|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Albayzin 2024 Bilingual Basque-Spanish Speech to Text Challenge (BBS-S2TC), dataset""" |
|
|
|
|
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
import os |
|
import csv |
|
from tqdm import tqdm |
|
|
|
from .languages import LANGUAGES |
|
from .release_stats import STATS |
|
|
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/gttsehu/Albayzin-2024-BBS-S2T-eval" |
|
|
|
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" |
|
|
|
_DESCRIPTION = ( |
|
f"blah blah blah..." |
|
f"blah blah blah..." |
|
f"blah blah blah..." |
|
) |
|
|
|
_BASE_URL = "https://huggingface.co/datasets/gttsehu/Albayzin-2024-BBS-S2T-eval/resolve/main/" |
|
|
|
_AUDIO_URL = _BASE_URL + "audio/{split}_{shard_idx}.tar" |
|
_METADATA_URL = _BASE_URL + "metadata/{split}.tsv" |
|
|
|
class Albayzin2024BBSS2TEvalConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Albayzin2024BBSS2TEval.""" |
|
|
|
def __init__(self, name, version, **kwargs): |
|
self.language = kwargs.pop("language", None) |
|
self.release_date = kwargs.pop("release_date", None) |
|
self.num_clips = kwargs.pop("num_clips", None) |
|
self.num_speakers = kwargs.pop("num_speakers", None) |
|
self.validated_hr = kwargs.pop("validated_hr", None) |
|
self.total_hr = kwargs.pop("total_hr", None) |
|
self.size_bytes = kwargs.pop("size_bytes", None) |
|
self.size_human = size_str(self.size_bytes) |
|
description = _DESCRIPTION |
|
|
|
super(Albayzin2024BBSS2TEvalConfig, self).__init__( |
|
name = name, |
|
version = datasets.Version(version), |
|
description = _DESCRIPTION, |
|
**kwargs, |
|
) |
|
|
|
|
|
class Albayzin2024BBSS2TEval(datasets.GeneratorBasedBuilder): |
|
"""Evaluation corpus for Albayzin 2024 Bilingual Basque-Spanish Speech to Text Challenge (BBS-S2TC).""" |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
BUILDER_CONFIGS = [ |
|
Albayzin2024BBSS2TEvalConfig( |
|
name=lang, |
|
version=STATS["version"], |
|
language=LANGUAGES[lang], |
|
release_date=STATS["date"], |
|
num_clips=lang_stats["clips"], |
|
num_speakers=lang_stats["users"], |
|
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, |
|
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, |
|
) |
|
for lang, lang_stats in STATS["locales"].items() |
|
] |
|
|
|
def _info(self): |
|
description = ( |
|
f"blah blah blah..." |
|
f"blah blah blah..." |
|
f"blah blah blah..." |
|
) |
|
features = datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"sentence": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"PRR": datasets.Value("float32"), |
|
"length": datasets.Value("float32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description = _DESCRIPTION, |
|
features = features, |
|
supervised_keys = None, |
|
homepage = _HOMEPAGE, |
|
license = _LICENSE, |
|
citation = _CITATION, |
|
version = self.config.version, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
lang = self.config.name |
|
|
|
audio_urls = {} |
|
splits = ("eval",) |
|
for split in splits: |
|
if split == "train_clean": continue |
|
audio_urls[split] = [ |
|
_AUDIO_URL.format(split=split, shard_idx=i) for i in range(STATS["n_shards"][split]) |
|
] |
|
archive_paths = dl_manager.download(audio_urls) |
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
|
|
metadata_urls = {split: _METADATA_URL.format(lang=lang, split=split) for split in splits} |
|
metadata_paths = dl_manager.download_and_extract(metadata_urls) |
|
|
|
split_generators = [] |
|
split_names = { |
|
"eval": datasets.NamedSplit("eval"), |
|
} |
|
for split in splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_names.get(split, split), |
|
gen_kwargs={ |
|
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], |
|
"metadata_path": metadata_paths[split], |
|
}, |
|
), |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, metadata_path): |
|
lang = self.config.name |
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(metadata_path, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
metadata = { row["path"]:row for row in tqdm(reader, desc="Reading metadata...") } |
|
|
|
excluded = 0 |
|
for i, audio_archive in enumerate(archives): |
|
for path, file in audio_archive: |
|
if path not in metadata : |
|
excluded += 1 |
|
continue |
|
result = dict(metadata[path]) |
|
if lang == "all" or lang == result["language"] : |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path |
|
result["audio"] = {"path": path, "bytes": file.read()} |
|
result["path"] = path |
|
yield path, result |
|
print(excluded,'audio files not found in metadata') |
|
|
|
|