File size: 12,215 Bytes
e2ab56d 9d69887 77fc422 f87a2f8 9d69887 63fd794 83226c6 7f19935 78bff70 63fd794 7f19935 78bff70 0bf00d6 7f19935 78bff70 739c8ad 7f19935 63fd794 7f19935 63fd794 78bff70 63fd794 b7e7040 63fd794 7f19935 63fd794 78bff70 63fd794 e297eb9 63fd794 7f19935 63fd794 78bff70 63fd794 f9d63f8 63fd794 7f19935 63fd794 78bff70 63fd794 7f19935 63fd794 7f19935 78bff70 7f19935 63fd794 0bf00d6 739c8ad b7e7040 e297eb9 f9d63f8 e2ab56d e97c88e e2ab56d e97c88e e2ab56d 37d22d6 e2ab56d 9d69887 e2ab56d 831b6f8 e2ab56d 37d22d6 e2ab56d 9d69887 e2ab56d e97c88e e2ab56d 37d22d6 e2ab56d 9d69887 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 831b6f8 e2ab56d 9d69887 e2ab56d 831b6f8 e2ab56d 9d69887 e2ab56d 831b6f8 e2ab56d 831b6f8 e2ab56d 831b6f8 e2ab56d 37d22d6 e2ab56d 9d69887 e2ab56d e97c88e e2ab56d 9d69887 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d e97c88e e2ab56d 37d22d6 e2ab56d e97c88e e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 37d22d6 e2ab56d 83226c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
---
annotations_creators:
- no-annotation
language_creators:
- expert-generated
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- question-answering
- other
task_ids:
- open-domain-qa
- closed-domain-qa
paperswithcode_id: cfq
pretty_name: Compositional Freebase Questions
tags:
- compositionality
dataset_info:
- config_name: mcd1
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 37408806
num_examples: 95743
- name: test
num_bytes: 5446503
num_examples: 11968
download_size: 8570962
dataset_size: 42855309
- config_name: mcd2
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 39424657
num_examples: 95743
- name: test
num_bytes: 5314019
num_examples: 11968
download_size: 8867866
dataset_size: 44738676
- config_name: mcd3
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 38316345
num_examples: 95743
- name: test
num_bytes: 5244503
num_examples: 11968
download_size: 8578142
dataset_size: 43560848
- config_name: query_complexity_split
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 40270175
num_examples: 100654
- name: test
num_bytes: 5634924
num_examples: 9512
download_size: 9303588
dataset_size: 45905099
- config_name: query_pattern_split
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 40811284
num_examples: 94600
- name: test
num_bytes: 5268358
num_examples: 12589
download_size: 9387759
dataset_size: 46079642
- config_name: question_complexity_split
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 39989433
num_examples: 98999
- name: test
num_bytes: 5781561
num_examples: 10340
download_size: 9255771
dataset_size: 45770994
- config_name: question_pattern_split
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 41217350
num_examples: 95654
- name: test
num_bytes: 5179936
num_examples: 11909
download_size: 267599061
dataset_size: 46397286
- config_name: random_split
features:
- name: question
dtype: string
- name: query
dtype: string
splits:
- name: train
num_bytes: 41279218
num_examples: 95744
- name: test
num_bytes: 5164923
num_examples: 11967
download_size: 267599061
dataset_size: 46444141
configs:
- config_name: mcd1
data_files:
- split: train
path: mcd1/train-*
- split: test
path: mcd1/test-*
- config_name: mcd2
data_files:
- split: train
path: mcd2/train-*
- split: test
path: mcd2/test-*
- config_name: mcd3
data_files:
- split: train
path: mcd3/train-*
- split: test
path: mcd3/test-*
- config_name: query_complexity_split
data_files:
- split: train
path: query_complexity_split/train-*
- split: test
path: query_complexity_split/test-*
- config_name: query_pattern_split
data_files:
- split: train
path: query_pattern_split/train-*
- split: test
path: query_pattern_split/test-*
- config_name: question_complexity_split
data_files:
- split: train
path: question_complexity_split/train-*
- split: test
path: question_complexity_split/test-*
---
# Dataset Card for "cfq"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/google-research/google-research/tree/master/cfq](https://github.com/google-research/google-research/tree/master/cfq)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** https://arxiv.org/abs/1912.09713
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 2.14 GB
- **Size of the generated dataset:** 362.07 MB
- **Total amount of disk used:** 2.50 GB
### Dataset Summary
The Compositional Freebase Questions (CFQ) is a dataset that is specifically designed to measure compositional
generalization. CFQ is a simple yet realistic, large dataset of natural language questions and answers that also
provides for each question a corresponding SPARQL query against the Freebase knowledge base. This means that CFQ can
also be used for semantic parsing.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
English (`en`).
## Dataset Structure
### Data Instances
#### mcd1
- **Size of downloaded dataset files:** 267.60 MB
- **Size of the generated dataset:** 42.90 MB
- **Total amount of disk used:** 310.49 MB
An example of 'train' looks as follows.
```
{
'query': 'SELECT count(*) WHERE {\n?x0 a ns:people.person .\n?x0 ns:influence.influence_node.influenced M1 .\n?x0 ns:influence.influence_node.influenced M2 .\n?x0 ns:people.person.spouse_s/ns:people.marriage.spouse|ns:fictional_universe.fictional_character.married_to/ns:fictional_universe.marriage_of_fictional_characters.spouses ?x1 .\n?x1 a ns:film.cinematographer .\nFILTER ( ?x0 != ?x1 )\n}',
'question': 'Did a person marry a cinematographer , influence M1 , and influence M2'
}
```
#### mcd2
- **Size of downloaded dataset files:** 267.60 MB
- **Size of the generated dataset:** 44.77 MB
- **Total amount of disk used:** 312.38 MB
An example of 'train' looks as follows.
```
{
'query': 'SELECT count(*) WHERE {\n?x0 ns:people.person.parents|ns:fictional_universe.fictional_character.parents|ns:organization.organization.parent/ns:organization.organization_relationship.parent ?x1 .\n?x1 a ns:people.person .\nM1 ns:business.employer.employees/ns:business.employment_tenure.person ?x0 .\nM1 ns:business.employer.employees/ns:business.employment_tenure.person M2 .\nM1 ns:business.employer.employees/ns:business.employment_tenure.person M3 .\nM1 ns:business.employer.employees/ns:business.employment_tenure.person M4 .\nM5 ns:business.employer.employees/ns:business.employment_tenure.person ?x0 .\nM5 ns:business.employer.employees/ns:business.employment_tenure.person M2 .\nM5 ns:business.employer.employees/ns:business.employment_tenure.person M3 .\nM5 ns:business.employer.employees/ns:business.employment_tenure.person M4\n}',
'question': "Did M1 and M5 employ M2 , M3 , and M4 and employ a person 's child"
}
```
#### mcd3
- **Size of downloaded dataset files:** 267.60 MB
- **Size of the generated dataset:** 43.60 MB
- **Total amount of disk used:** 311.20 MB
An example of 'train' looks as follows.
```
{
"query": "SELECT /producer M0 . /director M0 . ",
"question": "Who produced and directed M0?"
}
```
#### query_complexity_split
- **Size of downloaded dataset files:** 267.60 MB
- **Size of the generated dataset:** 45.95 MB
- **Total amount of disk used:** 313.55 MB
An example of 'train' looks as follows.
```
{
"query": "SELECT /producer M0 . /director M0 . ",
"question": "Who produced and directed M0?"
}
```
#### query_pattern_split
- **Size of downloaded dataset files:** 267.60 MB
- **Size of the generated dataset:** 46.12 MB
- **Total amount of disk used:** 313.72 MB
An example of 'train' looks as follows.
```
{
"query": "SELECT /producer M0 . /director M0 . ",
"question": "Who produced and directed M0?"
}
```
### Data Fields
The data fields are the same among all splits and configurations:
- `question`: a `string` feature.
- `query`: a `string` feature.
### Data Splits
| name | train | test |
|---------------------------|-------:|------:|
| mcd1 | 95743 | 11968 |
| mcd2 | 95743 | 11968 |
| mcd3 | 95743 | 11968 |
| query_complexity_split | 100654 | 9512 |
| query_pattern_split | 94600 | 12589 |
| question_complexity_split | 98999 | 10340 |
| question_pattern_split | 95654 | 11909 |
| random_split | 95744 | 11967 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{Keysers2020,
title={Measuring Compositional Generalization: A Comprehensive Method on
Realistic Data},
author={Daniel Keysers and Nathanael Sch"{a}rli and Nathan Scales and
Hylke Buisman and Daniel Furrer and Sergii Kashubin and
Nikola Momchev and Danila Sinopalnikov and Lukasz Stafiniak and
Tibor Tihon and Dmitry Tsarkov and Xiao Wang and Marc van Zee and
Olivier Bousquet},
booktitle={ICLR},
year={2020},
url={https://arxiv.org/abs/1912.09713.pdf},
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@brainshawn](https://github.com/brainshawn) for adding this dataset. |