File size: 5,277 Bytes
7843013 bcc5259 7843013 0749511 5fc724b 0749511 7843013 0749511 5fc724b 0749511 5fc724b 0749511 7843013 0749511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import json
import datasets
_DESCRIPTION = """The MBPP dataset in BabelCode format."""
_URL = "https://raw.githubusercontent.com/google-research/babelcode/main/data/hf_datasets/mbpp.jsonl"
_LANGUAGES = {
"C++",
"CSharp",
"Dart",
"Go",
"Haskell",
"Java",
"Javascript",
"Julia",
"Kotlin",
"Lua",
"PHP",
"Python",
"R",
"Rust",
"Scala",
"TypeScript",
}
_CITATION = """\
@article{orlanski2023measuring,
title={Measuring The Impact Of Programming Language Distribution},
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele},
journal={arXiv preprint arXiv:2302.01973},
year={2023}
}
@article{Austin2021ProgramSW,
title={Program Synthesis with Large Language Models},
author={Jacob Austin and Augustus Odena and Maxwell Nye and Maarten Bosma and Henryk Michalewski and David Dohan and Ellen Jiang and Carrie J. Cai and Michael Terry and Quoc V. Le and Charles Sutton},
journal={ArXiv},
year={2021},
volume={abs/2108.07732}
}"""
_HOMEPAGE = "https://github.com/google-research/babelcode"
_LICENSE = "CC-BY-4.0"
_VERSION = "1.0.0"
_QUESTION_INFO_KEYS = {
"entry_fn_name",
"entry_cls_name",
"test_code",
"test_list",
"test_case_ids",
"commands",
"timeouts",
"extension"
}
class BCMBPP(datasets.GeneratorBasedBuilder):
"""BC-MBPP"""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="all",
version=datasets.Version(_VERSION),
description=_DESCRIPTION,
),
] + [
datasets.BuilderConfig(
name=lang,
version=datasets.Version(_VERSION),
description=_DESCRIPTION + f" Examples are only in {lang}.",
) for lang in _LANGUAGES
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
list_keys = ['timeouts', 'commands', 'test_case_ids']
question_info_type = {
k:datasets.Value(dtype="string")
for k in _QUESTION_INFO_KEYS if k not in list_keys
}
question_info_type['test_case_ids'] = datasets.Sequence(datasets.Value('string'))
question_info_type['commands'] = datasets.Sequence(datasets.Sequence(datasets.Value('string')))
question_info_type['timeouts'] = datasets.Sequence(datasets.Value('int32'))
features = datasets.Features({
"qid": datasets.Value("string"),
"title": datasets.Value("string"),
"language": datasets.Value("string"),
"text": datasets.Value("string"),
"signature_with_docstring": datasets.Value("string"),
"signature": datasets.Value("string"),
"arguments": datasets.Sequence(datasets.Value("string")),
"solution": datasets.Value("string"),
"question_info": datasets.Features(question_info_type)
})
description = _DESCRIPTION
if self.config.name != 'all':
description = _DESCRIPTION + f" Examples are only in {self.config.name}."
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir,
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir,
"split": "validation"
},
),
datasets.SplitGenerator(
name=datasets.Split("prompt"),
gen_kwargs={
"filepath": data_dir,
"split": "prompt"
},
),
]
def _generate_examples(self, filepath, split):
""" Yields the examples from the dataset"""
with open(filepath, encoding='utf-8') as file:
id_ = 0
idx_range = None
if split == 'test':
idx_range = (11, 510)
elif split == "train":
idx_range = (601, 974)
elif split == "validation":
idx_range = (511, 600)
else:
idx_range = (1, 10)
for l in file:
if not l.strip():
continue
d = json.loads(l)
if self.config.name != 'all' and d['language'] != self.config.name:
continue
idx = int(d['title'].split('/')[-1])
if not (idx_range[0] <= idx <= idx_range[1]):
continue
question_info = {}
for k in _QUESTION_INFO_KEYS:
question_info[k] = d.pop(k)
question_info['test_list'] = json.dumps(question_info['test_list'])
d['question_info'] = question_info
d['solution'] = d.pop('solution_python')
yield id_, d
id_ += 1
|