filwsyl commited on
Commit
088a211
·
1 Parent(s): 22f61cc

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - mit
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - extended|other-nist
16
+ task_categories:
17
+ - image-classification
18
+ task_ids:
19
+ - multi-class-image-classification
20
+ paperswithcode_id: mnist
21
+ pretty_name: MNIST
22
+ ---
23
+
24
+ # Dataset Card for MNIST
25
+
26
+ ## Table of Contents
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-fields)
34
+ - [Data Splits](#data-splits)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+ - [Contributions](#contributions)
49
+
50
+ ## Dataset Description
51
+
52
+ - **Homepage:** http://yann.lecun.com/exdb/mnist/
53
+ - **Repository:**
54
+ - **Paper:** MNIST handwritten digit database by Yann LeCun, Corinna Cortes, and CJ Burges
55
+ - **Leaderboard:**
56
+ - **Point of Contact:**
57
+
58
+ ### Dataset Summary
59
+
60
+ The MNIST dataset consists of 70,000 28x28 black-and-white images of handwritten digits extracted from two NIST databases. There are 60,000 images in the training dataset and 10,000 images in the validation dataset, one class per digit so a total of 10 classes, with 7,000 images (6,000 train images and 1,000 test images) per class.
61
+ Half of the image were drawn by Census Bureau employees and the other half by high school students (this split is evenly distributed in the training and testing sets).
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ - `image-classification`: The goal of this task is to classify a given image of a handwritten digit into one of 10 classes representing integer values from 0 to 9, inclusively. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-mnist).
66
+
67
+ ### Languages
68
+
69
+ English
70
+
71
+ ## Dataset Structure
72
+
73
+ ### Data Instances
74
+
75
+ A data point comprises an image and its label:
76
+
77
+ ```
78
+ {
79
+ 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x276021F6DD8>,
80
+ 'label': 5
81
+ }
82
+ ```
83
+
84
+ ### Data Fields
85
+
86
+ - `image`: A `PIL.Image.Image` object containing the 28x28 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
87
+ - `label`: an integer between 0 and 9 representing the digit.
88
+
89
+ ### Data Splits
90
+
91
+ The data is split into training and test set. All the images in the test set were drawn by different individuals than the images in the training set. The training set contains 60,000 images and the test set 10,000 images.
92
+
93
+ ## Dataset Creation
94
+
95
+ ### Curation Rationale
96
+
97
+ The MNIST database was created to provide a testbed for people wanting to try pattern recognition methods or machine learning algorithms while spending minimal efforts on preprocessing and formatting. Images of the original dataset (NIST) were in two groups, one consisting of images drawn by Census Bureau employees and one consisting of images drawn by high school students. In NIST, the training set was built by grouping all the images of the Census Bureau employees, and the test set was built by grouping the images form the high school students.
98
+ The goal in building MNIST was to have a training and test set following the same distributions, so the training set contains 30,000 images drawn by Census Bureau employees and 30,000 images drawn by high school students, and the test set contains 5,000 images of each group. The curators took care to make sure all the images in the test set were drawn by different individuals than the images in the training set.
99
+
100
+ ### Source Data
101
+
102
+ #### Initial Data Collection and Normalization
103
+
104
+ The original images from NIST were size normalized to fit a 20x20 pixel box while preserving their aspect ratio. The resulting images contain grey levels (i.e., pixels don't simply have a value of black and white, but a level of greyness from 0 to 255) as a result of the anti-aliasing technique used by the normalization algorithm. The images were then centered in a 28x28 image by computing the center of mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.
105
+
106
+ #### Who are the source language producers?
107
+
108
+ Half of the source images were drawn by Census Bureau employees, half by high school students. According to the dataset curator, the images from the first group are more easily recognizable.
109
+
110
+ ### Annotations
111
+
112
+ #### Annotation process
113
+
114
+ The images were not annotated after their creation: the image creators annotated their images with the corresponding label after drawing them.
115
+
116
+ #### Who are the annotators?
117
+
118
+ Same as the source data creators.
119
+
120
+ ### Personal and Sensitive Information
121
+
122
+ [More Information Needed]
123
+
124
+ ## Considerations for Using the Data
125
+
126
+ ### Social Impact of Dataset
127
+
128
+ [More Information Needed]
129
+
130
+ ### Discussion of Biases
131
+
132
+ [More Information Needed]
133
+
134
+ ### Other Known Limitations
135
+
136
+ [More Information Needed]
137
+
138
+ ## Additional Information
139
+
140
+ ### Dataset Curators
141
+
142
+ Chris Burges, Corinna Cortes and Yann LeCun
143
+
144
+ ### Licensing Information
145
+
146
+ MIT Licence
147
+
148
+ ### Citation Information
149
+
150
+ ```
151
+ @article{lecun2010mnist,
152
+ title={MNIST handwritten digit database},
153
+ author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
154
+ journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
155
+ volume={2},
156
+ year={2010}
157
+ }
158
+ ```
159
+
160
+ ### Contributions
161
+
162
+ Thanks to [@sgugger](https://github.com/sgugger) for adding this dataset.