon clancy',
    'the brand is bayard',
    'simon clancy',
    'simon clancy',
    'simon clancy',
    'simon clancy',
    'simon clancy'],
   'question_tokens': ['who', 'is', 'this', 'copyrighted', 'by'],
   'question_id': 3,
   'set_name': 'train'
  },
```

### Data Fields

- `question`: string, the question that is being asked about the image
- `image_id`: string, id of the image which is same as the OpenImages id
- `image`: A `PIL.Image.Image` object containing the image about which the question is being asked. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`.
- `image_classes`: List[str], The OpenImages classes to which the image belongs to.
- `flickr_original_url`: string, URL to original image on Flickr
- `flickr_300k_url`: string, URL to resized and low-resolution image on Flickr.
- `image_width`: int, Width of the original image.
- `image_height`: int, Height of the original image.
- `question_tokens`:  List[str], A pre-tokenized list of question.
- `answers`: List[str], List of 10 human-annotated answers for the question. These 10 answers are collected from 10 different users. The list will contain empty strings for test set for which we don't have the answers.
- `question_id`: int, Unique id of the question.
- `set_name`: string, the set to which this question belongs.

### Data Splits

There are three splits. `train`, `validation` and `test`. The `train` and `validation` sets share images with OpenImages `train` set and have their answers available. For test set answers, we return a list of ten empty strings. To get inference results and numbers on `test` set, you need to go to the [EvalAI leaderboard](https://eval.ai/web/challenges/challenge-page/874/overview) and upload your predictions there. Please see instructions at [https://textvqa.org/challenge/](https://textvqa.org/challenge/).

## Dataset Creation

### Curation Rationale

From the paper:

> Studies have shown that a dominant class of questions asked by visually impaired users on images of their surroundings involves reading text in the image. But today’s VQA models can not read! Our paper takes a first step towards addressing this problem. First, we introduce a new “TextVQA” dataset to facilitate progress on this important problem. Existing datasets either have a small proportion of questions about text (e.g., the VQA dataset) or are too small (e.g., the VizWiz dataset). TextVQA contains 45,336 questions on 28,408 images that require reasoning about text to answer.

### Source Data

#### Initial Data Collection and Normalization

The initial images were sourced from [OpenImages](https://storage.googleapis.com/openimages/web/factsfigures_v4.html) v4 dataset. These were first filtered based on automatic heuristics using an OCR system where we only took images which had at least some text detected in them. See [annotation process](#annotation-process) section to understand the next stages. 

#### Who are the source language producers?

English Crowdsource Annotators 

### Annotations

#### Annotation process

 After the automatic process of filter the images that contain text, the images were manually verified using human annotators making sure that they had text. In next stage, the annotators were asked to write questions involving scene text for the image. For some images, in this stage, two questions were collected whenever possible. Finally, in the last stage, ten different human annotators answer the questions asked in last stage.

#### Who are the annotators?

Annotators are from one of the major data collection platforms such as AMT. Exact details are not mentioned in the paper.

### Personal and Sensitive Information

The dataset does have similar PII issues as OpenImages and can at some times contain human faces, license plates, and documents. Using provided `image_classes` data field is one option to try to filter out some of this information.

## Considerations for Using the Data

### Social Impact of Dataset

The paper helped realize the importance of scene text recognition and reasoning in general purpose machine learning applications and has led to many follow-up works including [TextCaps](https://textvqa.org/textcaps) and [TextOCR](https://textvqa.org/textocr). Similar datasets were introduced over the time which specifically focus on sight-disabled users such as [VizWiz](https://vizwiz.org) or focusing specifically on the same problem as TextVQA like [STVQA](https://paperswithcode.com/dataset/st-vqa), [DocVQA](https://arxiv.org/abs/2007.00398v3) and [OCRVQA](https://ocr-vqa.github.io/). Currently, most methods train on combined dataset from TextVQA and STVQA to achieve state-of-the-art performance on both datasets.

### Discussion of Biases

Question-only bias where a model is able to answer the question without even looking at the image is discussed in the [paper](https://arxiv.org/abs/1904.08920) which was a major issue with original VQA dataset. The outlier bias in answers is prevented by collecting 10 different answers which are also taken in consideration by the evaluation metric.

### Other Known Limitations

- The dataset is english only but does involve images with non-English latin characters so can involve some multi-lingual understanding.
- The performance on the dataset is also dependent on the quality of OCR used as the OCR errors can directly lead to wrong answers.
- The metric used for calculating accuracy is same as [VQA accuracy](https://visualqa.org/evaluation.html). This involves one-to-one matching with the given answers and thus doesn't allow analyzing one-off errors through OCR.

## Additional Information

### Dataset Curators

- [Amanpreet Singh](https://github.com/apsdehal)
- Vivek Natarjan
- Meet Shah
- Yu Jiang
- Xinlei Chen
- Dhruv Batra
- Devi Parikh
- Marcus Rohrbach

### Licensing Information

CC by 4.0

### Citation Information

```bibtex
@inproceedings{singh2019towards,
    title={Towards VQA Models That Can Read},
    author={Singh, Amanpreet and Natarjan, Vivek and Shah, Meet and Jiang, Yu and Chen, Xinlei and Batra, Dhruv and Parikh, Devi and Rohrbach, Marcus},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    pages={8317-8326},
    year={2019}
}
```

### Contributions

Thanks to [@apsdehal](https://github.com/apsdehal) for adding this dataset.