import anndata as ad import pyarrow as pa import pandas as pd import datasets # parameters per dataset CITATION = """ Blanca Pijuan-Sala & Jonathan Griffiths (2018). Timecourse single-cell RNAseq of whole mouse embryos harvested between days 6.5 and 8.5 of development. BioStudies, E-MTAB-6967. Retrieved from https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6967""" DESCRIPTION = """ We have captured 100,000 single cells for single-cell RNAseq from whole mouse embryos during gastrulation and organogenesis, spanning days 6.5 to 8.5 of development, including embryonic and extraembryonic tissues. Cells were sampled every six hours, providing a continuous molecular characterisation of these processes. Cell libraries were prepared using the 10X Genomics Chromium platform.""" URL = "https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6967" RAW_COUNTS = "X" DATA_URL = "./data/mmusculus_gastrulation.h5ad" FEATURES_TO_INCLUDE = ["cell_type"] class RNAExp(datasets.ArrowBasedBuilder): """RNA Expression Baseclass.""" def _info(self): self.batch = 10000 # create a dictionary of features where raw_counts are ints and the rest are strings features = {"raw_counts": datasets.features.Sequence(datasets.features.Value("uint32")),"rows": datasets.features.Sequence(datasets.features.Value("uint32")),"size":datasets.Value("uint32")} for feature in FEATURES_TO_INCLUDE: if not features.get(feature): features[feature] = datasets.Value("string") return datasets.DatasetInfo( description = DESCRIPTION, features = datasets.Features(features), homepage = URL, citation = CITATION ) def _split_generators(self, dl_manager): self.anndata_file = dl_manager.download_and_extract(DATA_URL) adata = ad.read_h5ad(self.anndata_file, backed = "r") demarcation = int(len(adata)*80/100) return [ datasets.SplitGenerator( name = datasets.Split.TRAIN, gen_kwargs = {"split": "train", "adata": adata[:demarcation], "batch_size":self.batch}, ), datasets.SplitGenerator( name = datasets.Split.TEST, gen_kwargs = {"split": "test", "adata": adata[demarcation:], "batch_size":self.batch}, ) ] def _generate_tables(self, adata, batch_size, split): idx = 0 # save the gene names as the id for the raw_counts feature self.info.features["raw_counts"].id = f"{','.join(adata.var.index.tolist())}" # iterate over the data in batches for batch in range(0, adata.shape[0], batch_size): # raw counts if RAW_COUNTS == "X": chunk = adata.X[batch:batch+batch_size].tolil().astype('uint32') elif RAW_COUNTS == "raw.X": chunk = adata.raw.X[batch:batch+batch_size].tolil().astype('uint32') else: raise("Not valid raw_counts") df = pd.DataFrame([chunk.data,chunk.rows]).T df.columns = ['raw_counts','rows'] df['size'] = chunk.shape[1] # other features are all mapped to a list of strings for feature in FEATURES_TO_INCLUDE: df[feature] = list(map(str, adata.obs[feature][batch:batch+batch_size].tolist())) pa_table = pa.Table.from_pandas(df) yield idx, pa_table idx += 1