system HF staff commited on
Commit
cb5f6c0
·
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - apache-2-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - n>1M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - sentiment-classification
20
+ ---
21
+
22
+ # Dataset Card for amazon_polarity
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** https://registry.opendata.aws/
50
+ - **Repository:** https://github.com/zhangxiangxiao/Crepe
51
+ - **Paper:** https://arxiv.org/abs/1509.01626
52
+ - **Leaderboard:** [Needs More Information]
53
+ - **Point of Contact:** [Xiang Zhang](mailto:[email protected])
54
+
55
+ ### Dataset Summary
56
+
57
+ The Amazon reviews dataset consists of reviews from amazon.
58
+ The data span a period of 18 years, including ~35 million reviews up to March 2013.
59
+ Reviews include product and user information, ratings, and a plaintext review.
60
+
61
+ ### Supported Tasks and Leaderboards
62
+
63
+ - `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the content and the title, predict the correct star rating.
64
+
65
+ ### Languages
66
+
67
+ Mainly English.
68
+
69
+ ## Dataset Structure
70
+
71
+ ### Data Instances
72
+
73
+ A typical data point, comprises of a title, a content and the corresponding label.
74
+
75
+ An example from the AmazonPolarity test set looks as follows:
76
+
77
+ ```
78
+ {
79
+ 'title':'Great CD',
80
+ 'content':"My lovely Pat has one of the GREAT voices of her generation. I have listened to this CD for YEARS and I still LOVE IT. When I'm in a good mood it makes me feel better. A bad mood just evaporates like sugar in the rain. This CD just oozes LIFE. Vocals are jusat STUUNNING and lyrics just kill. One of life's hidden gems. This is a desert isle CD in my book. Why she never made it big is just beyond me. Everytime I play this, no matter black, white, young, old, male, female EVERYBODY says one thing ""Who was that singing ?""",
81
+ 'label':1
82
+ }
83
+ ```
84
+
85
+ ### Data Fields
86
+
87
+ - 'title': a string containing the title of the review - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
88
+ - 'content': a string containing the body of the document - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
89
+ - 'label': either 1 (positive) or 0 (negative) rating.
90
+
91
+ ### Data Splits
92
+
93
+ The Amazon reviews polarity dataset is constructed by taking review score 1 and 2 as negative, and 4 and 5 as positive. Samples of score 3 is ignored. Each class has 1,800,000 training samples and 200,000 testing samples.
94
+
95
+ ## Dataset Creation
96
+
97
+ ### Curation Rationale
98
+
99
+ The Amazon reviews polarity dataset is constructed by Xiang Zhang ([email protected]). It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
100
+
101
+ ### Source Data
102
+
103
+ #### Initial Data Collection and Normalization
104
+
105
+ [Needs More Information]
106
+
107
+ #### Who are the source language producers?
108
+
109
+ [Needs More Information]
110
+
111
+ ### Annotations
112
+
113
+ #### Annotation process
114
+
115
+ [Needs More Information]
116
+
117
+ #### Who are the annotators?
118
+
119
+ [Needs More Information]
120
+
121
+ ### Personal and Sensitive Information
122
+
123
+ [Needs More Information]
124
+
125
+ ## Considerations for Using the Data
126
+
127
+ ### Social Impact of Dataset
128
+
129
+ [Needs More Information]
130
+
131
+ ### Discussion of Biases
132
+
133
+ [Needs More Information]
134
+
135
+ ### Other Known Limitations
136
+
137
+ [Needs More Information]
138
+
139
+ ## Additional Information
140
+
141
+ ### Dataset Curators
142
+
143
+ [Needs More Information]
144
+
145
+ ### Licensing Information
146
+
147
+ Apache License 2.0
148
+
149
+ ### Citation Information
150
+
151
+ McAuley, Julian, and Jure Leskovec. "Hidden factors and hidden topics: understanding rating dimensions with review text." In Proceedings of the 7th ACM conference on Recommender systems, pp. 165-172. 2013.
152
+
153
+ Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015)
amazon_polarity.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The amazon polarity dataset for text classification."""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import csv
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """\
26
+ @inproceedings{mcauley2013hidden,
27
+ title={Hidden factors and hidden topics: understanding rating dimensions with review text},
28
+ author={McAuley, Julian and Leskovec, Jure},
29
+ booktitle={Proceedings of the 7th ACM conference on Recommender systems},
30
+ pages={165--172},
31
+ year={2013}
32
+ }
33
+ """
34
+
35
+ _DESCRIPTION = """\
36
+ The Amazon reviews dataset consists of reviews from amazon.
37
+ The data span a period of 18 years, including ~35 million reviews up to March 2013.
38
+ Reviews include product and user information, ratings, and a plaintext review.
39
+ """
40
+
41
+ _HOMEPAGE = "https://registry.opendata.aws/"
42
+
43
+ _LICENSE = "Apache License 2.0"
44
+
45
+ _URLs = {
46
+ "amazon_polarity": "https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download",
47
+ }
48
+
49
+
50
+ class AmazonPolarityConfig(datasets.BuilderConfig):
51
+ """BuilderConfig for AmazonPolarity."""
52
+
53
+ def __init__(self, **kwargs):
54
+ """BuilderConfig for AmazonPolarity.
55
+
56
+ Args:
57
+ **kwargs: keyword arguments forwarded to super.
58
+ """
59
+ super(AmazonPolarityConfig, self).__init__(**kwargs)
60
+
61
+
62
+ class AmazonPolarity(datasets.GeneratorBasedBuilder):
63
+ """Amazon Polarity Classification Dataset."""
64
+
65
+ VERSION = datasets.Version("3.0.0")
66
+
67
+ BUILDER_CONFIGS = [
68
+ AmazonPolarityConfig(
69
+ name="amazon_polarity", version=VERSION, description="Amazon Polarity Classification Dataset."
70
+ ),
71
+ ]
72
+
73
+ def _info(self):
74
+ features = datasets.Features(
75
+ {
76
+ "label": datasets.features.ClassLabel(
77
+ names=[
78
+ "negative",
79
+ "positive",
80
+ ]
81
+ ),
82
+ "title": datasets.Value("string"),
83
+ "content": datasets.Value("string"),
84
+ }
85
+ )
86
+ return datasets.DatasetInfo(
87
+ description=_DESCRIPTION,
88
+ features=features,
89
+ supervised_keys=None,
90
+ homepage=_HOMEPAGE,
91
+ license=_LICENSE,
92
+ citation=_CITATION,
93
+ )
94
+
95
+ def _split_generators(self, dl_manager):
96
+ """Returns SplitGenerators."""
97
+ my_urls = _URLs[self.config.name]
98
+ data_dir = dl_manager.download_and_extract(my_urls)
99
+ return [
100
+ datasets.SplitGenerator(
101
+ name=datasets.Split.TRAIN,
102
+ gen_kwargs={
103
+ "filepath": os.path.join(data_dir, "amazon_review_polarity_csv", "train.csv"),
104
+ "split": "train",
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "filepath": os.path.join(data_dir, "amazon_review_polarity_csv", "test.csv"),
111
+ "split": "test",
112
+ },
113
+ ),
114
+ ]
115
+
116
+ def _generate_examples(self, filepath, split):
117
+ """ Yields examples. """
118
+
119
+ with open(filepath, encoding="utf-8") as f:
120
+ data = csv.reader(f, delimiter=",", quoting=csv.QUOTE_ALL)
121
+ for id_, row in enumerate(data):
122
+ yield id_, {
123
+ "title": row[1],
124
+ "content": row[2],
125
+ "label": int(row[0]) - 1,
126
+ }
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"amazon_polarity": {"description": "The Amazon reviews dataset consists of reviews from amazon.\nThe data span a period of 18 years, including ~35 million reviews up to March 2013.\nReviews include product and user information, ratings, and a plaintext review.\n", "citation": "@inproceedings{mcauley2013hidden,\n title={Hidden factors and hidden topics: understanding rating dimensions with review text},\n author={McAuley, Julian and Leskovec, Jure},\n booktitle={Proceedings of the 7th ACM conference on Recommender systems},\n pages={165--172},\n year={2013}\n}\n", "homepage": "https://registry.opendata.aws/", "license": "Apache License 2.0", "features": {"label": {"num_classes": 2, "names": ["negative", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "content": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "amazon_polarity", "config_name": "amazon_polarity", "version": {"version_str": "3.0.0", "description": null, "major": 3, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1604367312, "num_examples": 3600000, "dataset_name": "amazon_polarity"}, "test": {"name": "test", "num_bytes": 178176513, "num_examples": 400000, "dataset_name": "amazon_polarity"}}, "download_checksums": {"https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download": {"num_bytes": 688340758, "checksum": "119dd30cb8226c1df21b009bd02cda3ef09b625a80864e454371904e6d2eaee4"}}, "download_size": 688340758, "post_processing_size": null, "dataset_size": 1782543825, "size_in_bytes": 2470884583}}
dummy/amazon_polarity/3.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:218fae2e6f137441a749cb15ea6aba43506a4ae09e3247685ebe1e23a7acd4e6
3
+ size 4277