--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 49226679381.27992 num_examples: 8018993 download_size: 27058112765 dataset_size: 49226679381.27992 configs: - config_name: default data_files: - split: train path: data/train-* --- Generated with the following script: ```python import os from tqdm import tqdm import numpy as np import tiktoken from datasets import DatasetDict, load_dataset # huggingface datasets # number of workers in .map() call # good number to use is ~order number of cpu cores // 2 num_proc = 8 # number of workers in load_dataset() call # best number might be different from num_proc above as it also depends on NW speed. # it is better than 1 usually though num_proc_load_dataset = num_proc # takes 450GB+ in huggingface .cache dir, about 134M documents (134318121) dataset = load_dataset("EleutherAI/the_pile_deduplicated", num_proc=num_proc_load_dataset, split=None) # this results in: # >>> dataset # DatasetDict({ # train: Dataset({ # features: ['text'], # num_rows: 134318121 # }) # }) # we want to reduce to same size as openwebtext # by documents 8M / 134M = 0.05970149254 # by tokens 9B / 800B = 0.01125 # to be safe I'll take the bigger number dataset = dataset['train'].train_test_split(test_size=0.05970149254, seed=42, shuffle=True) dataset = DatasetDict({'train': dataset['test']}) dataset.push_to_hub("gngdb/subset_the_pile_deduplicated") ```