Datasets:
Tasks:
Text Retrieval
Formats:
parquet
Sub-tasks:
document-retrieval
Size:
100K - 1M
ArXiv:
License:
Commit
•
2d22038
1
Parent(s):
bad29ae
Delete loading script
Browse files
code_x_glue_tc_nl_code_search_adv.py
DELETED
@@ -1,206 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import os.path
|
4 |
-
from typing import List
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
from .common import TrainValidTestChild
|
9 |
-
from .generated_definitions import DEFINITIONS
|
10 |
-
|
11 |
-
|
12 |
-
_DESCRIPTION = """The dataset we use comes from CodeSearchNet and we filter the dataset as the following:
|
13 |
-
- Remove examples that codes cannot be parsed into an abstract syntax tree.
|
14 |
-
- Remove examples that #tokens of documents is < 3 or >256
|
15 |
-
- Remove examples that documents contain special tokens (e.g. <img ...> or https:...)
|
16 |
-
- Remove examples that documents are not English.
|
17 |
-
"""
|
18 |
-
_CITATION = """@article{husain2019codesearchnet,
|
19 |
-
title={Codesearchnet challenge: Evaluating the state of semantic code search},
|
20 |
-
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
21 |
-
journal={arXiv preprint arXiv:1909.09436},
|
22 |
-
year={2019}
|
23 |
-
}"""
|
24 |
-
|
25 |
-
|
26 |
-
class CodeXGlueCtCodeToTextBaseImpl(TrainValidTestChild):
|
27 |
-
_DESCRIPTION = _DESCRIPTION
|
28 |
-
_CITATION = _CITATION
|
29 |
-
|
30 |
-
# For each file, each line in the uncompressed file represents one function.
|
31 |
-
_FEATURES = {
|
32 |
-
"id": datasets.Value("int32"), # Index of the sample
|
33 |
-
"repo": datasets.Value("string"), # repo: the owner/repo
|
34 |
-
"path": datasets.Value("string"), # path: the full path to the original file
|
35 |
-
"func_name": datasets.Value("string"), # func_name: the function or method name
|
36 |
-
"original_string": datasets.Value("string"), # original_string: the raw string before tokenization or parsing
|
37 |
-
"language": datasets.Value("string"), # language: the programming language name
|
38 |
-
"code": datasets.Value("string"), # code/function: the part of the original_string that is code
|
39 |
-
"code_tokens": datasets.features.Sequence(
|
40 |
-
datasets.Value("string")
|
41 |
-
), # code_tokens/function_tokens: tokenized version of code
|
42 |
-
"docstring": datasets.Value(
|
43 |
-
"string"
|
44 |
-
), # docstring: the top-level comment or docstring, if it exists in the original string
|
45 |
-
"docstring_tokens": datasets.features.Sequence(
|
46 |
-
datasets.Value("string")
|
47 |
-
), # docstring_tokens: tokenized version of docstring
|
48 |
-
"sha": datasets.Value("string"), # sha of the file
|
49 |
-
"url": datasets.Value("string"), # url of the file
|
50 |
-
}
|
51 |
-
|
52 |
-
_SUPERVISED_KEYS = ["docstring", "docstring_tokens"]
|
53 |
-
|
54 |
-
def generate_urls(self, split_name, language):
|
55 |
-
yield "language", f"https://huggingface.co/datasets/code_search_net/resolve/main/data/{language}.zip"
|
56 |
-
yield "dataset", "dataset.zip"
|
57 |
-
|
58 |
-
def get_data_files(self, split_name, file_paths, language):
|
59 |
-
language_specific_path = file_paths["language"]
|
60 |
-
final_path = os.path.join(language_specific_path, language, "final")
|
61 |
-
# Make some cleanup to save space
|
62 |
-
for path in os.listdir(final_path):
|
63 |
-
if path.endswith(".pkl"):
|
64 |
-
os.unlink(path)
|
65 |
-
|
66 |
-
data_files = []
|
67 |
-
for root, dirs, files in os.walk(final_path):
|
68 |
-
for file in files:
|
69 |
-
temp = os.path.join(root, file)
|
70 |
-
if ".jsonl" in temp:
|
71 |
-
if split_name in temp:
|
72 |
-
data_files.append(temp)
|
73 |
-
return data_files
|
74 |
-
|
75 |
-
def post_process(self, split_name, language, js):
|
76 |
-
return js
|
77 |
-
|
78 |
-
def _generate_examples(self, split_name, file_paths, language):
|
79 |
-
import gzip
|
80 |
-
|
81 |
-
data_set_path = file_paths["dataset"]
|
82 |
-
|
83 |
-
data_files = self.get_data_files(split_name, file_paths, language)
|
84 |
-
|
85 |
-
urls = {}
|
86 |
-
f1_path_parts = [data_set_path, "dataset", language, f"{split_name}.txt"]
|
87 |
-
if self.SINGLE_LANGUAGE:
|
88 |
-
del f1_path_parts[2]
|
89 |
-
|
90 |
-
f1_path = os.path.join(*f1_path_parts)
|
91 |
-
with open(f1_path, encoding="utf-8") as f1:
|
92 |
-
for line in f1:
|
93 |
-
line = line.strip()
|
94 |
-
urls[line] = True
|
95 |
-
|
96 |
-
idx = 0
|
97 |
-
for file in data_files:
|
98 |
-
if ".gz" in file:
|
99 |
-
f = gzip.open(file)
|
100 |
-
else:
|
101 |
-
f = open(file, encoding="utf-8")
|
102 |
-
|
103 |
-
for line in f:
|
104 |
-
line = line.strip()
|
105 |
-
js = json.loads(line)
|
106 |
-
if js["url"] in urls:
|
107 |
-
js["id"] = idx
|
108 |
-
js = self.post_process(split_name, language, js)
|
109 |
-
if "partition" in js:
|
110 |
-
del js["partition"]
|
111 |
-
yield idx, js
|
112 |
-
idx += 1
|
113 |
-
f.close()
|
114 |
-
|
115 |
-
|
116 |
-
class CodeXGlueTcNLCodeSearchAdvImpl(CodeXGlueCtCodeToTextBaseImpl):
|
117 |
-
LANGUAGE = "python"
|
118 |
-
SINGLE_LANGUAGE = True
|
119 |
-
|
120 |
-
_FEATURES = {
|
121 |
-
"id": datasets.Value("int32"), # Index of the sample
|
122 |
-
"repo": datasets.Value("string"), # repo: the owner/repo
|
123 |
-
"path": datasets.Value("string"), # path: the full path to the original file
|
124 |
-
"func_name": datasets.Value("string"), # func_name: the function or method name
|
125 |
-
"original_string": datasets.Value("string"), # original_string: the raw string before tokenization or parsing
|
126 |
-
"language": datasets.Value("string"), # language: the programming language
|
127 |
-
"code": datasets.Value("string"), # code/function: the part of the original_string that is code
|
128 |
-
"code_tokens": datasets.features.Sequence(
|
129 |
-
datasets.Value("string")
|
130 |
-
), # code_tokens/function_tokens: tokenized version of code
|
131 |
-
"docstring": datasets.Value(
|
132 |
-
"string"
|
133 |
-
), # docstring: the top-level comment or docstring, if it exists in the original string
|
134 |
-
"docstring_tokens": datasets.features.Sequence(
|
135 |
-
datasets.Value("string")
|
136 |
-
), # docstring_tokens: tokenized version of docstring
|
137 |
-
"sha": datasets.Value("string"), # sha of the file
|
138 |
-
"url": datasets.Value("string"), # url of the file
|
139 |
-
"docstring_summary": datasets.Value("string"), # Summary of the docstring
|
140 |
-
"parameters": datasets.Value("string"), # parameters of the function
|
141 |
-
"return_statement": datasets.Value("string"), # return statement
|
142 |
-
"argument_list": datasets.Value("string"), # list of arguments of the function
|
143 |
-
"identifier": datasets.Value("string"), # identifier
|
144 |
-
"nwo": datasets.Value("string"), # nwo
|
145 |
-
"score": datasets.Value("float"), # score for this search
|
146 |
-
}
|
147 |
-
|
148 |
-
def post_process(self, split_name, language, js):
|
149 |
-
for suffix in "_tokens", "":
|
150 |
-
key = "function" + suffix
|
151 |
-
if key in js:
|
152 |
-
js["code" + suffix] = js[key]
|
153 |
-
del js[key]
|
154 |
-
|
155 |
-
for key in self._FEATURES:
|
156 |
-
if key not in js:
|
157 |
-
if key == "score":
|
158 |
-
js[key] = -1
|
159 |
-
else:
|
160 |
-
js[key] = ""
|
161 |
-
|
162 |
-
return js
|
163 |
-
|
164 |
-
def generate_urls(self, split_name):
|
165 |
-
for e in super().generate_urls(split_name, self.LANGUAGE):
|
166 |
-
yield e
|
167 |
-
|
168 |
-
def get_data_files(self, split_name, file_paths, language):
|
169 |
-
if split_name == "train":
|
170 |
-
return super().get_data_files(split_name, file_paths, language)
|
171 |
-
else:
|
172 |
-
data_set_path = file_paths["dataset"]
|
173 |
-
data_file = os.path.join(data_set_path, "dataset", "test_code.jsonl")
|
174 |
-
return [data_file]
|
175 |
-
|
176 |
-
def _generate_examples(self, split_name, file_paths):
|
177 |
-
for e in super()._generate_examples(split_name, file_paths, self.LANGUAGE):
|
178 |
-
yield e
|
179 |
-
|
180 |
-
|
181 |
-
CLASS_MAPPING = {
|
182 |
-
"CodeXGlueTcNLCodeSearchAdv": CodeXGlueTcNLCodeSearchAdvImpl,
|
183 |
-
}
|
184 |
-
|
185 |
-
|
186 |
-
class CodeXGlueTcNlCodeSearchAdv(datasets.GeneratorBasedBuilder):
|
187 |
-
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
188 |
-
BUILDER_CONFIGS = [
|
189 |
-
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
190 |
-
]
|
191 |
-
|
192 |
-
def _info(self):
|
193 |
-
name = self.config.name
|
194 |
-
info = DEFINITIONS[name]
|
195 |
-
if info["class_name"] in CLASS_MAPPING:
|
196 |
-
self.child = CLASS_MAPPING[info["class_name"]](info)
|
197 |
-
else:
|
198 |
-
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
199 |
-
ret = self.child._info()
|
200 |
-
return ret
|
201 |
-
|
202 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
203 |
-
return self.child._split_generators(dl_manager=dl_manager)
|
204 |
-
|
205 |
-
def _generate_examples(self, split_name, file_paths):
|
206 |
-
return self.child._generate_examples(split_name, file_paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|