--- license: apache-2.0 task_categories: - text-generation - text2text-generation - translation language: - en tags: - code pretty_name: BabelCode TP3 size_categories: - 1K>> from datasets import load_dataset >>> load_dataset("gabeorlanski/tp3") DatasetDict({ test: Dataset({ features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code', 'source', 'test_list', 'test_case_ids'], num_rows: 5920 }) }) ``` ### Data Fields - `qid`: The question ID used for running tests. - `title`: The title of the question. - `language`: The programming language of the example. - `text`: The description of the problem. - `signature`: The signature for the problem. - `signature_with_docstring`: The signature with the adequately formatted docstring for the given problem. - `arguments`: The arguments of the problem. - `source`: The source solution in Python. - `question_info`: The dict of information used for executing predictions. It has the keys: - `test_code`: The raw testing script used in the language. If you want to use this, replace `PLACEHOLDER_FN_NAME` (and `PLACEHOLDER_CLS_NAME` if needed) with the corresponding entry points. Next, replace `PLACEHOLDER_CODE_BODY` with the postprocessed prediction. - `test_list`: The raw json line of the list of tests for the problem. To load them, use `json.loads` - `test_case_ids`: The list of test case ids for the problem. These are used to determine if a prediction passes or not. - `entry_fn_name`: The function's name to use an entry point. - `entry_cls_name`: The class name to use an entry point. **NOTE:** If you want to use a different function name (or class name for languages that require class names) for the prediction, you must update the `entry_fn_name` and `entry_cls_name` accordingly. For example, if you have the original question with `entry_fn_name` of `add`, but want to change it to `f`, you must update `ds["question_info"]["entry_fn_name"]` to `f`: ```python >>> from datasets import load_dataset >>> ds = load_dataset("gabeorlanski/bc-mbpp")['test'] >>> # The original entry_fn_name >>> ds[0]['question_info']['entry_fn_name'] removeOcc >>> # You MUST update the corresponding entry_fn_name >>> ds[0]['question_info']['entry_fn_name'] = 'f' >>> ds[0]['question_info']['entry_fn_name'] f ``` ## Dataset Creation See section 2 and section 4.4 of the [BabelCode Paper](https://arxiv.org/abs/2302.01973) to learn more about how the datasets are translated. For information on how the original P3 dataset was collected, please see [Programming Puzzles paper](https://arxiv.org/abs/2106.05784). ### Dataset Curators Google Research ### Licensing Information CC-BY-4.0 ### Citation Information ``` @article{orlanski2023measuring, title={Measuring The Impact Of Programming Language Distribution}, author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele}, journal={arXiv preprint arXiv:2302.01973}, year={2023} } @inproceedings{ schuster2021programming, title={Programming Puzzles}, author={Tal Schuster and Ashwin Kalyan and Alex Polozov and Adam Tauman Kalai}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2021}, url={https://arxiv.org/abs/2106.05784} } ```